
An Enclave Assisted Snapshot-based Kernel Integrity Monitor
Dimitris Deyannis∗

FORTH-ICS
Heraklion, Greece

deyannis@ics.forth.gr

Dimitris Karnikis∗
FORTH-ICS

Heraklion, Greece
dkarnikis@ics.forth.gr

Giorgos Vasiliadis
FORTH-ICS

Heraklion, Greece
gvasil@ics.forth.gr

Sotiris Ioannidis
FORTH-ICS

Heraklion, Greece
sotiris@ics.forth.gr

ABSTRACT
The integrity of operating system (OS) kernels is of paramount

importance in order to ensure the secure operation of user-level
processes and services as well as the benign behavior of the entire
system. Attackers aim to exploit a system’s kernel since compromis-
ing it provides more flexibility for malicious operations compared to
compromising a user-level process. Acquiring access to the OS ker-
nel enables malicious parties to manipulate process execution, con-
trol the file system and the peripheral devices and obtain security-
and privacy-critical data. One of the most effective countermea-
sures against rootkits are kernel integrity monitors, implemented
in software (often assisted by a hypervisor) or external hardware,
aiming to detect threats by scanning the kernel’s state. However,
modern rootkits are able to hide their presence and prevent detec-
tion from such mechanisms either by identifying and disabling the
monitors or by performing transient attacks.

In this paper we present SGX-Mon, an external kernel integrity
monitor that verifies the operating system’s kernel integrity using
a very small TCB while it does not require any OS modifications or
external hardware. SGX-Mon is a snapshot-based monitor, residing
in the user space, and utilizes the trusted execution environment
offered by Intel SGX enclaves in order to avoid detection from
rootkits and prevent attackers from tampering its execution and
operation-critical data. Our system is able to perform scanning,
analysis and verification of arbitrary kernel memory pages and
memory regions and ensure their integrity. Themonitored locations
can be specified by the user and can contain critical kernel code
and data. SGX-Mon scans the system periodically and compares
the contents of critical memory regions against their known benign
values. Our experimental results show that SGX-Mon is able to
achieve 100% accuracy while scanning up to 6,000 distinct kernel
memory locations.

CCS CONCEPTS
• Security and privacy→ Operating systems security.
KEYWORDS
Intel SGX, Linux kernel, integrity monitor, secure enclaves

∗Also with the Department of Computer Science, University of Crete, Greece

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EdgeSys ’20, April 27, 2020, Heraklion, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7132-2/20/04. . . $15.00
https://doi.org/10.1145/3378679.3394539

ACM Reference Format:
Dimitris Deyannis, Dimitris Karnikis, Giorgos Vasiliadis, and Sotiris Ioan-
nidis. 2020. An Enclave Assisted Snapshot-based Kernel Integrity Monitor.
In 3rd International Workshop on Edge Systems, Analytics and Networking
(EdgeSys ’20), April 27, 2020, Heraklion, Greece. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3378679.3394539

1 INTRODUCTION
One of the most crucial security problems is to ensure the in-

tegrity of the Operating System (OS), as it has a direct effect to the
security of its running processes and their data. Modern kernels
found in end-user devices and servers consist of millions lines of
code and typically contain vulnerabilities that are too difficult to
identify or debug. At the same time, adversaries and attackers are
becoming more and more powerful, by utilizing years of experience
and advanced tools, creating attacks that stay under the radar of
modern anti-malware systems. Particular families of threats, such
as transient rootkits, repetitively tamper critical memory regions
of the kernel for a very short period of time and then restore them
to their original state, rendering themselves virtually undetectable.
Moreover, advanced rootkits try to identify and disable security
monitors prior to performing their malicious activities in order to
avoid hide their presence in the system.

