
The Million Dollar Handshake: Secure and Attested Communications in the Cloud

Nikolaos Chalkiadakis, Dimitris Deyannis∗, Dimitris Karnikis∗, Giorgos Vasiliadis
FORTH-ICS

Heraklion, Crete, Greece
{nikoschalk, deyannis, dkarnikis, gvasil}@ics.forth.gr

∗Also with the Department of Computer Science, University of Crete, Greece

Sotiris Ioannidis†

Technical University of Crete
Chania, Crete, Greece

sotiris@ece.tuc.gr
†Also with the Institute of Computer Science, Foundation for Research & Technology Hellas

Abstract—The number of applications and services that are
hosted on cloud platforms is constantly increasing. Nowa-
days, more and more applications are hosted as services on
cloud platforms, co-existing with other services in a mutually
untrusted environment. Facilities such as virtual machines,
containers and encrypted communication channels aim to
offer isolation between the various applications and protect
sensitive user data. However, such techniques are not always
able to provide a secure execution environment for sensitive
applications nor they offer guarantees that data are not
monitored by an honest but curious provider once they reach
the cloud infrastructure.

The recent advancements of trusted execution environments
within commodity processors, such as Intel SGX, provide a
secure reverse sandbox, where code and data are isolated
even from the underlying operating system. Moreover, Intel
SGX provides a remote attestation mechanism, allowing the
communicating parties to verify their identity as well as prove
that code is executed on hardware-assisted software enclaves.
Many approaches try to ensure code and data integrity, as well
as enforce channel encryption schemes such as TLS, however,
these techniques are not enough to achieve complete isolation
and secure communications without hardware assistance or are
not efficient in terms of performance.

In this work, we design and implement a practical attestation
system that allows the service provider to offer a seamless
attestation service between the hosted applications and the end
clients. Furthermore, we implement a novel caching system
that is capable to eliminate the latencies introduced by the
remote attestation process. Our approach allows the parties to
attest one another before each communication attempt, with
improved performance when compared to a standard TLS
handshake.

Keywords-Remote Attestation; Secure Communication; Se-
cure Enclaves;

I. INTRODUCTION

The widespread use of cloud infrastructure has led a
plethora of applications and services to relocate from private,
on-premise, servers to cloud platforms. These platforms
typically host a wide variety of software, thus, it is becoming

more and more common for user-end applications to com-
municate with a remote cloud-based server or in a peer-to-
peer fashion. Such applications range from data storage and
processing solutions [1], [2], [3], chat services [4], medical
and financial applications [5], to productivity software, anti-
malware systems [6] and IoT oriented applications control-
ling business or household appliances [7]. This trend leads
security and privacy sensitive applications co-existing with
other software on the same environment, communicating
with the user applications via standard encryption schemes,
such as TLS.

In such environments, where various types of applications
are co-hosted together, the use of virtual machines and
compartmentalization are the most fundamental means of
isolating software. However, such facilities do not provide
guaranties for the integrity of software and data nor they
shield software against adversaries controlling one of the
communicating ends. Moreover, standard communication
channel encryption schemes, such as TLS, do not secure
the channel from an honest but curious service provider that
wishes to monitor the offloaded user data.

In order to address these issues, recent research work has
made use of the Intel Software Guard Extensions (SGX),
in order to design and implement systems that offer a
means of software isolation for applications hosted on such
environments [8], [9]. Intel SGX was introduced as an ISA
extension with the 6th generation of Intel processors and
provides hardware-assisted software enclaves that operate
as reverse sandboxes, protecting code and data from other
applications, debugging utilities and even the operating
system kernel. However, the majority of these works do
not provide a service that will allow the establishment of a
secure communication channel between enclaves of different
entities.

In this work, we design and implement a system that can
provide a secure communication channel establishment for
SGX-enabled applications where at least one of the commu-

nicating ends may reside on a potentially untrusted remote
location, such as a cloud platform. For this purpose, we
build our system based on Intel’s Remote Attestation process
in order to enable secure key exchange and authorization
of the communicating ends. Our system exposes a simple
API with which, two communicating entities can verify and
attest each other, identifying if signed SGX-enclaves are
used at both ends – running with hardware support, and
create an SGX-to-SGX encrypted communication channel.
Moreover, we implement a caching system for SGX Remote
Attestation responses which greatly reduces the latency
of new connections and benefits applications that require
multiple short-term connections.

