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Abstract. The Android OS is currently used in a plethora of devices
that play a core part of our everyday life, such as mobile phones, tablets,
smart home appliances, entertainment systems and embedded devices.
The majority of these devices typically process and store a vast amount of
security-critical and privacy-sensitive data, including personal contacts,
financial accounts and high-profile enterprise assets. The importance of
these data makes these devices valuable attack targets.
In this paper we propose Andromeda, a framework that provides secure
enclaves for Android OS to mitigate attacks that target sensitive or crit-
ical code, data and communication channels. Andromeda offers the first
SGX interface for Android OS (to the best of our knowledge), as well
as services that enhance its security and offer protection schemes for
several applications that deal with sensitive or secret data. Andromeda
is also able to securely execute SGX-enabled code on behalf of external
devices that are not equipped with SGX-capable CPUs. Moreover, An-
dromeda protects cryptographic keys from memory dump attacks with
less than 16% overhead on the corresponding cryptographic operations
and provides secure, end-to-end encrypted, communication and compu-
tation channels for external devices paired with the Android device.

1 Introduction

Android has become a very popular open-source operating system that targets a
large set of devices [11], including mobile phones, tablets, smart home appliances,
entertainment systems and embedded devices. All these devices play a core part
of our everyday life and usually process and store a vast amount of privacy-
sensitive data, such as personal info, financial accounts, cryptographic keys and
high-profile enterprise assets. The importance of this data makes these devices
a valuable target for attacks and forces enterprises and device owners to be
concerned about the security of the data stored on them.



Furthermore, Android is also used as a hub for a diverse set of smaller de-
vices, such as wearables, web-cams, sensors, control and automation systems, etc.
These external devices act as data producers (e.g., image/video capturing, mo-
tion sensors, temperature/humidity sensors, activity trackers etc.), sending all of
their data to a corresponding application that runs on Android. Several different
application frameworks do currently exist, such as Samsung SmartThings [12]
and Android Sensor API [4], that enable third-party developers to build apps
that compute on such, typically sensitive, data. Even though such applications
allow the user to easily access the data, still at the same time they are being
posed to significant risks as data is usually left unprotected and prone to mis-
use/abuse by unverified processes. As such, enabling applications to compute on
sensitive data that external devices generate (such as surveillance material, heart
rates, activities performed, motion patterns), while preserving the integrity of
data and preventing any unwanted or malicious abuse, is an important problem.
The protection of sensitive data is even more difficult to be achieved in such use
cases, since external and wearable devices are not equipped with trusted com-
ponents. In most cases, the only option available to protect the sensitive data
they produce is to use the TEE offered by other (remote) devices, if available.

To mitigate such attacks and protect user data, many operating systems
or frameworks that target such devices deploy permission-based access con-
trol mechanisms, such as authentication and disk encryption. For instance, IoT
frameworks, such as Bosch’s IOT [6] and Amazon’s AWS [1], use permission-
based access control for data sources and sinks, however they do not control the
flows between the authorized sources and sinks [26]. Many approaches leverage
hardware-based trusted computing techniques to isolate the execution of appli-
cations [17,33,38,23]. For instance, several works utilize ARM TrustZone [14]
to run security-sensitive code or protect security-critical data, such as crypto-
graphic keys and payment information [31,39,32]. However, TrustZone is shared
simultaneously by all applications since there is only one TEE provided by the
hardware. Thus, by design, it can not provide isolation between the applications
that utilize the TEE, as they all co-reside in the same secure space. As a result,
if one of the trusted applications goes rogue, any other application that runs in
the secure world can possibly be affected. This prevents it from being universally
leveraged simultaneously across different applications, either in user-space (e.g.,
banking applications, etc.) or kernel-space (security monitors, device keystore,
etc.). In addition, TrustZone does not protect against attackers with physical
DRAM access. Moreover, although TrustZone is provided by almost all ARM
processors, it can not be directly used by application developers; it requires
control of the device and its firmware, which is not the case in many cases.