One of the main defences against such kind of state-of-the art
kernel-side attacks include kernel data and code integrity monitor-
ing techniques. Integrity monitors aim to ensure that the state of the
OS and its environment remain intact after a secure boostrap-phase
from malicious software and users. Usually, these monitors are
triggered in very short time intervals or by certain event patterns
[7], scan selected memory regions, such as security-crucial kernel
memory pages, and try to validate that the contents of these pages
have not been tampered. In general, there are twomajor approaches
to modern kernel integrity monitors, hardware-assisted [9–11, 13]
and hypervisor-assisted [4, 14, 16, 17]. The hardware-assisted moni-
tors can be supported by either an additional chip connected to the
memory bus of the system, responsible to snoop the selected mem-
ory regions, or by an external device, responsible for analyzing the
state of the operating system and performing the necessary checks.
Apart from successfully identifying kernel-side attacks, modern
integrity monitors have to also ensure that they remain undetected
and unaffected by advanced rootkits and are able to respond when
malicious activities are discovered.

Intel SGX [1] is a security mechanism provided by Intel in mod-
ern x86 CPUS that extends the ISA with instructions that enable
trusted execution. SGX acts as a reverse sandbox, meaning that no
other process, user or even the OS kernel can access its memory
regions, except for the trusted application. Utilizing the properties
and guarantees provided by SGX in combination with integrity
monitoring can lead to the development of advanced monitors that

https://doi.org/10.1145/3378679.3394539
https://doi.org/10.1145/3378679.3394539

are able to hide their presence in the system and protect the in-
tegrity of their code and data, remaining unaffected from rootkits
that aim to disable them.

In this paper, we present a novel snapshot-based user space
kernel integrity monitor, namely SGX-Mon, that encloses its moni-
toring mechanism and state inside SGX enclaves, able to identify
transient rootkits while remaining untampered and undetected by
attackers. This paper’s contributions are the following:

• The first, to our knowledge, kernel integrity monitor that
leverages Intel SGX in order to protect its code and data
from identification and modification. SGX-Mon utilizes a
very small TCB, able to be contained in a single SGX enclave
and is easily audited.
• SGX-Mon is purely software-based, running in the user
space, and does not require external or non-commodity co-
processors, devices, TPMs or hypervisors. This restricts po-
tential memory leaks and vulnerabilities that are introduced
by extra hardware or complex software, such as hypervi-
sors, that might put the kernel and other sensitive memory
regions at risk.
• An evaluation of the effectiveness of our system in identi-
fying transient kernel-side attacks as well as a study of the
appropriate monitoring intervals that guarantee that tran-
sient rootkits are not able to perform any malicious actions
and still be able to remain undetected.

2 BACKGROUND
Intel Software Guard Extensions (SGX) [1, 5] is a group of secu-

rity instructions offered by modern Intel x86 CPUs, firstly intro-
duced with the Skylake family of processors. These instructions
provide secure and hardware-assisted isolated software containers,
called enclaves, whose code and data cannot be read or modified by
any other process aside from the one utilizing them. This reverse-
sandbox property also restricts the OS kernel or debuggers from
reading or tampering their contents. Intel SGX utilizes hardware-
assisted encryption, performed by the CPU, using a supplied on-
chip mechanism called Memory Management Engine (MME). The
MME is responsible for encrypting a portion of the live memory
and providing it to SGX where the data and the code of several
enclaves may reside. Data from the trusted enclave are decrypted
on the fly during execution within the CPU and are accessible only
by the enclave. When enclave memory pages need to be swapped
out and moved to the DRAM, SGX encrypts them using the MME.
As a result, every process is restricted from accessing the enclave
contents. The available live memory of Intel SGX enclaves ranges
between 64MB and 128MB and is defined by BIOS settings. How-
ever, this does not limit the developer from accessing more memory
by utilizing swapping. Also, enclave data can be securely sealed
and exported in the untrusted file-system in an encrypted format,
accompanied by metadata used for integrity checking upon reuse.