The contributions of this paper are:
• A system that provides remote attestation of communi-

cating ends executing inside SGX enclaves
• A framework that provides seamless establishment of

enclave-to-enclave encrypted network communication
between two or more parties

• A caching system for SGX remote attestation responses
that reduces the latency of consecutive connections,
rendering them substantially faster than a standard TLS
handshake

• A comparison of our secure communication method
against commonly used methods such as SSL/TLS

II. BACKGROUND

A. Intel SGX

Intel SGX (Software Guard eXtensions) [10] is an ISA
extension to the Intel architecture that provides secure
software enclaves, backed by hardware support, that aim
to offer protection for sensitive code segments and data
against disclosure and modifications. SGX enclaves operate
as reverse sandboxes, meaning that other system processes,
debugging utilities and the operating system do not have
access to their code or data while they are being executed.
This enables SGX-assisted applications to securely operate
even when executed on an untrusted or even malicious
platform with a tampered operating system, firmware or
hypervisor. Such protection is made possible as enclave
memory pages reside in a protected physical memory space
called Enclave Page Cache (EPC). When data from the
protected memory region are moved to DRAM, they are
automatically encrypted by an on-chip memory encryption
engine called MME.

Enclave memory is also protected against memory mod-
ifications and rollbacks via integrity checking. The EPC
size ranges between 64MB and 128MB and the Intel SGX
platform provides a secure paging mechanism for swapping
EPC pages to the untrusted DRAM by utilizing the MME.
Software residing out of the enclave is not able to access
the EPC [11] while enclave code can directly access the
untrusted DRAM contents. Moreover, data moved from

the enclave to the file system can be sealed and later be
decrypted and checked for their integrity, upon usage.

An SGX enabled application is divided into two parts: (i)
the untrusted code, residing in DRAM and (ii) the trusted
enclave, developed in C/C++, residing in the protected
memory space. Application code can be placed into an
enclave only at its developing phase by special APIs and
software, made available by the Intel SGX SDK. Moreover,
enclaves can be signed during compilation and later be
attested locally or by a remote party. The untrusted segment
of the application can communicate with the secure enclave
through specific interfaces, defined by the developer and any
other attempts to access the enclave result in segmentation
violations.

Enclaves can be created using the ECREATE instruction,
which initializes an SGX enclave control structure (SECS)
in the EPC. The EADD instruction adds pages to the enclave,
which are further tracked and protected by the SGX (i.e., the
virtual address and its permissions). The EINIT instruction
creates a cryptographic measurement, after the loading of
all enclave pages. The cryptographic measurement can be
used by remote parties for attestation. After the enclave has
been initialized, enclave code can be executed through the
EENTER instruction, which switches the CPU to enclave
mode and jumps to a predefined enclave offset. The EEXIT
instruction causes execution to leave the enclave.

B. SGX Remote Attestation

Remote attestation is the process of verifying the authen-
ticity of a software component, running inside an isolated
container, to some remote party. In the case of SGX, the
software being attested is a secure enclave created by the
trusted CPU hardware. For the remote attestation procedure,
the CPU generates a measurement for the attested enclave
which uniquely identifies it. This information is then signed
by the privileged Quoting Enclave, resulting in an attesta-
tion signature (QUOTE). The Quoting Enclave is a special
trusted enclave software, which is issued by Intel and has
access to the SGX hardware attestation key that signs the
measurement. The attestation signature is generated using
the EPID group signature scheme [12] in order to preserve
privacy. The communication between the two enclaves must
also be done in a secure way. This is achieved by performing
a local attestation between the two communicating enclaves
as a means to establish a secure channel. The attestation
signature can then be sent to the remote party, who will
relay this information to the Intel Attestation Service (IAS)
in order to verify its validity. Thus, the remote party can
be aware if the enclave has been tampered or if the attested
software is not running within a genuine hardware-assisted
SGX enclave. This information is critical as it verifies that
the SGX enclave is executed on SGX enabled hardware and
not in simulation mode, which makes the enclave accessible
by debugging utilities. The SGX Remote Attestation process

Process A

Enclave

Enclave
Code

Enclave
Data

Process
B

Operating System
(Drivers, File system, etc.)