In this paper we introduce Andromeda, a framework that provides secure
enclaves for Android OS so Android developers can explicitly use them for their
applications, either by using the native API in C/C++ or our Java interface
that provides access to the secure enclaves through JNI bindings. In contrast to
previous approaches, Andromeda has the potential for multiple enclaves in a sys-
tem simultaneously, making it more flexible for general-purpose security-critical



operations, offering per-application or per-function isolated secure environments.
In addition, Andromeda implements popular Android services, enhanced with
secure enclaves capabilities, hence securing and protecting their functionalities.
We offer two representative services (i.e., a secure key management system, and
a data protection scheme for data flows) that enhance the security of Android OS
and offer protection schemes for several applications that deal with sensitive data
(such as cipher keys, personal data, medical data, etc.). These services enable
Andromeda to support an efficient and robust end-to-end encrypted data flow
model in which external devices that pair with Android can securely transfer and
process their data in the Android device, or even with a remote cloud-service.

We have currently implemented Andromeda prototype for Intel CPU pro-
cessors with SGX support; any device that is equipped with a SGX-enabled
processor can run Andromeda natively, out of the box, including handheld de-
vices, convertibles, set-top boxes, and car entertainment units. However, we have
to point out that Andromeda is not bound to Intel SGX; instead the proposed
mechanisms could be implemented on top of other architectures offering secure
user-level enclaves. For instance, there are approaches that implement user-level
secure enclaves, compatible to SGX, either independent of the underlying CPU
(such as Komodo [27]) either on top of ARM TrustZone (such as Sanctuary [20]);
Andromeda is not fundamentally tight to Intel SGX and, as such, could be imple-
mented on top of such approaches instead. Besides that, we note that a number
of vendors are developing similar hardware protection mechanisms, including
AMD SEV [2] and IBM’s SecureBlue++ [19]. Even though these mechanisms
are not identical, many of the proposed techniques of Andromeda can be adapted
to use these hardware features, the need of which will increase in the future.

The contributions of our paper are the following:

– We present a systematic methodology to port the SGX framework for the
Android OS, including the SGX kernel driver, the required libraries and
background services needed for its operation and a custom cross-compiler
(§ 5). This allows Android developers to explicitly use SGX for their appli-
cations either by using the native API in C/C++ (§ 6.2), or our proposed
Java interface that provides access to the secure enclaves through JNI bind-
ings (§ 6.3).

– We implement popular Android services, enhanced with SGX capabilities,
hence securing and protecting their functionalities (§ 4.2). The SGX enclaves
enable multiple secure spaces that can be used simultaneously by different
applications, in contrast with other TEE ecosystems, such as ARM Trust-
Zone, that allow only a single secure space that is shared for everyone and
often times requires control of the device and its firmware.

– We implement a programming paradigm tailored for externally paired de-
vices, that enables a robust, efficient, and trusted data flow between external
devices that pair with the Android OS (§ 4.2). Such devices can securely of-
fload data storage and computations to the Android OS in a trustworthy
manner, without necessarily being equipped with TEE-enabled CPUs.



2 Background

2.1 Intel SGX

Intel SGX [8] is a technology for application developers who are seeking to protect
selected code and data from disclosure attacks or modifications. Intel SGX makes
such protections possible through the use of enclaves, which are trusted execution
environments for applications. Enclave code and data reside in enclave page cache
(EPC), which is a region of protected physical memory. Both enclave code and
data are guarded by CPU access controls, and are also cache-resident. Every time
the data are moved to DRAM, they are encrypted via an extra on-chip memory
encryption engine (MEE), at the granularity of cache lines. For Intel Skylake
CPUs [9], the EPC size is between 64 MB and 128 MB and SGX provides a
paging mechanism for swapping pages between the EPC and untrusted DRAM.

Enclave memory is also protected against memory modifications and roll-
backs, using integrity checking. Non-enclave code cannot access enclave memory,
however enclave code can access untrusted DRAM outside the EPC directly. It
is the responsibility of the enclave code, however, to verify the integrity of all
untrusted data. Application code can be put into an enclave by special instruc-
tions and software made available to developers via the Intel SGX SDK. The
Intel SGX SDK is a collection of APIs, libraries, documentation, sample source
code, and tools that allows software developers to create and debug Intel SGX
enabled applications in C and C++ and is targeted for x86 64 computer systems.