A typical SGX application consists of two parts: (i) the untrusted
application that resides in the unstrusted OS and communicates
with the enclave and (ii) the secure enclave that may be bound to
one or multiple applications. Communication between those two is
achieved by specific functions and APIs that are declared in SGX

SGX-Mon

Benign Hash
Values

Memory
Mappings

Monitor
Code

SGX Enclave

Memory
Mappings

ECALL3

pamess
driver

2

1 Memory
Regions

4

O
C

A
LL

User Space

Kernel Space

Figure 1: Architecture overview

Enclave Definition Language (EDL) during the software develop-
ment and cannot be modified or extended after compilation and
enclave signing. Enclaves are prohibited from directly performing
undeclared I/O, accessing any system calls, or invoke privileged
instructions since the host OS kernel cannot be trusted and is ren-
dered inaccessible. The developer has to proxy such requests to the
untrusted part of the application. Such calls, known as OCALLs,
transfer the execution outside of the secure enclaves and can only
be invoked by the enclaves. Similarly, an application can perform
ECALLs, which transfer the execution from the untrusted applica-
tion to the trusted enclave, in predefined entry points, invoking a
predefined enclave function. Both ECALLs and OCALLs are defined
in the EDL file during the application’s development and can not
be modified afterwards.

3 DESIGN AND IMPLEMENTATION
Our kernel integrity monitor puts its security monitor, which

represents its entire Trusted Computing Base, in an SGX enclave.
Hence, the security monitor is safe from attacks that can potentially
compromise the Linux kernel and affect its execution. Moreover,
attackers can not inspect its code and identify that SGX-Mon exists
in the system, scanning the kernel for modifications. In addition,
we use techniques to deprive an attacker from modifying the OS
kernel in order to prevent running unauthorized code on the target
system, as well as stop attacks that involve modifying the system
memory layout, e.g. through changing virtual memory mappings.
This is an important step toward complete security protection of
the kernel.

In its core, the integrity monitor is external, snapshot-based, that
can also provide programmability and easy deployment. During
the secure bootstrap of the system, SGX-Mon obtains the benign
values of selected kernel memory regions that are not expected
to be modified during normal execution. Then, it hashes these
values and securely stores them inside the SGX enclave. During
system execution, SGX-Mon periodically rescans these regions,
computes its hash values and compares them with the benign ones.
If a value is found to be modified, the system reports the existence of

0x7f67e

1fe9000

0xffffffff

a9c606f0

User

0x1cdc606f0

Kernel

PhysicalEnclave

0x7f67e

1fe9000

0xffffffff

a9c606f0

User

0x1cdc606f0

Kernel

PhysicalEnclave

Map page

0x7f67e

1fe9000

0xffffffff

a9c606f0

User

0x1cdc606f0

Kernel

PhysicalEnclave

u
se
r_
ch
e
ck

11 22 33

Figure 2: Mapping OS kernel memory to the address space of the integrity monitor. In step 1 we locate a desired kernel virtual
address pointing to a physical address. In step 2 we duplicate this mapping to user space using our page table manipulation
kernel module. In step 3 we pass the user space virtual address to the SGX-enclave using the user_check option.

a possibly malicious action. Besides the static text parts of the kernel
or the already loaded LKMs that can easily hashed, the OS kernel
consists of additional parts that frequently change; for example
the VFS layer’s data structures change when new file-systems are
mounted or removed. Also, every LKM can add function pointers.
The memory regions to be monitored can be specified by the user,
and can include pages that contain kernel text, loadable kernel
modules, or function pointer arrays (i.e., jump tables). A graphical
representation of our system’s architecture is depicted in Figure 1.

3.1 Mapping kernel memory to SGX enclaves
During bootstrapping, our integrity monitor needs to acquire

the kernel memory regions that need to be monitored. Since these
regions are located in the kernel virtual address space, the first step
is to map them to the address space of the user process that issues
the execution of the secure enclave that performs the monitoring.

