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Abstract—A plethora of applications are using machine learn-
ing, the operations of which are becoming more complex and
require additional computing power. At the same time, typical
commodity system setups (including desktops, servers, and em-
bedded devices) are now offering different processing devices, the
most often of which are multi-core CPUs, integrated GPUs, and
discrete GPUs. In this paper, we follow a data-driven approach,
where we first show the performance of different processing
devices when executing a diversified set of inference engines;
some processing devices perform better for different performance
metrics (e.g., throughput, latency, and power consumption), while
at the same time, these metrics may also deviate significantly
among different applications. Based on these findings, we propose
an adaptive scheduling approach, tailored for machine learning
inference operations, that enables the use of the most efficient
processing device available. Our scheduler is device-agnostic
and can respond quickly to dynamic fluctuations that occur
at real-time, such as data bursts, application overloads and
system changes. The experimental results show that it is able to
match the peak throughput, by predicting correctly the optimal
processing device with an accuracy of 92.5%, with energy savings
up to 10%.

I. INTRODUCTION

The number of applications that are utilizing machine
learning (ML) and deep learning (DL) operations is constantly
increasing. A plethora of diversified applications — from con-
tent understanding to object detection and speech translations
— are using machine learning, while the machine and deep
learning models themselves are becoming more complex and
require significantly more computing power. Many approaches
have been proposed for using specialised accelerators to
successfully speed up the processing, using either discrete
GPUs [1], [2] or even integrated GPUs [3]. Other works
have also focused on optimizing the key challenges regarding
faster inference over streaming data, either by performing
computations more efficiently [4], or by performing efficient
data movements or transfers when using external accelerators,
such as GPUs[5]. However, the majority of the aforementioned
systems target only the most powerful device, leaving other

devices idle and potentially underutilizing the available com-
putational power.

Besides the unique performance characteristics of each pro-
cessing device, which is actually a direct consequence of their
underlying architectural design, several other factors can affect
their efficiency and effectiveness. As a matter of fact, dynamic
performance fluctuations that occur at run time, such as those
caused by changes to a processor’s clock frequency or the
device state, can significantly affect the resulted performance.
Last but not least, data variability in the form of overloads
or those caused due to diurnal patterns can have a major
consequence in the overall power consumption – e.g., selecting
a low-end device in cases where the data load is low would
have significantly lower energy requirements.

In this paper, we first characterise the performance of a
diversified set of machine learning models; this analysis shows
that some processing devices perform better under different
performance metrics (e.g., throughput, latency, and power
consumption), while at the same time, these metrics may
also deviate significantly among different applications. With
these observations in mind, we propose an online scheduler
that is able to successfully adapt to different conditions.
Our scheduler takes into account the characteristics and the
state of the computational devices, in order to maximise the
performance or minimise the latency or energy consumption
of the underlying system. In addition, it can respond quickly
to dynamic performance fluctuations that occur at real-time,
such as data bursts, application overloads and system changes.
Finally, we note that our scheduler is device-agnostic; even
though we use a fixed set of processors and co-processors
in this paper (which are representative though in a typical
heterogeneous production system), our system can similarly
operate when any other processors or co-processors are present
(i.e., FPGAs, NPUs, or DSPs).

The contributions of our work are:
• We develop a system that runs typical machine learn-

ing and deep neural network classification operations



on heterogeneous and asymmetric processors and co-
processors, using the OpenCL framework. We further
characterize their performance and power consumption
systematically, showing that the performance ranking of
different computational devices (such as CPUs, high-end
GPUs, and integrated GPUs) on different applications is
highly varied.

• We propose an adaptive scheduler that is able to mitigate
the problem of finding the appropriate device for the
classification, given a model architecture and a policy.
Our evaluation results show that our scheduler is able to
select the appropriate device correctly with an accuracy
of 92.5% for models that has been trained on, and with
an accuracy of 91% for models never seen before.

II. BACKGROUND

It is currently typical in commodity system setups (both in
user desktop/laptop machines and cloud computing providers,
even in mobile and embedded devices) to offer different,
heterogeneous, processing devices. Such devices usually in-
clude the traditional x86 CPU architecture, an integrated GPU
(hereafter iGPU) that is packed on the same processor die,
and a discrete high-end GPU. These devices have unique
performance and energy characteristics and are optimized
for different operations. For instance, the CPU cores are
good at handling branch-intensive processing workloads, while
discrete GPUs tend to operate efficiently in data-parallel work-
loads. Between these two, the iGPU offers satisfying levels
of processing rate and latency, while enabling high energy
efficiency. Moreover, the iGPU shares the LLC cache and the
memory controller of the CPU, contrary to the discrete GPU
that communicates with the CPU over the PCIe bus.