2.2 The Android OS

Android is an operating system mainly designed for small handheld smart de-
vices, including but not limited to mobile phones, tablets and watches. It is
being developed by Google LLC, was first released in 2007 and is currently the
most widespread OS for smart devices[13][10]. Android’s backbone is based on
the Linux kernel, thus granting it extensively tested security features and stabil-
ity, and also allowing developers and manufacturers alike to develop hardware
drivers for a well known kernel. Google also had to make a few additions in order
to provide a more customised kernel functionality for Android’s requirements. A
few key additions are the wakelocks, a power management component crucial for
mobile devices, a unique out of memory (OOM) handling also informally known
as ‘Viking Killer‘, the ashmem, a new shared memory allocator for low-memory
devices, pmem a process memory allocator and also Binder an Android specific
interprocess communication mechanism and remote method invocation system
essential to Android, due to the fact that it does not support the use of the
Linux SysV IPC.

Android is built on top of the Linux kernel with components such as the
hardware abstraction layer (HAL), which provides various standard interfaces
that allow higher Java APIs and code to make use of a device’s hardware com-
ponents, and the Android Runtime (ART), a special virtual machine similar
to Java’s JVM, designed to run on low-memory devices. There are also Native



C/C++ Libraries and both HAL and ART are written in C/C++, however these
native libraries do not provide the same functionality as they would in a native
Linux machine. On the top layer of the Android architecture, there is the Java
API Framework, which provides applications a means to access the other lay-
ers in a constant way throughout different machines. All Android applications,
while able to use native C/C++ code, are developed in Java, enabling them to
be executed on multiple and different devices.

The majority of cryptographic operations in Android, including encryption,
decryption, message authentication (MAC), key generation and agreement, are
handled by the Android Keystore [3], that also provides a central place for storing
cryptographic keys for all applications. Keymaster is a part of the Android Key-
store service and responsible for generating new keys for encrypting, decrypting
and hashing data. It supports various cryptographic functions like AES, RSA,
SHA and more. In order to generate such an encrypted key for an application and
perform cryptographic operations, one has to generate a SecretKey, initialize a
Cipher with the desired mode (encrypt, decrypt or other) and choose the ap-
propriate algorithm and its properties for the current operation. Android defines
an abstract programming interface that can be used for the third-party imple-
mentations, plugged in seamlessly as needed. Therefore application developers
may take advantage of any number of provider-based implementations without
having to add or rewrite code.

3 Threat Model and Assumptions

In this work, we assume a powerful and active adversary who has root privileges
and access to the physical hardware (with the exception of the CPU) as well.
The adversary can control the entire software stack, including the OS kernel and
other system software. However, we explicitly exclude denial-of-service (DoS)
attacks on enclaves, given that the design of SGX allows the host OS to control
an enclave’s life cycles anyway. As a result, an attacker can prevent or abort the
execution of enclaves, but should not gain any knowledge by doing so. Moreover,
side-channel attacks [21] that exploit timing or page faults or based on vulnera-
bilities of the application running inside the enclave are proven to be feasible on
SGX enclaves. However, protecting SGX enclaves from side-channel attacks that
either focus on software or hardware bugs is orthogonal to Andromeda and thus
we consider that it is out of scope of our work. However, any successful attempt
to protect SGX-enabled code/hardware has a direct benefit to our framework.
Finally, we assume the design and implementation of SGX itself, including all
cryptographic operations, is secure and does not contain any vulnerabilities.

4 Andromeda Architecture

Our objective is to offer secure enclaves for the Android OS which must protect
sensitive services from the threats defined in Section 3. This will enable Android
developers to explicitly leverage them for their applications. We also want to



utilize secure enclaves inside Android services that operate on sensitive data
(such as Keystore), so they can be used transparently by applications. Overall,
Android developers should be able to build their applications and make use of
the secure enclaves as transparently as possible, ideally without writing extra
code or heavily modifying existing applications.