In order to provide the desired integrity monitoring functionality
from the user space we need to develop a mechanism to reference
kernel memory regions. The Linux kernel prohibits user space ap-
plications to directly access memory regions that have not been
assigned to them. Typically, all memory accesses to pages that
are not mapped to the process’s virtual address space result in a
segmentation violation since they are considered illegal. For this
reason the memory regions where the kernel and its data struc-
tures reside have to be mapped to the integrity monitor’s address
space. In order to bypass this OS functionality without modify-
ing the operating system kernel we developed a loadable kernel
module, named pamess, able to map user-specified memory re-
gions to user space. These regions can correspond to pages that
contain kernel function pointers, data, as well as LKM or kernel
text. The virtual addresses of the aforementioned memory loca-
tions are obtained via the /proc/kallsyms interface. In our case, the
Linux kernel under test is built with CONFIG_KALLSYMS=y and
CONFIG_KALLSYMS_ALL=y so no recompilation of the kernel is
required. However, these two options are not a strict requirement
for the proper operation of our system.

Since the kernel symbol lookup table is present, we are able to
simplify the development in two ways. Firstly, no custom memory

scanner is required in order to locate all the kernel memory regions
subject to monitoring. Secondly, it allows us to easily locate the
address of the kernel page table by acquiring the address of the
init_mm symbol without explicitly exporting it via modifying the
kernel. In this case, no modifications to the host’s operating system
are required and our system is able to operate at its full potential just
by loading our custom kernel module. In scenarios where the access
to the kernel lookup table has to be restricted, we would locate the
various memory locations using either an external symbol table or
via a custom memory pattern scanner. The pamess kernel module is
only required during the secure-bootstrap phase, in order to acquire
the correct memory mappings, and can be unloaded afterwards as
it is not needed during SGX-Mon’s execution.

The process of making the aforementioned memory pages avail-
able to the SGX enclave is depicted in Figure 2. During a secure
bootstrap phase we allocate a data structure inside the SGX enclave
responsible for storing all the available data and metadata of each
kernel region, such as the correct checksum, number of required
pages, offsets, etc. Our kernel loadable module resolves the physical
mapping of each desired kernel virtual address and instructs the
integrity monitor to allocate the appropriate amount of pages in
its address space, as shown in step 1. Then, in step 2, the module
makes the allocated page to point to the same page as the kernel
virtual address by duplicating the PTE in the user-page table. Fi-
nally, in step 3, we update the data structure inside the enclave
by passing a pointer to the virtual page of the monitor’s address
space using the user_check option. By issuing read operations of
the appropriate size the enclave side of the monitor is now able to
inspect the contents of the desired kernel memory regions.

3.2 Kernel integrity monitoring inside the SGX
The process of monitoring the specified memory locations is

entirely performed inside the SGX enclave. The first part of process
is acquiring the correct checksums of the specified memory regions.
During the secure bootstrap phase, once the page mapping process
is finished, the monitor obtains the hashes of the contents of all
specified locations and stores them in its data structures. Since this
operation is performed during a secure bootstrap phase, the state

of the entire system is considered safe, thus these checksums are
considered a reference point for the security of the system.

After the process of obtaining the checksums is finished we
assume that the secure bootstrap phase has finished and the system
could be put at risk at any time. The monitor operates as a daemon,
running in an infinite loop, constantly iterating through all the
memory regions hashing their contents. The hashes are compared
for changes against the values obtained during the previous phase.
Since the entire checksumming process, as well as the clean-state
checksums, reside inside the SGX enclave, the monitoring operation
remains untampered.

The system is able to perform the checksumming operations by
using either the CRC-32 or the SHA-256 hashing algorithm. In its
default operation, the monitor opts for CRC-32, implemented in
accordance with ISO 3309. We choose CRC-32 mainly due to its
speed, simplicity and capability to cover a large number of individ-
ual memory locations without severe performance overhead that
penalises the safety of the system (see Section 4 for performance
comparison). The system is also able to perform the monitoring by
entirely using SHA-256 in scenarios where CRC-32 is not consid-
ered sufficient enough to provide collision free results. However,
SHA-256 is significantly slower and while it offers higher security
it is not able to cover the same amount of kernel memory regions
in the same frequency. In such cases, the integrity monitor can be
tuned to use CRC-32 for the majority of memory locations and
SHA-256 for regions that are regarded to be highly security critical.