Such heterogeneity in hardware level, enables different
opportunities and different challenges in executing different
workloads. These challenges can further exacerbate when
take into perspective the heterogeneity that may arise at the
application level (e.g., in terms of memory- or compute-
intensiveness) or at the data that need to be processed (e.g.,
in terms of volume, velocity, or complexity). In the case of
machine learning execution this can be reflected by the number
of layers and/or nodes per layer needed, as well as by the
complexity and size of the incoming data that need to be
processed.

A. Architectural Heterogeneity

The approaches that utilize a discrete GPU typically perform
a total of four steps: the copy of data to the I/O region that
corresponds to the discrete GPU (this operation traditionally
invokes CPU caches, but the cache pollution can be min-
imized by using non-temporal data move instructions), the
DMA transaction towards the memory space of the GPU,
the actual computational GPU kernel itself and the transfer
of the results back to the host memory. All data transfers
must operate on fairly large chunks of data, due to the PCIe
interconnect inability to handle small data transfers efficiently.
The equivalent architecture, using an iGPU that is packed on

the CPU die, has the advantage of a unified physical memory
between the iGPU and the CPU, which allows in-place data
processing. This results to fewer data transfers and and also
has lower power consumption compared to the discrete GPU
setup due to the better energy effiency of the iGPU and the
absence of hardware resources (such as the I/O Hub).

1) Quantitative Comparison: An iGPU (such as the UHD
Graphics 630 GPU we use in this work) has higher energy
efficiency as a computational device, compared to modern
CPUs and discrete GPUs. The reason is threefold. First, iG-
PUs are typically implemented with low-power, 3D transistor
manufacturing process. Second, they have a simple internal
architecture and no dedicated main memory. Third, they match
the computational requirements of applications, in which the
main bottleneck is the I/O interface and thus, a discrete GPU
would be under-utilized. In section IV-C we show, in more
detail, the energy efficiency of these devices when executing
typical machine learning models.

B. Machine Learning

There are many different varieties of machine learning
models that have been developed throughout the years, each
of which is specialized in certain categories of problems.
Typically, machine learning consists of two phases: (i) the
training phase, and (ii) the classification or inference phase.
In the training phase, a model is trained using, usually, large
datasets, while trying to generalize and extract knowledge out
of it. At this phase, it is important to find the appropriate
machine learning model and tune its hyperparameters so that
the model does not overfit nor underfit. In the inference phase,
the trained model is used to make predictions for new, unseen,
data. Even though the training phase is typically the most
time consuming task, it generally takes place offline; on the
other hand, the inference phase is used to run and make
real-time predictions for much longer time and thus is the
most time and resource consuming from the machine point of
view. This paper focuses on the latter phase, exploring two
different type of machine learning neural networks, namely
the feed-forward neural networks and the convolutional neural
networks. We choose these two types of machine learning
models for two reasons. First, they are two of the most
computationaly intensive models in the machine learning area.
Second, they are vastly used by many applications, mainly due
to their ability to model very difficult tasks (e.g., image and
speech recognition, speech synthesis and many more).

1) Feed-Forward Neural Networks: A feed-forward neural
network (FFNN) is the simplest form of artificial neural net-
work, and consists of perceptrons; a perceptron takes as input
a set of x1, x2, ..., xn elements and produces a single output y.
The computation of the output is an aggregated multiplication
of the inputs with real numbers, expressing the importance
of the respective inputs to the output, called weights w1,
w2,...,wn. The neuron’s output, can be directly passed at the
output as y =

∑n
j=0 wj ∗ xj or it can be passed through

a nonlinear function such as relu, tanh or sigmoid. Many of
these perceptrons form a layer of perceptrons, while employing
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Fig. 1. A typical structure of a convolutional neural network

many of these layers form multilayer perceptrons, known as
feed-forward neural networks. A typical feed-forward neural
network conists of: (i) an input layer, (ii) one or more hidden
layers, and (iii) an output layer.

2) Convolutional Neural Networks: A convolutional neural
network (CNN) is a class of deep neural network that is mostly
applied, for example, when analyzing visual imagery, financial
time series, speech synthesis, image and video recognition.
The advantage of CNNs is that they can recognise patterns in
neighbors of areas in 1, 2 or 3 dimensions; this feature enables
better recognition of patterns in financial series, images, or
voice spectrums. The typical structure of a CNN is shown in
Figure 1. As we can see, the input is convolved with a matrix,
resulting in multiple feature maps, which are then reduced
with a max-pooling operation; the final results, called features,
are flattened and are used as the input layer of a feed-forward
neural network. The pair of a convolution layer with a pooling
layer is going to be referred as a Visual Geometry Group
(VGG) block.