An enclave cannot be initiated on its own but instead the Intel Launch en-
clave must be used to generate the appropriate launch token. In addition, an
enclave’s code always has to be executed in Ring-3 with a reduced set of allowed
instructions and a limited amount of available memory. Thereby, we decide to
build an architecture that runs solely on the user-space, providing the interface
and the services that Android applications can use in an expressive and flexible
way. Figure 1 gives an overview of the Andromeda architecture. It comprises of
different layers that can be used by different kinds of applications for different
purposes. Using these mechanisms, we enhance popular Android services, such as
the Device Pairing and Keystore service, to leverage secure enclaves internally in
order to increase their security in a robust and transparent way. Finally, we also
implement an environment, within SGX, so external devices that have paired
with Android can securely transfer and store sensitive data on the Android de-
vice. Andromeda is responsible to protect all sensitive data by encrypting them
across the full path from the external device to the Android OS. Further, An-
dromeda optionally enables the processing of these data via functions that the
data-publishing application has submitted for execution in the SGX enclaves.

4.1 Trusted Execution and Storage

Andromeda provides a trusted execution and data storage service on top of
SGX. The service can be used by local Android apps, as well as from remotely
paired devices, as described in Section 4.2. At the lowest level, applications
can use the native API provided by the SGX runtime libraries, in order to
achieve the maximum performance. The process of utilising secure enclaves in
an application developed in native C/C++ code remains the same as for every
other native C/C++ Android application. The developer needs to prepare and
integrate the Intel SGX counterpart of the application (similar to the Linux
environment) and then cross-compile the application with our custom Android
tool-chain, which is able to handle the compilation of both trusted and untrusted
parts of the code. Developing Intel SGX enclaves for an APK implemented using
Java requires the use of JNI bindings. For this reason, we provide a Java API
(described in Section 6.3, which wraps the SGX functionalities in appropriate
classes. The developer needs to extend these classes with methods that will be
eventually executed in the SGX enclave of the application and perform the code
compilation using the Andromeda tool-chain which also provides JNI bindings
for each SGX-enabled function requested. In this way, the developer can easily
interface with the enclaves from the APK level. Moreover, Andromeda provides
the implementation of a secure data vault system and exposes a simple Java API
for Android applications. Using the data vault service, applications can securely
store data inside the SGX enclaves or seal them for secure file system storage.
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Fig. 1: Architecture of Andromeda

4.2 Andromeda services

Keystore Service The main purpose of Android Keystore is to store crypto-
graphic keys and offer cryptographic operations in a secure container, protecting
them from tampering. However, if not implemented with secure hardware sup-
port, it is vulnerable to a broad set of attacks, as described in Section 3. Having
the secret and private keys stored in clear-text makes them an easy target for a
malicious software running on the device. Andromeda offers the mechanisms to
keep the secret keys in a protected space, within secure enclaves, thus solving
and overcoming leakage scenarios.

The Keystore is implemented in C/C++ while Android uses a binder to
communicate with the Java part. Internally, Android Keystore can handle dif-
ferent type of entries. Some of them are PrivateKey, SecretKeyEntry and
TrustedCertificateEntry. Each one of these entries is identified by an alias
name which corresponds to the Keystore entry. When generating such an entry,
it is possible to choose from a range of cryptographic algorithms available in the
Keystore or use the default. In this way, the Android Keystore is able to store
multiple keys simultaneously, regardless of type, name and algorithm. At the
same time, different running programs can utilize the Keystore and store their
keys without having to deal with collisions.

An overview of our SGX-enabled Keystore operation is illustrated in Figure 2.
A major advantage of Andromeda Keystore is that it can be used even by legacy
apps without any code modifications or recompilation. The simplest way is to
have the entire Keystore inside a single enclave. However, this design leads to a
large TCB that is generally harder to review, or possibly verify, and is assumed to
have more vulnerabilities. To overcome this problem, we place in secure enclaves
only three core operations, which are used by the majority of cryptographic
algorithms: (i) the key generation, (ii) the data encryption, and (iii) the data
decryption. By doing so, we ensure that all private and secret keys reside in secure
enclaves while having a small TCB that can be easily verified. The memory for
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Fig. 2: The Keystore Architecture. The cipher keys are stored only in SGX en-
claves. Developers can encrypt and decrypt their data using the default Keystore
API, which internally redirects to Andromeda’s trusted implementation.

the keys is allocated inside the SGX enclave and only their pointers are returned
to the user-space, preventing any attempt to read them, extract them or modify
them, even via physical access to the device’s DRAM.