4 EVALUATION
In this section we present the evaluation of our SGX-enabled

Kernel Integrity Monitor in terms of performance and accuracy. We
explore the characteristics of CRC-32 and SHA-256 algorithms in
respect to the detection rate of a kernel side attack. We choose to
evaluate SGX-Mon with CRC-32 and SHA-256 as the former stands
as a good representation of the fast hash collision algorithm family
while the later provides higher collision resistance with the penalty
of lower performance. Other algorithms, such as MD5 or SHA1, will
yield performance and collision resistance results between these
bounds. Moreover, we measure the impact of each algorithm to the
system’s overall performance and ability to identify such attacks
by covering a reasonable amount of kernel memory regions.

4.1 Experimental Setup
The system used for the evaluation of our kernel integrity moni-

tor consists of an SGX-enabled Intel Core i7-6700 CPU, clocked at
3.40GHz, and 16GiB of DDR4 memory, clocked at 2400 MHz. The
system is running Arch Linux with kernel version 4.14 and the
latest version of the SGX software stack.

4.2 Snapshot Frequency
We begin the evaluation of our kernel integrity monitor by identi-

fying the achievable snapshot frequency of each hashing algorithm
in respect to the number of kernel memory regions provided. In this
set of experiments, the system is instructed to monitor 8-byte long
kernel memory regions, obtained using the /proc/kallsyms
interface. Setting the system to its default mode of operation, that
is using CRC-32, we perform constant monitoring of the provided

 0

 10

 20

 30

 40

1K 2K 4K 6K 8K 10K
12K

14K
16K

18K
20K

F
re

q
u
e
n
c
y
 (

K
H

z
)

Number of monitored elements

CRC-32
SHA-256

Figure 3: Sustainable scanning frequency using CRC-32 and
SHA-256 in respect to the number of monitored regions.

memory regions while measuring the sustained snapshot frequency.
We conduct the same experiment, each time increasing the number
of monitoring addresses by 2,000, starting with 1,000 entries up
to 20,000. The outcome of this experiment is depicted in Figure 3.
As expected, we notice that as the number of memory locations
increases, the frequency of monitoring the locations decreases lin-
early. Overall, the system is able to achieve a frequency of 42 KHz
when monitoring 1,000 distinct kernel memory regions and pro-
videsmonitoring frequencies greater than 10 KHz for configurations
containing up to 4,000 memory locations.

We also perform the same set of experiments, this time by tuning
the integrity monitor into using the SHA-256 algorithm for the
checksumming operations. The results of this experiment are also
shown in Figure 3. We observe that SHA-256, being more intensive
algorithm compared to CRC-32, yields lower sustained monitoring
frequencies. On average, its performance is one order of magnitude
lower than CRC-32 and the system is able to achieve a scanning
frequency of 4.3 KHzwhenmonitoring one thousand distinct kernel
memory regions.

4.3 Monitoring Accuracy
After obtaining the performance characteristics of our system us-

ing the two available hashing algorithms in multiple configurations,
we want to determine its ability to accurately identify kernel side
attacks. We base this analysis on the monitor’s ability to detect the
presence of a malicious self-hiding kernel loadable module. Similar
case studies have also been conducted for the evaluation of kernel
integrity monitoring systems found in the literature [9, 11].

In order to perform this measurement, we develop a custom self-
hiding loadable kernel module (LKM) that performs zero malicious
operations other than deleting itself from the loadable kernel mod-
ules list. With this setup we are able to stress our kernel integrity
monitor to the maximum extend since this artificial module does
not execute any code useful to an attacker, thus being exposed to
the system for the minimum possible extend.

In typical Linux environments, loadable kernel modules are
handled using the various available utilities such as insmod and

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

D
e

te
c
ti
o

n
 r

a
te

 (
p

e
rc

e
n

t)

Snapshot frequency (KHz)

Figure 4: Detection rate of the self-hiding LKM with dif-
ferent snapshot frequencies. Frequency configurations
of 8KHz or more achieve a 100% detection rate. For each
frequency configuration we monitor the head of the ker-
nel modules list and load a module that deletes its entry
from the list 100 times.