III. SYSTEM SETUP

We now describe the hardware setup, and our power instru-
mentation and measurement scheme. Our scheme is capable
of accurately measuring the power consumption of various
hardware components, such as the CPU and GPU, in real time.
We also describe the machine learning models that we use for
this work and show how we parallelize them using OpenCL,
in order to execute efficiently in different processing devices.

We note that in our system we use a set of different
processors and co-processors, which are representative in a
typical heterogeneous production system. However, our system
can similarly operate when other processors or co-processors
are present (i.e., FPGAs, NPUs, or DSPs); the scheduler we
propose is device-agnostic in that sense.

A. Hardware Platform

Our base system is equipped with one Intel Core i7-
8700 Coffee Lake processor and one NVIDIA GeForce
GTX 1080 Ti graphics card. The CPU contains six cores
operating at 3.7GHz, with hyper-threading support, resulting
in twelve hardware threads, and an integrated UHD Graphics
630 GPU. Overall, our system contains three different, het-
erogeneous, computational devices: one CPU, one iGPU and
one discrete GPU. The system is equipped with 32GB of dual-
channel DDR4-2666 DRAM with 41.6 GB/s throughput. The

L3 cache (12MB) and the memory controller are shared across
the CPU cores and the iGPU. Each CPU core is equipped with
384KB of L1 cache and 1.5MB of L2 cache. The GTX 1080 Ti
has 3584 cores that are organized in 28 multiprocessors and is
also equipped with 11 GB of GDDR5 memory. It is rated at
10.6 TFlops and its Thermal Design Power (TDP) is 250 Watt.
The UHD Graphics 630 has 24 execution units, a 64-hardware
thread dispatcher and 100 KB of texture cache. The maximum
estimated performance of the iGPU is rated at 460.8 GFlops
on the maximum operating frequency of 1200 MHz [6]. While
Intel does not provide its TDP limit, we estimate that it is close
to 20 Watt. For the whole processor die the TDP is 95 Watt.

We notice that our hardware platform exposes an interesting
design tradeoff: even though the iGPU has fewer resources
(i.e. hardware threads, execution units, register file) than a
high-end discrete graphics card, it is directly connected to
the CPU and the main memory via a fast on-chip ring bus,
and has much lower power consumption. As we will see in
Section IV-C, this design is well-suited for applications in
which the overall performance is limited by the I/O subsystem,
and not by the computational capacity.

1) Power Instrumentation: To accurately measure the
power consumption of our hardware system, we use a software
approach. For the GTX 1080Ti, we use nvidia-smi which
is designed to aid in the management and monitoring of
NVIDIA GPU devices. [7] From Kepler architecture and
beyond nvidia-smi supports the power management utility
which is able to report the board’s power draw in a live
manner. For i7-8700k we use a similar approach; Intel Pro-
cessor Counter Monitor (PCM) is a toolkit for monitoring tge
performance and energy metrics of Intel processors. [8] Both
interfaces provide a very accurate estimation of the energy
consumption.

B. Machine Learning Models

For our experiments we use three different models of feed-
forward neural networks (FFNN) and two convolutional neural
networks (CNN) that cover a representative set of machine
learning applications. For the training of these models, we use
real datasets (i.e., the Iris dataset [9], Mnist [10], and Cifar-
10 [11]), as we describe in more detail below.

1) Simple: This model consists of two hidden layers only,
each of which contains six nodes in total. It is based on the
Iris classification dataset [9] and even though it is one of
the simplest feed-forward neural networks it can achieve high
performance with an accuracy up to 97%.

2) Mnist-Small: The Mnist-Small is a feed-forward neural
network that is based on the Mnist dataset [12], which is a
hand written digit database. Overall, it consists of two hidden
layers. The first layer consists of 784 nodes, while the second
consists of 800 nodes, leading to a 10-node output layer.

3) Mnist-Deep: The Mnist-Deep [13] is a feed-forward
neural network with six hidden layers, of the following for-
mation: 784− 2500− 2000− 1500− 1000− 500. Similar to
Mnist-Small, the output layer consists of 10-nodes.
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Fig. 2. The training phase of our system. The appropriate parameters of the
neural networks are handled by the Model Building module, which builds
the model (1) and passes it back to the Dispatcher module (2). Then, the
weights of the neural network are passed to the Weights Building Module
(3), which gives the resulted models and the corresponding weights back into
the Dispatcher Module (4) that further loads them in each of the available
processing devices (5).