Our current implementation uses RSA-1024 and AES Counter Mode (AES-
CTR); we note though that other modes can be easily implemented. AES divides
each plain-text into 128-bit fixed blocks and encrypts each block into cipher-
text with a 128-bit key. The encryption algorithm consists of 10 transformation
rounds. Each round uses a different round key generated from the original key
using Rijndael’s key schedule. The whole encryption and decryption occurs in-
side the SGX enclave, ensuring that keys and all intermediate states are well
protected. Similarly, we have implemented RSA encryption and decryption.

Trusted Device Pairing Andromeda provides secure device pairing between
devices, even when only one (i.e., the Android device) is equipped with an SGX-
enabled processor. Such scenarios are typical when small external devices, such
as sensors and wearables with limited security capabilities, need to be paired
with more powerful Android devices (i.e., a phone or gateway). To accomplish
secure device pairing and attestation in such use cases, Andromeda offers the



functionality that enables the external devices to securely connect with the SGX-
capable Android device. The main concept is that data-publishing wearable or
external devices can protect their sensitive data, so it will only reside or processed
within designated functions that run in SGX-provided enclaves.

First, Andromeda generates a key pair and distributes the public key to the
external device and the corresponding private key to a local secure enclave. Each
external device has its own secure enclave, to ensure isolation between each other.
These keys can be used later to establish a session key via Diffie-Hellman. The
process of establishing and storing the keys is performed entirely inside SGX
enclaves in the case of the Android device. We assume that the external device
runs on a minimal code base with limited I/O, thus the integrity of the key
management can be attested and preserved. While this end-to-end encryption of
the I/O channel ensures data protection during transfers, the need of attestation
between the two devices remains a critical point in order to prevent malicious
users impersonating as one of the two devices. In cases where the external device
is capable to execute the Intel Remote Attestation process it is able to verify
that it is indeed communicating with a secure enclave, running on SGX-capable
hardware without emulation. However, in some cases, Intel Remote Attestation
can not be performed due to the limited computing capabilities of many ex-
ternal devices. To overcome this, we utilize one-time passwords (OTP) instead,
which are an essential part for our remote attestation alternative procedure.
More specifically, we use Google key generator to create an arbitrary key that
we can then register with a secure SGX enclave. The registration is performed at
the first connection and Andromeda (optionally) prompts the user to verify the
registration. Once the key has been successfully registered, the attestation pro-
cedure starts by the external device demanding a 6-digit OTP to be exchanged.
The generated OTPs are based on the RFC 6238. Upon receiving the OTP, the
external device calculates an OTP with the same key. If both match, the exter-
nal device can be certain that it communicate with the SGX enclave, since the
entire OTP process is performed inside the enclave. Once the OTP is verified,
the secure communication channel is established as described above.

5 Implementation

5.1 Setting up SGX for Android

Cross-compiling Intel SGX for Android OS is a challenging task. Due to the
complexity of the software and the many differences between a Linux distribution
and Android, we have to split the porting process in several smaller tasks in order
to constantly proving the potential and validity of our goal. For this reason we
perform the Android port in the following steps. First, we compile the SGX SDK
for a different Linux distribution than Ubuntu, which is the officially supported,
namely Arch Linux. Since Android is also based on Linux, this process lets us
understand how different compiler and library versions affect the possibility of
porting SGX on Android. Second, we validate that we can build the Android
Open Source Project (AOSP) form scratch and successfully install and run it on



an SGX-capable x86 machine. Finally, we integrate the SGX functionality into
the AOSP source tree by cross-compiling and providing the necessary libraries
for its correct operation.

The whole process of building the SGX environment for a non supported
Linux distribution is a quite tedious procedure due to the kernel, compiler and
library version incompatibilities. While analyzing the dependencies of SGX SDK
we find the following to be essential for a standard enclave execution: (i) the
SGX kernel driver, (ii) aesm service which is a background daemon serving as
a management agent for SGX enabled applications, (iii) the libsgx urts.so and
libsgx uae service.so, needed for executing enclaves in hardware mode, the
libsgx urts sim.so and libsgx uae service sim.so, needed for the software
emulation mode, and finally (iv) the le prod css.bin and libsgx le.signed.so.
This analysis allowed us to understand the software requirements and the process
of building the SGX environment for an unsupported platform.