 0

 10

 20

 30

 40

 0

 20

 40

 60

 80

 100CRC-32

F
re

q
u

e
n

c
y
 (

K
H

z
)

D
e

te
c
ti
o

n
 r

a
te

 (
p

e
rc

e
n

t)

Frequency Detection rate

 0

 1

 2

 3

 4

1K 2K 4K 6K 8K 10K
12K

14K
16K

18K
20K

 0

 20

 40

 60

 80

 100SHA-256

Number of monitored elements

Figure 5: Scanning frequency and detection rate of the
self-hiding LKM using CRC-32 and SHA-256 in respect
to the number of monitored regions. The CRC-32 algo-
rithm is faster and covers a larger memory space while
achieving 100% detection rate. SHA-256 is able to cover a
small memory region but provides higher security.

rmmod. These utilities are responsible for loading the modules
into memory and invoking the appropriate system call for their
initialization. The reverse operation is performed when a module
needs to be unloaded from the system. During the initialization
phase, the insmod tool opens the module object file and invokes
the finit_module system call. This operation adds a handle
to the kernel’s loadable module list data structure, initializes any
parameters given to the module and invokes the module’s init()
function. All modules currently present to the system can be ob-
tained by iterating through this list. Once our artificial module is
loaded, it hides itself from the system by removing its entry from
the kernel’s loadable module list. This transient malicious operation
can be detected by our kernel integrity monitor by scanning the
head of the loadable kernel modules list with a sufficient frequency.

With the following experiment we determine the minimum re-
quired monitoring frequency for the successful detection of such
modifications of the kernel’s data structure. We measure the detec-
tion rate using multiple frequency configurations while loading the
self-hiding module 100 times. The outcome of this experiment is
displayed in Figure 4. We observe that our monitor is able to reliably
detect the presence of the malicious module with 100% accuracy
when operating with a snapshot frequency of 8 KHz or more.

We conclude our evaluation by performing the first set of ex-
periments, this time including the head of the kernel’s loadable
module list in each kernel memory region configuration while at
the same time loading the self-hiding module into the system. Fig-
ure 5 presents the comparison of the sustained detection rate when
monitoring with CRC-32 and SHA-256, using an increasing num-
ber of kernel memory locations. As We can see in the Y2 axis, our
system is able to achieve 100% detection rate while scanning up to
6,000 distinct memory locations by using CRC-32 for the checksum-
ming operations. On the other hand, when SHA-256 is used, the
system achieves a maximum of 87% detection rate while scanning

1,000 memory locations. The increased level of security provided by
SHA-256 comes with a substantial penalty to the system’s overall
performance. Nonetheless, for our specific hardware, SHA-256 can
be used to successfully monitor up to 850 distinct memory locations
of significant security importance.

5 RELATEDWORK
Kernel integrity monitors can be divided into two main cate-

gories, (i) software based and (ii) hardware based, with the former
often based on a hypervisor. Azab et al. [3] propose a system, sim-
ilar to our design, that leverages ARM TrustZone [2] in order to
perform kernel monitoring. The benefit of this approach is that
the mappings and the virtual address translations of the kernel are
transferred directly inside the trusted application, rendering the
normal world unable to view or modify them. However, this model
is only applicable to TrustZone capable devices such as IoT and
mobile phones. HyperCheck [16] is a hardware-assisted tempering
detection framework that leverages the CPU System Management
Mode (SMM) and aims to protect the integrity of VMMs and the
host’s OS against certain classes of attacks. In contrast to SGX-Mon,
where the analysis is performed in the secure enclave, executed
on the target system, HyperCheck transmits the entire system
state to an external server. Feng et al. introduce BehaviorKI [7], a
behavior-triggered integrity checking system that extracts a set of
behavior patterns by analyzing attacking processes and triggers
checking with kernel invariants. OCsk [8] is a virtual machine
based approach able to detect rootkits by determining violations
to operating system invariants. Also, SecVisor [15] is a hypervisor
based approach that protects the kernel’s integrity by verifying that
only user-approved code can execute in kernel mode thus protect-
ing the OS against code injection attacks and rootkits. TrustAV [6],
is an anti-malware monitor that leverages SGX in a similar way as
SGX-Mon but targets executables and user files.