4) Mnist-CNN: The Mnist-CNN is a model that has been
also trained on the Mnist dataset. It is a fairly simple CNN
model that consists of two VGG blocks, each of which
contains one convolution and one pooling layer. The size of
the filters of the convolutional layer is 3 × 3 × 32 and the
pooling layer size is 2 × 2. Finally the FFNN has a dense
layer of 128 nodes, leading to a 10-node output layer. The
achieved accuracy of the model is 99.08%.

5) Cifar-10: The Cifar-10 is a convolutional neural network
that has been trained on the Cifar-10 dataset [11], which
is an image classification database. This model consists of
three pairs of Convolutional and Pooling layers (namely VGG
blocks), each containing two convolution layers and one
pooling layer. The size of the convolutional layers are 3×3×32
and the pooling layer size is 2 × 2. Finally the FFNN has a
dense layer of 128 nodes, leading to a 10-node output layer.
The achieved accuracy of the model is 88%.

IV. IMPLEMENTATION

To achieve parallel classification across many devices we
use OpenCL. In particular, we use the OpenCL implementation
that comes with NVIDIA CUDA Toolkit 10.0, as well as the
Intel OpenCL Runtime for the Core processor family. Our aim
is to develop a portable implementation of the classification
procedure of each of the models described in Section III-B,
that can run efficiently on different, heterogeneous, devices.

A. Model Training

Machine learning algorithms usually build a mathematical
model using a training process. There are many different ways
for training; in this paper we use the following approach: For
FFNNs, we pass the depth of the neural network, together
with the number of nodes of each layer and the activation
functions. For CNNs we also give the size and the number
of filters of the convolutions, the size of the pooling, the
corresponding activation functions and finally the description
of the FFNN. As shown in Figure 2, all these are handled by
the Model Building Module, which builds a model based on
these information and passes it back to the Dispatcher module.
The next step is to load the weights of the neural network to

the main memory, based on the model that we have build.
The Weights Building Module creates the appropriate buffers,
loads the weights in the memory, and, finally, gives the buffers
back into the Dispatcher Module. When the training phase
completes, the resulted models and the corresponding weights
are stored in the Dispatcher, which further loads them in each
of the available processing devices.

B. Parallelization

To execute the machine learning inference operations uni-
formly accross the different devices of the underlying system,
we implement them on top of OpenCL 2.1. Our aim is to
develop a portable implementation of each machine learning
model, that can also run efficiently on each device. Our
system runs Linux 5.4.23 with the in-tree i915 driver for the
integrated graphics, and Nvidia 440.64 driver for the discrete
graphics. We use the Intel OpenCL 2.1 SDK for the Core
procesor family and HD Graphics as well as the OpenCL
implementation that comes with Nvidia CUDA Toolkit 10.0.
Due to space constraints we omit the full details of our
implementation, and we only list the most important design
aspects and optimizations that we have addressed.

Overall, we have developed two different compute kernels,
one for each type of neural networks. In OpenCL, an instance
of a compute kernel is called a work-item; multiple work-
items are grouped together and form work-groups. We follow
a thread-per-node approach, and assign each work-item to
handle (at least) one neural network layer; More specificaly,
for the feed-forward neural networks, the nodes of a single
layer are computed in parallel, by assigning a separate thread
per node. Besides that, we further spawn a second level of
parallelization at the sample level, by classifying each sample
in parallel. For convolutional neural networks we follow a
similar approach: in the convolutional layer we compute in
parallel all the convolution operations of a single filter, as
well as all the filters of each layer; on the pooling layer all
the pooling operations are done in parallel and finally the fully
connected neural network part is computed as described above.
With our approach we can classify in parallel up to 256K
samples even for computational intensive architecures, like the
Cifar-10 model.

The number of work-items per work-group affects signif-
icantly the performance of each device. For example, the
GPUs require many and small work-groups, while CPUs prefer
less and bigger work-groups. The reason for that is that the
GPUs have a very fast thread scheduler that can hide memory-
latencies, by scheduling other work-groups for execution. On
the other hand, CPU can utilise better their resources when
their work-groups are as big as possible. From our experiments
we have found out that the best configuration for the CPU is
4096 work-items per work-group, whilst the best configuration
for the GPU is 256 work-items per work-group, which at the
same time is maximising the available registers per work-item.

We notice that our devices enable heterogeneity on their
memory model as well. For example the global memory of
the GPU is physically independent of the memory of the host,
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Fig. 3. Throughput, latency and power consumption for each of the models presented in Section III-B
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Fig. 4. Watt-second (Joule) for each of the models presented in Section III-B

requiring a transfer of data from the host memory to the
device’s global memory through a PCIe transfer, for every
computation. To avoid page swapping during the transfers,
we copy the data that we want to classify in a page-locked
buffer. On the other hand, CPU’s and iGPU’s global memory
is physically the same memory as the host memory and we
can directly map the corresponding memory buffers using
clEnqueueMapBuffer() function to avoid extra copies.