Hypervisor

CPU Hardware Components

Client Process D

Enclave

Process
C

Untrusted
Trusted

N
e

tw
o

rk

IAS

Figure 1: Assumed TCB and possibly malicious components

utilizes a modified SIGMA [13] protocol, therefore at the
end of the process the remote party and the enclave estab-
lish a shared secret for secure communication. Contrary to
Trusted Platform Modules (TPMs), SGX Remote Attestation
has the benefit that attested software runs within the CPU
thus, having better performance. Moreover, SGX utilizes an
EPID group signature scheme and attested enclaves cannot
be uniquely linked back to a specific CPU through their
attestation signature.

III. THREAT MODEL AND ASSUMPTIONS

In this work, we assume a set of client nodes that
may be distributed over different area networks or even
different geographical areas. These nodes are connected over
a public, not necessarily trusted, network, over which they
can transmit and exchange data. We also assume that the
client nodes may be compromised by a powerful adversary
with full-privileged access or even access to the physical
hardware, except the CPU, that is further equipped with SGX
(or equivalent technology). All the enclaves that can run
within SGX in each client are considered part of our TCB,
as well as the Service Provider, which acts as a directory
server responsible for resource and users discovery, and the
Intel SGX Attestation Service that verifies that the SGX
hardware is genuine; any other components, such as the host
application and the underlying OS are not. The entities that
are part of our TCB are the Intel SGX enclaves that can run
in each client (excluding the container application and the
hosting OS), the Service Provider and the IAS. An overview
of our TCB and possibly malicious components is presented
in Figure 1.

Overall, our primary aim is to defend against adversaries
that can: (a) control and tamper applications and the clients’
operating system, (b) observe and tamper data transmitted

over the network channel, (c) conduct man-in-the-middle
attacks between either a client and the SP or between two
client enclaves, and, (d) perform replay attacks that utilize
information from previous sessions.

We note that our threat model excludes Denial-of-Service
(DoS) attacks on enclaves since the life cycle of the process
containing the enclave can be controlled by a malicious oper-
ating system or super-user. While adversaries can prevent or
abort the execution of enclaves, they are not able to obtain
any valuable information by doing so. Furthermore, side-
channel attacks that exploit page faults or timing information
are excluded from this work, even though we assume a small
and well audited TCB. Finally, we assume that the design
and implementation of the Intel SGX framework are free of
vulnerabilities.

IV. DESIGN OVERVIEW

A. Involved Parties

Our protocol involves three parties in total, namely the
clients, the service provider, and the attestation service.

Clients. The remote parties that want to communicate
and support Intel SGX enclaves. For simplicity, in the rest
of this paper, we assume only two clients, Alice and Bob,
where Alice wants to communicate with Bob via a secure
communication channel, using Intel SGX. We notice though
that our design can scale by nature and operate independent
of the number of connected peers.

Service Provider (SP). The application’s vendor who
signs and ships the clients’ SGX enclaves. Signing verifies
that the code can not be changed, tampered, or altered.
Service Providers must register themselves with the Intel
Attestation Service in order to make use of the provided
services. To do so, the Service Providers must fulfill a set
of standard requirements in order to submit their attestation
results to the attestation service and verify that the system is
sound. Consequently, this process assigns a TLS certificate
to the Service Provider ID (SPID), thus granting access to
the attestation services.

Intel Attestation Service (IAS). The IAS is used in order
to verify the attestation evidence that the Quoting Enclave
generates and report them back to the Service Provider.
Quoting Enclave (QE) is provided by Intel and its goal is
to receive and verify reports from other enclaves, which
converts and signs using the Intel EPID Key, which is a
device specific asymmetric key. The attestation flow is the
following:

1) The application receives an attestation request (RE-
PORT) from a third party and forwards it to its enclave.

2) The enclave sends the local attestation request to the
Quoting Enclave.

3) The Quoting Enclave validates the request and trans-
forms it int a remote attestation request.

4) The request is returned to the application which for-
wards it to the challenger.

Alice performs
Remote Attestation

Bob performs
Remote Attestation

Generate
nonce

Generate
nonce

Generate
Shared Key

Encrypted Channel Established

Alice BobService Provider

Intel Attestation
Service

1

2

3

4

5

6
6

Figure 2: Attestation protocol

5) The challenger uses the Attestation Verification service
to perform the verification.