Copilot [13] is a snapshot based kernel integrity monitor that,
similar to SGX-Mon, requires no modifications to the monitored
system but is implemented on a custom FPGA. Moon et al. propose
Vigilare [12], a hardware- and snooping-based integrity monitor
that scans the bus for memory accesses that can possibly affect the
kernel’s security. Also, KI-Mon [11] extends Vigilare by offering
event-triggered protection for mutable objects. Hypernel [10] is
a security framework that combines a software and a hardware
component, enabling a word-granularity monitoring capability on
the kernel memory. Finally, Koromilas et al. propose GRIM [9], an
external kernel integrity monitor that performs snapshot-based
scanning by utilizing an external GPU.

6 DISCUSSION AND LIMITATIONS
Kernel Memory Mapping Manipulation. An attacker could ma-

nipulate the kernel memory mappings, defined by page tables, in
order to fool the SGX-enabled integrity monitor and bypass detec-
tion. The attacker could manipulate the CR3 register and map the
kernel code to a different physical page. In this work we assume
that the kernel runs in a known state and is not compromised prior
to the secure-bootstrap of the monitor, thus by monitoring the CR3
register such an attack is not feasible.

Denial-of-Service Attacks. Adversaries whomanage to bypass the
integrity monitor and compromise the system or malicious users
able to acquire root access can easily disrupt the operation of Intel
SGX. For example, they can kill or suspend the execution of enclaves.
However, such activates can be easily detected using a custom
heartbeat signal sent by SGX-Mon’s enclave, utilizing random used-
only-once beacons that can not be replicated or predicted.

SGX Side-Channel Attacks. Preventing potential side channel
attacks is up to the enclave developer. The untrusted part of SGX-
Mon’s code base, residing out of the enclave, as well as the secure
enclave must both be free of memory bugs, memory leaks, code
vulnerabilities and error prone code. Additionally, the trusted code
footprint must be small to limit attack surface. Moreover, side chan-
nel attacks targeting other parts of the software stack, hardware
bugs or timing attacks are not taken into consideration in this work
as they are orthogonal to our system. However, every work that
aims to protect SGX-enabled software or hardware is applicable to
our system and offers a direct benefit.

7 CONCLUSIONS
In this paper, we propose SGX-Mon, an external snapshot-based

integritymonitor able to identify kernel side attacks that tamper and
modify critical Linux kernel memory regions and data structures.
Our system is executed in the user space, without any need for
external hardware or kernel modifications and resides inside a
secure Intel SGX enclave. Our system is able to remain untampered
and undetected by malicious third parties and operates with a
minimal TCB. SGX-Mon is able to achieve up to 100% accuracy
while scanning up to 6,000 distinct memory locations and up to
87% accuracy while scanning up to 1,000 memory locations.

In the future, we aim to explore the effectiveness of random
intervals in order to increase the system’s overall accuracy when
scanning more memory locations using highly collision resistant

algorithms, such as SHA-256. Moreover, we plan to extend our
system with a rule engine able to perform specific user-defined
actions when a threat is detected as well as identify complex attacks
targeting kernel code and registers.

8 ACKNOWLEDGMENTS
The research work was supported by the Hellenic Foundation

for Research and Innovation (HFRI) and the General Secretariat for
Research and Technology (GSRT), under the HFRI PhD Fellowship
grant (GA. No. 2767). This work was also supported by the projects
CONCORDIA, C4IIoT and COLLABS, funded by the European Com-
mission under Grant Agreements No. 830927, No. 833828, and No.
871518. This publication reflects the views only of the authors, and
the Commission cannot be held responsible for any use which may
be made of the information contained therein.

REFERENCES
[1] [n.d.]. Intel Software Guard Extensions. https://software.intel.com/en-us/sgx.
[2] ARM LIMITED. 2009. ARM Security Technology - Building a Secure System

using TrustZone Technology.
[3] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad

Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: Real-time
kernel protection from the arm trustzone secure world. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 90–102.