After the data are placed in the global memory of each
device, there is another critical aspect that affects the perfor-
mance of our machine learning models. This is the way the
input data are loaded from the global memory of the device.
CPUs require row-major order to preserve the cache locality
within each thread, while GPUs require column-major order
to enable memory loads to be more effective, the so-called
memory coalescing. Initially we tried transposing the data in
the GPU memory to benefit from the column-major order
placement, but we found that the costs of the corresponding
data movements pays off only when accessing the memory
with small vector types (i.e. char4); when using the int4
or float4 type though, the overhead is not amortized by the
resulting memory coalescing gains in none of our represen-
tative models. Besides the GPU gains, the CPU enables the
use of SIMD units when using the int4 or float4 types,
because the vectorized code is translated to SIMD instructions.
With all these in mind, we re-design the input process and
access the samples using int4 or float4 vector types in a
row-major order, for both the CPU and the GPU.

Finally, OpenCL provides a memory region, called local
memory, that is shared by all work-items of a work-group.
The local memory is implemented as an on-chip memory on
GPUs, which is much faster than the off-chip global memory.
Therefore, GPUs take advantage of local memory to improve
performance. By contrast, CPUs do not have a special physical
memory designed as local memory. As a result, all memory
objects in local memory are mapped into sections of global
memory, and will have a negative impact on performance. To
overcome this, we explicitly stage data to local memory only
when performing computations on the discrete GPU.

C. Performance Characterization
We now present the performance achieved by our ma-

chine learning models. Specifically, we measure the sustained
throughput, latency and power consumption for each of the
devices available in our base system. To accurately measure

the energy required by each device to process the correspond-
ing batch, we measure the power consumption of all the
components that are required for the execution. For instance,
when we use the GPU for samples inference, the CPU has
to collect the necessary data, transfer them to the device (via
DMA), spawn a GPU kernel execution, and transfer the results
back to the main memory. Instead, when we use the CPU (or
the integrated GPU), we exclude the discrete GPU, as it is
not needed. By measuring the power consumption of the right
components each time, we can accurately and fairly compare
different devices.

Figure 3 summarises the results of our experiments for all
the five models that we describe in Section III-B. On the
left-hand side we see the achieved throughput and power
consumption for the different sample sizes, while on the
right-hand side of each subfigure we see the latency for the
same sample sizes 1. We observe that the performance of all
machine learning models becomes better when the samples
size increase. However, the maximum achieved throughput is
different for each device, as well as the size of samples that
is required to reach it. We can also observe that there is a big
variance in the maximum sustained throughput for the different
models, ranging from 800 Mbits/s up to 20 Gbits/s for the
GPU, and from 50 Mbits/s up to 15 Gbits/s for the CPU. The
state of the GPU does also affect the sustained throughput
in many of the machine learning models dramatically, with
differences up to 7x. From all these observations, it is clear
that in terms of throughput, no device performs best across all
parameters. Instead, it is highly affected by the samples size,
as well as the computational characteristics of the machine
learning model, which in our case is the structure of the cor-
responding machine learning model. For example, Figure 3(a)
shows that the CPU performs better only for sample sizes up
to 2048 (when the GPU is warmed up);when the GPU starts
from an idle state though, the CPU outperforms the GPU for
all the sample sizes tested. In Figure 3(e), we observe that the
CPU is better that the GPU for sample sizes up to 8 (when the

1In our measurements we have two options for the GTX 1080 Ti, namely
Idle GTX 1080 Ti and GTX 1080 Ti. Nvidia uses Boost 3.0 tool to automati-
cally adjust the GPU clocks in order to achieve better power consumption. In
our measurements we have seen that the state of the GPU affects significantly
the GPU performance, especially in the beginning of the measurements. Since
it is not always feasible to control the state directly (especially in real-world
setups), we provide both cases for the GPU: one when the GPU starts from
an idle state and one when the GPU is warmed up.
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GPU is warmed up); when the GPU starts from an idle state
though, the CPU is better for sample sizes up to 128. Still,
there are cases where the state of the GPU does not affect
the performance, as we can see for example in Figure 3(c),
where the CPU is better than the GPU for sample sizes up to
8, regardless of the starting state of the latter.