B. Protocol Design

In this section, we present our protocol in detail, describ-
ing the messages exchanged between two clients, namely
Alice and Bob. In our setup, we assume that Alice wants
to initiate the communication. A graphical representation of
the message flow is depicted in Figure 2. More specifically,
the actions performed by the two parties are the following:

1) Alice requests communication with Bob from the Ser-
vice Provider.

2) The Service Provider challenges Alice with a message
containing a nonce.

3) Alice attests to the Service Provider by sending her
generated Quote. The Service Provider sends the Quote
to the IAS afterwards and checks the response. By
doing so, the Service Provider verifies that Alice
utilizes an untampered enclave, running on a gen-
uine Intel SGX hardware. In this step, the Service
Provider also checks the key that has been used to
sign the Enclave (MRSIGNER), the hash value of
the Enclave (MRENCLAVE), the software version of
the Enclave (ISV SVN) and the Enclave’s product
ID (ISV PROD ID) which allows multiple enclave
instances to be distinguishable. Intel [14], Hile Vill [15]
and others [11] have thoroughly described this remote
attestation process.

4) If the attestation is successful, the Service Provider
challenges Bob.

Generate
nonce

Validate
responce
Generate

nonce

Encrypted Channel Established using KEYSK

Alice BobService Provider

Validate
responce

Enclave Memory

KEYSK

Enclave Memory

KEYSK

SP Memory

H(KEYSK)

1

2

3

4

5

66

Figure 3: Attestation protocol with response caching

5) Bob performs the same attestation process as Alice.
6) If the attestation is successful, the Service Provider

notifies Bob that Alice wants to communicate with him.
Then, the Service Provider generates a shared secret
for the establishment of the secure enclave-to-enclave
encrypted channel between the two clients. For each
client, the secret is distributed via a secure channel that
has its client-side endpoint within the enclave and has
been established during the IAS attestation step.

After completing the aforementioned steps, the enclave-
to-enclave channel between the two clients is established
and Alice can communicate securely with Bob. The shared
secret is used to guarantee the confidentiality, integrity and
authenticity between the two enclaves and is never exposed
outside of the SGX environment.

The protocol follows a serial approach and we leave its
parallelization as part of our future work. Additionally, in
our model we assume that Alice does not know how to
directly communicate with Bob and that Bob does not trust
anyone that has not been verified by the Service Provider.
This introduces a level of centralization which we discuss
in Section VII-A.

C. Attestation Caching

The remote attestation procedure, as shown in Figure 2,
consists of multiple stages across different entities and,
as a consequence, it may require a significant amount of
time to complete. These times are accumulated in cases
where applications require to communicate with multiple
enclaves at the same time, since they would have to attest
to the Service Provider for each individual session. To

make matters worse, the overhead of session establishment
becomes even more notable for short-term sessions, in which
the time required for the initiation of the session can be
significantly larger than the overall communication itself.

In order to reduce the remote attestation overheads, we
extend our basic protocol that has been described in Sec-
tion IV-B, by further introducing a cache layer mechanism
at the Service Provider. The mechanism is responsible for
caching the remote attestation results that are produced by
IAS, aiming to increase the protocol’s performance. Our
approach also allows the fine-tuning of the caching period,
based on the security requirements of the enclave that the
Service Provider is attesting. During protocol initiation, the
enclaves inform the Service Provider about their intent to use
cached attestation results. However, the Service Provider is
the final arbiter of whether or not a full remote attestation
should take place.

We implement two caching approaches:
1. TTL-based ephemeral session keys. In this approach,

the Service Provider and the client enclaves store the session
keys in memory for future use. This is a safe operation since
the enclave’s memory is encrypted, checked for integrity
violations and is also inaccessible from the untrusted envi-
ronment. The Service Provider can define a Time-To-Live
(TTL) for which the keys are assumed to be valid before
requiring the client enclave to perform a complete remote
attestation again. In each attestation attempt, the Service
Provider challenges the enclave with a nonce and expects
the correct HMAC value as a response.

2. Session key hashes. During the first protocol instan-
tiation with the client enclaves, the Service Provider uses
a secure hash function H to store the hash value of a
session key, H(KEY SK), as opposed to storing actual keys
in the previous approach. Afterwards, each time the client’s
enclave attests to the service provider, the Service Provider
issues a nonce to the enclave and expects it to respond with
the correct H(H(KEY SK)||nonce) value. This method is
similar to remote user authentication using passwords [16]
but since the keys are ephemeral there is no need for salt.
The stored hash values can be associated with a TTL field
or a fixed number of maximum N sessions to be initiated
using the same ephemeral key.