[4] Yingxin Cheng, Xiao Fu, Xiaojiang Du, Bin Luo, and Mohsen Guizani. 2016. A
Lightweight Live Memory Forensic Approach Based on Hardware Virtualization.
Information Sciences 379 (07 2016). https://doi.org/10.1016/j.ins.2016.07.019

[5] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1–118.

[6] Dimitris Deyannis, Eva Papadogiannaki, Giorgos Kalivianakis, Giorgos Vasiliadis,
and Sotiris Ioannidis. 2020. TrustAV: Practical and Privacy Preserving Malware
Analysis in the Cloud. In Proceedings of the Tenth ACM Conference on Data and
Application Security and Privacy. 39–48.

[7] Xinyue Feng, Qiusong Yang, Lin Shi, and Qing Wang. 2018. BehaviorKI: Behavior
Pattern Based Runtime Integrity Checking for Operating System Kernel. In 2018
IEEE International Conference on Software Quality, Reliability and Security (QRS).

[8] Owen SHofmann, AlanMDunn, SangmanKim, Indrajit Roy, and EmmettWitchel.
2011. Ensuring operating system kernel integrity with OSck. ACM SIGARCH
Computer Architecture News 39, 1 (2011), 279–290.

[9] Lazaros Koromilas, Giorgos Vasiliadis, Elias Athanasopoulos, and Sotiris Ioanni-
dis. 2016. GRIM: leveraging GPUs for kernel integrity monitoring. In International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 3–23.

[10] D. Kwon, K. Oh, J. Park, S. Yang, Y. Cho, B. B. Kang, and Y. Paek. 2018. Hypernel:
A Hardware-Assisted Framework for Kernel Protection without Nested Paging.
In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). 1–6.

[11] Hojoon Lee, Hyungon Moon, Daehee Jang, Kihwan Kim, Jihoon Lee, Yunheung
Paek, and Brent ByungHoon Kang. 2013. Ki-mon: A hardware-assisted event-
triggered monitoring platform for mutable kernel object. In Presented as part of
the 22nd {USENIX} Security Symposium ({USENIX} Security 13). 511–526.

[12] Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and
Brent Byunghoon Kang. 2012. Vigilare: toward snoop-based kernel integrity
monitor. In Proceedings of the 2012 ACM conference on Computer and communica-
tions security. 28–37.

[13] Nick L Petroni Jr, Timothy Fraser, Jesus Molina, and William A Arbaugh. 2004.
Copilot-a Coprocessor-based Kernel Runtime Integrity Monitor.. In USENIX
security symposium. San Diego, USA, 179–194.

[14] J. Rhee, R. Riley, D. Xu, and X. Jiang. 2009. Defeating Dynamic Data Kernel Rootkit
Attacks via VMM-Based Guest-Transparent Monitoring. In 2009 International
Conference on Availability, Reliability and Security. 74–81.

[15] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity for commodity OSes.
In Proceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles. 335–350.

[16] Jiang Wang, Angelos Stavrou, and Anup Ghosh. 2010. Hypercheck: A hardware-
assisted integrity monitor. In International Workshop on Recent Advances in Intru-
sion Detection. Springer, 158–177.

[17] Xiaoguang Wang, Yue Chen, Zhi Wang, Yong Qi, and Yajin Zhou. 2015. SecPod:
A Framework for Virtualization-based Security Systems.

https://software.intel.com/en-us/sgx
https://doi.org/10.1016/j.ins.2016.07.019

	Abstract
	1 Introduction
	2 Background
	3 Design And Implementation
	3.1 Mapping kernel memory to SGX enclaves
	3.2 Kernel integrity monitoring inside the SGX

	4 Evaluation
	4.1 Experimental Setup
	4.2 Snapshot Frequency
	4.3 Monitoring Accuracy

	5 Related Work
	6 Discussion and Limitations
	7 Conclusions
	8 Acknowledgments
	References