Porting SGX on Android is an even more complicated process. First, AOSP
has to be built from scratch and be installed on an SGX-enabled x86 machine.
Then, porting the SGX environment is a time-consuming process since each
change to the source tree requires to (i) build the Android image, (ii) flash it on
the host machine and (iii) verify the correctness of each change as well as the
stability of the system. The SGX SDK is designed to be build on desktop-based
Linux distributions using GCC > v5 while Google’s NDK (Native Development
Kit for Android) offers GCC-4 and clang that are not able to compile the SGX
source tree. For this reason, we use CrystaX NDK [7] which acts as a drop-in
replacement for Google’s Android NDK, offering GCC-5.3 compatibility. Also,
the SGX SDK contains a group of libraries that must be compiled for Android in
order for the environment to execute properly, such as protobuf, ssl, libssp,
curl, gperftools and libunwind. To cross-compile them, we need to export
and set the corresponding flags for the Makefile and configuration files of each
project to link to the CrystaX compiler by setting the cross compiling field to
true. Then, all references to lpthread have to be removed from the Makefiles,
since it is automatically linked at the Android version of the standard library.
Moreover, due to the stripped down kernel version that is used by the Android
OS, the RDRAND instruction that is used by sgx read rand to perform random
number generation is not available. To overcome this issue we use a software
based implementation for random number generation that is fully compatible
with the existing API and works on Android and SGX.

After successfully cross-compiling the SGX source tree, the final step is to
cross-compile the kernel driver and port it to Android. Unfortunately, there are
inconsistencies between the supported kernel used by Ubuntu and the Android
kernel headers and the signatures of several kernel functions are different. For
this reason, some patches are required in order to build the driver which also
requires to be built in-source with Android. Once the SGX porting is completed,
we build a demo application that utilizes SGX enclaves in both hardware and
simulation mode. Finally, in order to execute Intel SGX enclave code, the
application must be signed using Intel’s sgx sign tool, which we rebuild and



use in order to compile Android applications as needed. The problem is that
cross compiling the whole Intel SGX source developing tools (SDK) and platform
software (PSW), would produce the sgx sign binary that is only executable on
Android; this would be quite inflexible to build an application and then sign it
at the Android using the application. Instead, we rebuild the source but this
time using only the Ubuntu default tools, store the sgx sign, and then use it to
compile our applications when needed.

5.2 Running an SGX application

An SGX application can run either in hardware or simulation mode. To make
use of the underlying hardware and leverage Intel SGX as a service, we compile
SGX applications using make SGX MODE=HW which links against libsgx urts.so.
Of course, since these libraries are not available in the source tree of Android
they must be provided to the LD LIBRARY PATH of the corresponding application
by exporting the paths of each one of them. Apart from the required SGX
dependencies, the libraries that were linked during the SDK compilation must
be also provided and exported to the LD LIBRARY PATH of the given application.
Additionally, we use insmod to load the driver and then start the aesm service.
The Android service system has several differences compared to Linux; editing a
system service file like init.d is not enough for Android to deploy a new system
service. Instead, a new application, marked as a service, has to be created and
meet specific code requirements [5]; i.e., all native functions of aesm service

need to be wrapped with JNI calls for it to be accessible by the Java part.

To overcome this issue, we simply adjust the aesm service source code to run
as a daemon in the background and interact directly with the native part. The
other solution would be to discard the whole Android application part and inter-
act with the native part directly. By examining the source code of aesm service

we manage to run the application as daemon (which is essentially a service) so
the app would start and stay alive. Whereas, if we start it without the spec-
ified input it would just terminate with no output. Also, the aesm service

requires the le prod css.bin and libsgx le.signed.so binaries to properly
execute so we transfer these binaries from the Intel SGX output directory to the
aesm service directory in Android before its execution. Finally, running an ap-
plication in Android requires it to be built with the -pie and -fPIE flags. These
flags instruct the linker that the program’s code can be executed regardless its
absolute address. After all the aforementioned requirements are met, we are able
to cross-compile and execute SGX-enabled Android applications.