Both approaches can be applied by the Service Provider,
meaning that different enclaves that attest to the Service
Provider can follow different approaches. Additionally for
the implementation of the caching mechanism, the Service
Provider can decide on which key will be used as caching
key. This can be achieved in two different ways:

1. Enclave session key caching. The service provider uses
as caching key the session key established with the attested
enclave during the remote attestation with the IAS in order
to implement caching for that particular enclave.

2. Enclave-to-Enclave channel shared secret caching.
The service provider uses as caching key the shared secret

generated by the Service Provider during the establishment
of the secure communication channel between the two
enclaves in order to implement caching for that pair of
enclaves.

It is important to note that the Service Provider can force
the enclaves to perform a complete remote attestation at
any protocol instance or even opt-out of caching depending
on the security requirements and access control policies of
the enclaves. Furthermore, when attestation caching is used,
the IAS is not involved. This reduces the privacy footprint
of an enclave regarding how frequently it attests to Intel.
A graphical representation of the protocol using remote
attestation caching, using Session key hashes and Enclave-
to-Enclave channel shared secret caching, is presented in
Figure 3.

V. IMPLEMENTATION

We implement the clients and the SP utilizing our pro-
posed protocol using C/C++ and the Intel SGX SDK 2.6.
Also, we use OpenSSL 1.1.0h, build on top of the SGX
framework in order to perform all the required cryptographic
operations. The overall system consists of 7290 lines of
code. Three different machines were used in order to eval-
uate and test the implementation of our protocol, involving
two clients and one SP. The two clients run Arch Linux
with LTS Kernel 4.19 and utilize an Intel Core i7-8700K
processor clocked at 3.70GHz along with 32GB of DDR4
memory. The SP is hosted by an Ubuntu 18.04 system,
running Linux Kernel 5.0.0-36-generic, utilizing an Intel
Core i7-8565U CPU clocked at 1.80GHz along with 16GB
of DDR4 memory. All the enclaves and the SGX related
binaries are built and executed in SGX Hardware Mode in
order to take advantage of the SGX capabilities.

VI. EVALUATION

For the evaluation of our protocol, we measure the time
required for establishing a secure enclave-to-enclave com-
munication channel between two clients, using our custom
Remote Attestation approach. Then, we compare the results
to the time required to perform a standard TLS handshake
with a valid certificate signed by an Intermediate Certificate
Authority (CA).

We perform 200 TLS handshakes and measure the time re-
quired for the client to establish the TLS connection with the
server. Also, we perform an additional 400 secure channel
establishments using our Remote Attestation protocol, out of
which half are performed without caching while the other
half are performed with Session key hashes and Enclave-to-
Enclave channel shared secret caching.

As seen in Figures 4 and 5, our protocol, when no
caching schemes are utilized, is approximately 3.5 times
slower compared to the TLS handshake. We also observe
that the standard deviation for the TLS handshake is 62.15ms
while for our protocol it is 138.03ms. This is due to the

Table I: Time Statistics (in milliseconds)

TLS Handshake Remote Attestation without caching Remote Attestation with caching

Average 974.93 3269.66 4.20
Standard Deviation 62.15 138.03 0.27
Minimum 733.07 3113.54 3.43
Maximum 1088.67 3940.94 5.06

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

Time (ms)

TLS Handshake
SGX-to-SGX protocol

Figure 4: Execution time normalized frequencies.

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

m
s
)

Sample Number

TLS Handshake
SGX-to-SGX protocol

SGX-to-SGX protocol + Caching

Figure 5: Execution time comparison.

fact that our protocol relies on the IAS, meaning that
the time required for communicating with the IAS over
the network and performing the remote attestation is also
measured. However, as presented in Figure 5, we observe
that our approach, when caching is deployed, is three orders
of magnitude faster than the TLS handshake, with mean
establishment time of 4.20ms and standard deviation of
0.27ms. These time statistics are more thoroughly presented
in Table I.

VII. DISCUSSION

A. Protocol Centralization

During our research of the Enclave-to-Enclave commu-
nication problem, we came across the option of either
including an intermediary remote party, namely the Service
Provider, or implement a completely decentralized approach.
We chose to include the Service Provider because it offers
the following benefits:

(1) Remote Attestation is a complex procedure involving
trust policies which can vary based on the required security
and strictness of the application. These policies become
even harder to define when there are multiple and different
enclaves involved. The Service Provider can dynamically
change those policies without any modification to the en-
clave code or redeploying them.