The sustained latency shows similar tendencies as the
throughput. For instance, latency variance is huge throughout
the different models, ranging from 1 millisecond up to 16
minutes. Another similarity is that the GPU is suitable for
big sample sizes, while the CPU is more suitable for small
sample sizes. We can also see that after a certain sample size,
the latency grows linearly for all the machine learning models.
This implies that the maximum throughput has been achieved.
An exception can be observed in Figure 3(b) where the idle
GPU for sample sizes greater than 512 follows better than
linear growth until it matches the warmed-up GPU. For this
specific machine learning model for sample sizes 64K and
above the performance state of the GPU at the start of the
classification does not affect the achieved latency. However,
we can see that for smaller sample sizes, the best achieved
latency is affected by the state of it, specifically if the GPU is
not warmed-up, then the CPU achieves the best performance
for sample sizes up to 32. On the contrary, CPU is the more
suitable device for sample sizes up to 4. In Figure 3(d), we
can see that given the GPU starts from an idle state, the best
device is the CPU for sample sizes up to 256; when the GPU
is warmed-up, the CPU is better for sample sizes up to 32.

Figure 4 shows the Joules that each device needs in order
to perform the classification procedure for all the different
machine learning models and different sample sizes. Due
the heterogeneity of our system we can see that different
devices perform better in different machine learning models
and configurations; there is no device to rule them all. For
example, even though the iGPU is the most power efficient
device for all machine learning models (as shown in Figure 3),
we get a different impression when we account the Joules
consumed per device (depicted in Figure 4). The variance of
the results is again very big, ranging from 1 mJoules up to
10 KJoules. A general observation is that when the GPU starts
from an idle state, it always consumes more energy in all the
machine learning models than if it is warmed-up. We can also
observe that the CPU is in many models the worst performing
device. An increase in the sample size results to an increase
in the consumed Joules, as it was expected, although we can
observe that for each machine learning model from a sample
size and above there is a linear increase in the consumption,
which again indicates that the device has reached its maximum
computational capacity. Still, each device reaches that point in
a different sample size for each different model. For example,
in Figure 4(b), the CPU reaches that point in sample size 1024,
while the iGPU reaches that point for sample size equal to
512. As with the other metrics that we have analysed, the
most appropriate device for a classification is changing based
on the sample size in almost all the machine learning models.
For example, in Figure 4(c) for the most appropriate device
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Fig. 5. The architecture of our adaptive scheduler. The scheduler loads a cor-
responding policy (i.e., lowest latency, energy efficiency or best throughput),
alongside with the structure of the specified model, which uses to select the
most appropriate device to perform the classification.

is the integrated GPU for sample sizes up to 8. However, for
sample sizes of 16 and above, the most appropriate device is
the GPU. We can see another example in Figure 4(b), where
the state of the GPU affects significantly the appropriate device
for the selected task. Specifically, for sample sizes between 8
and 4K, the iGPU is the most energy efficient device, if the
GPU is not warmed-up, while the GPU is the most energy
efficient device if it is warmed-up.

V. EFFICIENT DEVICE SELECTION VIA SCHEDULING

As we discuss in Section IV-C, the performance charac-
terisation indicates that there is not a clear ranking between
the benchmarked computational devices for executing machine
learning inference operations. As a consequence of their ar-
chitectural characteristics, some devices perform better under
different performance metrics (e.g., throughput, latency, and
power consumption), while these metrics may also deviate
significantly among different applications. As an example, the
CPU achieves the best performance on the Iris classification
problem, but not on Mnist Deep classification problem.

It is obvious that our system favours heterogeneity in two
different levels: (i) the different computational devices avail-
able and (ii) the diversified characteristics of the applications.
With these observations in mind, we propose an online–
adaptive–scheduler which is able to successfully adjust to dif-
ferent conditions, by taking into account the characteristics and
the state of the computational devices, in order to maximise the
performance or minimise the latency or energy consumption
of our system.

A. Online Scheduler

The overview of our proposed scheduler is depicted in
Figure 5. In essence, it reads the data from the input (e.g.,
network, file, or memory), alongside with the structure of
the specified model and the corresponding policy (i.e., lowest
latency, energy efficiency or best throughput). The scheduler
also performs a PCIe call to check the state of the discrete
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TABLE I
DIFFERENT HYPERPARAMETERS OF OUR RANDOM FOREST CLASSIFIER

Hyperparameters Description Values
n_estimators Number of trees in the forest {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200}
max_depth Maximum depth of the tree {3, 4, 5, 6, 7, 8, 9, 10}
criterion Function to measure the quality of a split {"entropy", "gini"}

min_samples_leaf
Minimum number of samples required
to be at a leaf node {1, 2, 3, 4, 5, 10, 15}

GPU (idle or not). Based on these information, the scheduler
determines the appropriate device to perform the classification.