Enclaves can be created using the ECREATE instruction, which initializes an
SGX enclave control structure (SECS) in the EPC. The EADD instruction adds
pages to the enclave, which are further tracked and protected by the SGX (i.e.,
the virtual address and its permissions). The EINIT instruction creates a crypto-
graphic measurement, after the loading of all enclave pages. The cryptographic
measurement can be used by remote parties for attestation. After the enclave
has been initialized, enclave code can be executed through the EENTER instruc-



tion, which switches the CPU to enclave mode and jumps to a predefined enclave
offset. The EEXIT instruction causes execution to leave the enclave.

6 Andromeda Framework

The Andromeda framework is split in three parts: (i) the enclave-enhanced An-
droid Keystore, which can be utilized transparently, (ii) the native API, used
to initialize and configure SGX using native code, and (iii) the Java API, which
provides a set of building blocks for APKs.

6.1 Andromeda Keystore

The Android apps can transparently utilize the Andromeda Keystore service to
securely perform cryptographic operations. Private keys and other sensitive in-
formation are kept in encrypted form in an array that resides in SGX memory
and cannot be accessed in any way by the host. To perform a cryptographic
operation: (i) the required (encrypted) key is fetched from the array, (ii) it is
decrypted inside the enclave, and (iii) the actual operation is performed on the
input data. This extension of the Android Keystore, provided by Andromeda,
is completely transparent to the developer. All necessary modifications are per-
formed at the native C/C++ part of Android’s Keystore while the correspond-
ing Java API remains unmodified, rendering it completely backwards compatible
with legacy applications. Persistent secure storage of keys and important meta-
data can be achieved using the sealing technique. The Keystore service will
seal and export the contents of the secure enclaves to the specified file-system
locations, protecting them during unexpected execution termination or device
power-off. The exported data are encrypted and accompanied with the neces-
sary metadata that ensure their validity. Once Keystore’s enclaves need to be
re-enabled, the service will repopulate them by loading and unsealing the data.
If the data is invalid or tampered, the service provides the necessary exceptions.

6.2 Native Development

Using the Andromeda SGX tool-chain, developers can create their own SGX
enclaves for their Android applications. To do so, native code in C/C++ has
to be developed for the enclave functionality as well as the respective ECALLs
and OCALLs that manipulate the data (sensitive or not) in the trusted and the
untrusted part. In order to access the SGX code and functions, JNI bindings
must be provided to the Java part of the APK to connect it with the native
C/C++ and SGX counterpart. These JNI functions must be written in order
to initialize the enclave instance, setup the environment and access the secure
enclave code, functions and data. The process is quite similar with a Linux envi-
ronment; the basic difference with SGX-enabled Android applications is that all
native C/C++ code that implements the SGX enclaves and the native C/C++
code that handles their execution should be cross-compiled with the Andromeda
Android tool-chain which handles all the steps required to build the source tree.



6.3 Andromeda Java API

In order to assist the development of SGX-enabled Android applications, An-
dromeda also offers an API that developers can use to offload specific parts of
the code into secure enclaves. The Andromeda Java API provides a set of build-
ing blocks for APKs and automates the generation process of secure enclaves
that execute only minimal parts of the application logic in the trusted environ-
ment. The Andromeda Java API are shown in Table 1 and allows the creation
of enclaves, the configuration of input and output between enclaves, and the
execution of user-defined functions.

Secure Execution The Java functions provided by the Andromeda API offer
the following functionality: The developer can create a new secure enclave Java
class instance using the TrustedEnvironment() constructor. To make the estab-
lishment of the trusted environment, the secure enclave Java class provides the
load() method that passes configuration settings and user-defined configura-
tion extensions to the enclave. This operation will generate a new enclave using
the C/C++ layer of the Andromeda API and provide the necessary handles to
the Java counterpart in order to interface with the enclave. The enclave and its
metadata can be securely erased using the destroy() method, which optionally
passes finalization data to the enclave. Developers can use the run() method
to perform a trusted execution in the secure enclave. The run() method is ex-
tensible and includes the code that performs the desired computations inside
the SGX enclave. Andromeda also provides the option to implement multiple
functions to be executed in the trusted environment which can be invoked using
their respective index (using the corresponding run() method argument). The
run() method can be called an arbitrary number of times with different inputs.