(2) Different policies for different enclaves can be estab-
lished. The Service Provider can allow different types of
enclaves communicating with each other and then control
the various trust levels between them.

(3) Only the Service Provider knows the communicating
parties (Alice and Bob) and the protocol does not depend
on other peer discovery primitives which can have privacy
implications.

(4) We can assume that an entity with the role of the
Service Provider exists as enclaves are signed before being
deployed in a production environment. Any enclave that is
to be provisioned secrets from the network should always
be attested, thus raising the need for such a remote party.
Moreover, since enclaves cannot be tampered, techniques
like certificate pinning in combination with Enclave Signa-
ture Revocation Lists [15] can enhance the security even
further.

Finally, the Service Provider does not have to be a single
point of failure as many instances can coexist. The remote
party acts mostly as a policy enforcing entity and coordinator
between communications. As part of our future work, we
aim to explore an alternative protocol where we completely
remove the Service Provider and allow the enclaves to make
their own decisions for the various trust policies.

B. Limitations

Recent research [17], [18], [19], [20], [21] has proven
that side-channel attacks are feasible on Intel SGX enclaves.
However, protecting SGX enclaves from side-channel at-
tacks that either focus on software or hardware bugs are

orthogonal to our work and thus we do not consider them.
On the other hand, any successful attempt to harden the SGX
framework [22], [23] has a direct benefit to our work.

Intel SGX manages and controls the behavior, lifetime and
execution of a trusted application, hence our framework is
based on it. Denial-of-Service (DoS) attacks based on pre-
venting the execution of the process hosting SGX enclaves,
initiated by a malicious operating system or super user, are
a vulnerability common to all applications that utilize the
SGX framework. These attacks are orthogonal to the security
provided by enclaves and thus we exclude them from our
threat model.

Additionally, it is assumed that the code and data of the
communicating parties are free of security bugs and memory
leaks, otherwise, side-channel attacks [24] that exploit such
vulnerabilities can have a negative impact on the security
offered by SGX. These are issues that must be addressed
by the developers by maintaining a secure TCB and are not
handled by our model.

Lastly, Yogesh P. Swami has shown that [25] SGX’s
EPID and attestation report do not hold onto their claimed
anonymity and privacy guarantees. However, third parties
can build their own attestation infrastructure [26] in order
to replace the IAS and mitigate this issue as well as solving
the single point of failure problem.

VIII. RELATED WORK

Many applications and recent research utilize Intel SGX
and it has been integrated in many large-scale projects that
have need for increased security. SGX has been used to
enhance the Snort IDS [27] and the TOR network [28], while
efforts have also been made to move TLS endpoints inside
SGX enclaves [29]. Additionally, digital rights management
(DRM) content has a direct benefit from the usage of SGX
enclaves.

Related to our work, Balfe et al. [30] have shown
how TPMs can be used in peer-to-peer networks in order
to provide security. In their work, they use the Trusted
Computing technology in order to establish pseudonymous
identifiers and build secure channels between peers. Addi-
tionally, mutual attestation with TPMs has also been used in
creating protocols for trusted RFID systems [31]. Moreover
Shepherd et al. [32] raise the challenge of secure TEE-to-
TEE communication between remote sensing devices.

Furthermore, the Intel SGX technology has been used for
Secure Many-Party applications [33] and Secure Multiparty
Computation [34], where the enclaves act as Middleboxes
[35]. For example, ShieldBox [35] utilizes Intel SGX in
order to provide secure middleboxes for high-performance
network functions that can be deployed on untrusted servers.
Our work can be applied for Middleboxes so as to commu-
nicate using mutually trusted channels.

Finally, SANCTUARY [36] is a system based on ARM
TrustZone that enables the execution of security-sensitive

applications within strongly isolated compartments. These
compartments are mutually distrusted and reside within
ARM’s TrustZone world, thus being comparable to SGX’s
enclaves. Their framework offers attestation service to a
third party using a Proxy Sanctuary Application which is
comparable to Intel’s Quoting Enclave. Our work can also
be applied to the model offered by SANCTUARY.