At its core, the scheduler is based on machine learning
to make decisions. The motivation to use machine learning
is the fact that the neural network models that may need to
execute, usually, have a strong diversity. Additionally, it is also
typical to dynamically add models for which we do not have
any measurements; a static approach does not scale easy, in
contrast with our proposed system that is able to learn and
extract knowledge from a dataset. Our aim is to train a model
that would be able to learn and predict the appropriate device
on which a classification model will run. We also want to have
control regarding the target that we want to achieve, i.e., best
throughput, best latency or best energy efficiency.

To find a suitable machine learning model for our scheduler,
we tried different approaches, including Linear Regression,
SVM, k-Nearest Neighbors, Random Forest and Feed Forward
Neural Network. After careful evaluation, we found that the
Random Forest classifier performs better in terms of accuracy
and performance; in Section VI, we present the evaluation
results of the different models and corresponding tradeoffs.

Finally, we note that our scheduler is device-agnostic; even
though we use a fixed set of processors and co-processors as
described in Section III-A (which are representative though in
a typical heterogeneous production system), our system can
similarly operate when any other processors or co-processors
are present (i.e., FPGAs, NPUs, or DSPs).

B. Data Augmentation and Preparation

One important design decision is the representation of the
data that will be used for the training of the scheduler. As
we discuss in Section IV-C, the most important parameters is
the samples size and the state of the GPU; both parameters
affect significantly the selection of the appropriate device,
as such they are mainly used for the training. To remedy
the limited dataset that we have (i.e., in terms of quantity
we had only 340 samples) as well as the lack of variety in
Machine Learning models (i.e., we had only the 5 models
of Section III-B) we measure 16 more models with different
architectures. With each of these models we tried to capture
how the different parameters of FFNN and CNNs affect the
sustained metrics. For example, a FFNN has two parameters
that affect the performance of each device: (i) the depth of the
model and (ii) the size of the layers. CNN has four parameters
that affect the performance of the devices: (1) The number of
consecutive VGG blocks, (2) the size of convolutions, (3) the
size of pooling, and (4) the number of convolutions layers per

VGG block. With the models that we used to augment our data,
we capture all the different parameters of these architectures.
Overall, we end up with 1480 samples which we use to train
our scheduler. The corresponding classes for CPU, GPU, and
iGPU ended in an imbalanced state, with 30% from first class,
40% from the second class and 30% from the third class.

For the representation of the feed-forward neural networks,
we use two parameters, one representing the network depth
and another representing the total number of neurons. Lastly,
for the representation of the convolutional neural networks, we
have four additional parameters that represent the number of
the VGG blocks, the convolutions per VGG block, the size of
the convolution filter and the size of the pooling layer.

C. Training the Scheduler

It is well known that the Random Forests, usually, do not
perform well on imbalanced data. Our approach to overcome
this issue is twofold. Firstly, we do not evaluate its perfor-
mance based on its accuracy, rather we report the F1-score
that combines both precision and recall scores. Second, we
perform a stratified k-Fold splitting to ensure that the classifier
is trained with balanced data. More specifically, we do a
Stratified k-Fold Nested cross validation to train our Random
Forest classifier. The reason we apply Stratified k-Fold is due
to the fact that the classes of our dataset are imbalanced;
we do cross-validation to overcome the known overestimating
problem of classifiers, and we do it in a nested way to find
the best hyperparameters of the classifier.

Finally, we note that for the training of all the machine
learning models we use the Scikit-learn programming frame-
work on top of Python 3.6. Even though the nested cross
validation is an iterative process, we can still parallelize the
execution of each of the outer folds, as well as the inner
folds. Each outer fold takes about 20 seconds to train in
our base system, but due to the fact that all the jobs are
running in parallel, the total training time of the Random
Forest durates about 26 seconds. The hyperparameters that
we tried are shown on Table I.

VI. EVALUATION

In this section, we evaluate our scheduler in terms of per-
formance and accuracy. Table II shows the different machine
learning models that the scheduler uses each time to make
decisions. As we can see, these models have different benefits
and tradeoffs that need to be carefully considered accordingly.
For instance, Linear Regression provides the fastest inference
execution times, while also requiring very small time for
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(a) GPU is idle (b) GPU is warmed up (c) GPU is idle (d) GPU is warmed up

Fig. 6. Throughput achieved and energy consumed with the predictions of our scheduler

TABLE II
THE PERFORMANCE SUSTAINED BY OUR SCHEDULER FOR DIFFERENT

MACHINE LEARNING MODELS

Model Accuracy Training
Time

Classification
Time

Baseline
(Random Selection) 41% N/A 0ms

Linear Regression 77.94% 15 sec 0.7ms
SVM 53.38% 2947sec 0.77ms
k-NN 62.64% 5 sec 1.3ms