IX. CONCLUSION

In this paper, we introduce a protocol leveraging the
Remote Attestation feature provided by the Intel SGX
framework in order to build mutually trusted secure commu-
nication channels between two enclaves, possibly residing
in different physical machines. Furthermore, we propose a
caching scheme for the remote attestation results that does
not compromise the security and privacy of our model and
speeds up consecutive remote attestation processes.

Finally, we evaluate our system by comparing the time
required for establishing a secure channel between two
enclaves using our approach to the time required for a TLS
handshake to be completed. Our results show that our system
has x3.5 more overhead compared to the TLS protocol when
we do not utilize any caching schemes. However, our pro-
tocol instantiation has substantially increased performance
when attestation caching is applied, rendering it faster than
a standard TLS handshake.

ACKNOWLEDGMENTS

The research work was supported by the Hellenic Foun-
dation for Research and Innovation (HFRI) and the General
Secretariat for Research and Technology (GSRT), under the
HFRI PhD Fellowship grant (GA. No. 2767). This work
was also supported by the projects CONCORDIA, C4IIoT
and COLLABS, funded by the European Commission un-
der Grant Agreements No. 830927, No. 833828, and No.
871518. This publication reflects the views only of the
authors, and the Commission cannot be held responsible for
any use which may be made of the information contained
therein.

REFERENCES

[1] “A More Protected Cloud Environment: IBM Announces
Cloud Data Guard Featuring Intel SGX,” https:
//itpeernetwork.intel.com/ibm-cloud-data-guard-intel-sgx/.

[2] “Fortanix and Alibaba Cloud Partner to Launch SDKMS
Runtime Encryption Key Management on Alibaba Cloud
ECS to Protect Sensitive Data,” https://fortanix.com/company/
news/pr/2018/10/fortanix-and-alibaba-cloud-partner/, 2018.

[3] “Microsoft Azure* Confidential Computing with Intel SGX,”
https://www.intel.com/content/www/us/en/architecture-
and-technology/software-guard-extensions/microsoft-
confidential-computing-sgx-video.html.

https://itpeernetwork.intel.com/ibm-cloud-data-guard-intel-sgx/
https://itpeernetwork.intel.com/ibm-cloud-data-guard-intel-sgx/
https://fortanix.com/company/news/pr/2018/10/fortanix-and-alibaba-cloud-partner/
https://fortanix.com/company/news/pr/2018/10/fortanix-and-alibaba-cloud-partner/
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/microsoft-confidential-computing-sgx-video.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/microsoft-confidential-computing-sgx-video.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/microsoft-confidential-computing-sgx-video.html

[4] “Signal taps up Intel’s SGX to (hopefully)
stop contacts falling into hackers, cops hands,”
https://www.theregister.co.uk/2017/09/27/signal turns
to intels sgx to lock down contacts from spying eyes/,
2017.

[5] “Blockchain Approaches to Data Privacy in Health-
care,” https://medium.com/inside-r3/blockchain-approaches-
to-data-privacy-in-healthcare-e6e7f114094c.

[6] Dimitris Deyannis, Eva Papadogiannaki, George Kalivianakis,
Giorgos Vasiliadis and Sotiris Ioannidis, “Trustav: Practical
and privacy preserving malware analysis in the cloud,” in
CODASPY’20.

[7] “Making Blockchain and IoT Deployments More Secure with
Intel SGX,” https://itpeernetwork.intel.com/blockchain-intel-
sgx/.

[8] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell et al., “SCONE: Secure Linux Containers with Intel
SGX,” in 12th USENIX OSDI, 2016.

[9] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A
Practical Library OS for Unmodified Applications on SGX,”
in USENIX ATC, 2017.

[10] “Intel sgx,” https://software.intel.com/en-us/sgx.

[11] V. Costan and S. Devadas, “Intel sgx explained.” IACR
Cryptology ePrint Archive, vol. 2016, no. 086, 2016.

[12] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen,
“Intel R© software guard extensions: Epid provisioning and
attestation services,” White Paper, vol. 1, 2016.

[13] H. Krawczyk, “Sigma: The ’sign-and-mac’ approach to au-
thenticated diffie-hellman and its use in the ike protocols,” in
CRYPTO, 2003.

[14] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative
technology for cpu based attestation and sealing,” in Pro-
ceedings of the 2nd international workshop on hardware and
architectural support for security and privacy, vol. 13, 2013.

[15] H. Vill, “Sgx attestation process,” 2017.

[16] W. Stallings, L. Brown, M. D. Bauer, and A. K. Bhattacharjee,
Computer security: principles and practice, 2012.

[17] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing,” in 26th USENIX Security, 2017.

[18] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the intel
SGX kingdom with transient out-of-order execution,” in 27th
USENIX Security Symposium, 2018.

[19] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Cap-
kun, and A.-R. Sadeghi, “Software grand exposure:sgx cache
attacks are practical,” in 11th USENIX WOOT, 2017.

[20] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache
attacks on intel sgx,” in Proceedings of the 10th EUROSEC,
2017.

[21] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom:
How sgx amplifies the power of cache attacks,” in Interna-
tional Conference on Cryptographic Hardware and Embed-
ded Systems, 2017.

[22] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradi-
cating controlled-channel attacks against enclave programs.”
in NDSS, 2017.

[23] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting
privileged side-channel attacks in shielded execution with déjá
vu,” in Proceedings of the 2017 AsiaCCS, 2017.

[24] Caddy Tom, “Side-channel attacks,” https://link.springer.com/
referencework/10.1007%2F0-387-23483-7, 2011.

[25] Y. Swami, “Intel sgx remote attestation is not sufficient,”
IACR, 2017.

[26] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski, “Sup-
porting third party attestation for intel R© sgx with intel R© data
center attestation primitives,” White Paper, 2018.

[27] D. Kuvaiskii, S. Chakrabarti, and M. Vij, “Snort intrusion
detection system with intel software guard extension (intel
sgx),” arXiv preprint arXiv:1802.00508, 2018.

[28] S. Kim, J. Han, J. Ha, T. Kim, and D. Han, “Sgx-tor: A secure
and practical tor anonymity network with sgx enclaves,”
IEEE/ACM Transactions on Networking, vol. 26, no. 5, 2018.

[29] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and
M. Vij, “Integrating remote attestation with transport layer
security,” arXiv preprint arXiv:1801.05863, 2018.

[30] S. Balfe, A. D. Lakhani, and K. G. Paterson, “Trusted com-
puting: Providing security for peer-to-peer networks,” in Fifth
IEEE International Conference on Peer-to-Peer Computing
(P2P’05), 2005.

[31] M. F. Mubarak, S. Yahya et al., “Mutual attestation using
tpm for trusted rfid protocol,” in 2010 Second International
Conference on Network Applications, Protocols and Services,
2010.

[32] C. Shepherd, R. N. Akram, and K. Markantonakis, “Estab-
lishing mutually trusted channels for remote sensing devices
with trusted execution environments,” in Proceedings of the
12th International Conference on Availability, Reliability and
Security, 2017.

[33] K. A. Küçük, A. Paverd, A. Martin, N. Asokan, A. Simpson,
and R. Ankele, “Exploring the use of intel sgx for secure
many-party applications,” in Proceedings of the 1st Workshop
on System Software for Trusted Execution, 2016.

[34] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R.
Sadeghi, G. Scerri, and B. Warinschi, “Secure multiparty
computation from sgx,” in International Conference on Fi-
nancial Cryptography and Data Security, 2017.

https://www.theregister.co.uk/2017/09/27/signal_turns_to_intels_sgx_to_lock_down_contacts_from_spying_eyes/
https://www.theregister.co.uk/2017/09/27/signal_turns_to_intels_sgx_to_lock_down_contacts_from_spying_eyes/
https://medium.com/inside-r3/blockchain-approaches-to-data-privacy-in-healthcare-e6e7f114094c
https://medium.com/inside-r3/blockchain-approaches-to-data-privacy-in-healthcare-e6e7f114094c
https://itpeernetwork.intel.com/blockchain-intel-sgx/
https://itpeernetwork.intel.com/blockchain-intel-sgx/
https://software.intel.com/en-us/sgx
https://link.springer.com/referencework/10.1007%2F0-387-23483-7
https://link.springer.com/referencework/10.1007%2F0-387-23483-7

[35] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and
C. Fetzer, “Shieldbox: Secure middleboxes using shielded ex-
ecution,” in Proceedings of the Symposium on SDN Research,
2018.

[36] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf,
“Sanctuary: Arming trustzone with user-space enclaves.” in
NDSS, 2019.