Feed Forward
Neural Network 52.62% 10 sec 0.77ms

Random Forest 93.22% 26 sec 3.35ms
Decision Tree 92.01% 0.5 sec 0.9ms

the training. However, its accuracy score is not high enough
to be used as our main classifier. Decision Trees, on the
other hand, provide the fastest training time and one of the
fastest inference times too, while maintaining an accuracy
of 92.01%. However, further experiments showed that this
algorithm performs poorly on totally unseen machine learning
models (i.e. accuracy on unseen data is 70.2%). Random
Forest, on the other hand, achieves the best accuracy compared
to the other models, even though this comes at a cost of extra
time needed to perform the classification. To get more clear
insights on its accuracy though, we further evaluate its F1-
score. As we have already mentioned in Section V-C, the F1-
score correlates both precision and recall metrics, which gives
a better understanding of how a model performs. Table III
shows that Random Forest performs really well for scheduling
decisions, both in terms of precision and recall.

Moreover, Random Forest is very efficient when making
predictions for machine learning models that are not in the
training dataset. Figure 6 plots the corresponding predic-
tions for matching maximum performance and best energy
efficiency, as well as the affected performance loss as a
result of the wrong predictions. The green bars indicate that
the scheduler made a correct prediction and the red ones
indicate the wrong predictions. For example, in Figure 6(a)
we can see that the scheduler made a wrong prediction for

TABLE III
SCHEDULER EFFICIENCY WHEN USING RANDOM FOREST CLASSIFIER

F1-score Precision Recall
93.51% 93.22% 93.21%

sample size 8 and the achieved throughput is 43% lower
than the ideal throughput, while for sample size 128K the
achieved throughput is only 4% lower. Our scheduler achieved
a combined score of 91% for the two different policies, while
the performance loss due to wrong predictions is less than 5%.
As such, we can conclude that it can achieve highly accurate
predictions, even for cases that has not seen before.

VII. RELATED WORK

a) Acceleration of machine learning applications.: Many
works focus on accelerating the training and inference of
machine learning applications. One such approach is the
sparcification of DNNs [14], [15], [16] in which the inferece
performance can be improved significantly, by decreassing the
weights. Other approaches focus on decreasing the inference
latency, by changing the DNN itself. For instance, binarized
neural networks perform compression and pruning on the
models to reduce memory consumption and computations for
each inference [17]. Eyeriss [18] proposes a dataflow that
exploits local data reuse and minimizes data movements in
the neural network. All these approaches are orthogonal to
our work and can be adapted as device-specific optimizations.

b) Heterogeneous processing environments.: The archi-
tectural heterogeneity in commodity computing systems has
led many researchers to explore their abilities on different ap-
plications and workloads [19], [20], [21], [22], [23], [24], [25],
[26], [27]. The performance ranking of different devices has
been shown to have wide variations when executing different
classes of network applications [19], [21], [22]. To capture
the performance variability effect, it is important to perform
in-field studies and quantitative evaluation of the different
processing units [26], [27]. Besides that, a heterogeneous
processing system that employs CPUs and GPUs has to solve
many challenges, including the distribution of the workload
on processors with different capabilities and the data transfers
bottleneck [23].

c) Performance prediction.: The utilization of external
GPUs has been long used for the acceleration of a wide set of
applications [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39]. Instead of using the GPUs exclusively, some
works focus on predicting their performance and utilize them
opportunistically. For instance, in [40], the authors try to pre-
dict the performance of the GPU, based on the corresponding
CPU performance; their system then tries to select the best
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device on a set of different applications. Other works focus
on predicting the performance of the devices, using compiler-
based and neural network approaches accordingly [41], [42].
Lastly, in [43] they try to predict the performance of het-
erogeneous systems using machine learning models and the
hardware specifications of each device. A major difference of
our approach with the majority of these works is that they do
not support different policies when scheduling the applications
for execution. Moreover, their schedulers are not adaptive to
changes or fluctuations.

VIII. CONCLUSION

In this work we address the problem of improving the
efficiency of machine learning classification on commodity,
off-the-self, CPU-GPU architectures. In particular, we propose
an online adaptive scheduling algorithm, that can (i) respond
effectively to relative performance changes, and (ii) signif-
icantly improve the energy efficiency of machine learning
classification inference workloads. Our system is able to
efficiently utilize the computational capacity of its resources
on demand, resulting in predicting correctly the appropriate
device with an accuracy of 92.5%, while consuming up to
10% less energy.
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