In contrast to the manual development of SGX-enabled Android applications,
when using the Andromeda Java API the Andromeda tool-chain will generate the
appropriate native C/C++ SGX code that implements the functionality defined
in the run() method. Moreover, the tool-chain will generate the enclave driver
code, that handles I/O and function calling, as well as establish connection with
the Java API by creating the necessary JNI bindings.

Secure Vault API The Java functions provided by the Andromeda secure
vault API enable both short term and persistent secure storage functionality. The
developer can use the store() function in order to store a data object within
a secure enclave. The data object can be of any kind, such as cryptographic
keys, certificates, fingerprints, tokens or any other data considered sensitive in
the scope of the application. Upon successful data storage, the API will return
an index which can be used to retrieve the actual data through the retrieve()

function. Moreover, the Andromeda Java API provides access to the SGX sealing
and unsealing functionality, via the seal() and unseal() methods respectively.
Using the seal() function, the developer can encrypt the data within the enclave
using a secret key derived within SGX. Once the data are sealed, they can be



Table 1: Andromeda Java API for SGX enclave utilization.
Constructor Summary

Constructor Description

TrustedEnvironment() Creates a new secure enclave class instance

Method Summary

Modifier and Type Method Description

void
load(EnclaveConfig config)
Initializes the secure enclave

EnclaveOutput
run(int index, EnclaveInput i)
Performs the trusted execution

int
store(byte[] data)
Stores the data and returns its index

byte[]
retrieve(int index)
Retrieves the data using its index

SealedData
seal(Object d)
Seals the enclave data and stores to file-system

Object
unseal(SealedData d)
Unseals the data and populates the enclave

void
pair(ChannelConfig config)
Creates a secure connection with the external device

void
transmit(ChannelConfig config, byte[] data)
Securely transmits data to the external device

byte[]
receive(ChannelConfig config)
Securely receives data from the external device

void
terminate()
Disconnects the external

void
destroy()
Destroys the secure enclave

stored in main memory or storage with assurances of integrity and authenticity
and can only be unsealed using unseal(). These functions can also be used to
periodically generate backups of the secure storage in order to prevent data loss
(e.g., from unpredictable execution termination).

Secure Pairing API The secure device pairing functionality is provided by
dedicated Andromeda API methods. These methods can be utilized by the An-
droid application controlling the external device, as long as the external device
includes Andromeda’s connection libraries, which do not require SGX support,
in its software stack. The developer is able to establish a secure communication
channel with an external device using the pair() method. The external device
can be connected either via Bluetooth or Wi-Fi. Andromeda will then perform
the attestation procedure for both devices. The configuration data passed to this
method indicate the device ID, the attestation procedure (Remote Attestation
or OTP), the option of notifying the user with a verification pop-up and other
metadata, essential for initiating the connection. Once the attestation process is
completed, Andromeda will perform the communication channel establishment
automatically, as described in Section 4.2. Once communication is initiated, the
devices are able to exchange data using the transmit() and receive() func-



tions respectively. Finally, the developer can execute the terminate() function
for a TrustedEnvironment instance in order to disconnect the external device.

7 Evaluation

7.1 Security Analysis

We now evaluate the security properties of Andromeda by describing possible
attacks and showing how our proposed design protects against them.

Memory Attacks We implement Andromeda in a way that nothing but a
pointer to enclave memory is ever written into host memory. The pointer’s
content can not be read or modified since it resides into the enclave. When
Andromeda performs the desired operations, the output is transferred back to
Android memory. In the meantime, we keep the enclave execution alive com-
pletely isolated from the Android system, without being affected by side effects
of the OS or hardware, such as interrupt handling, scheduling, swapping, and
ACPI suspend modes.

Controlling the Kernel In cases where the attackers have successfully taken
full control of the Android OS kernel, any sensitive data manipulated by An-
dromeda is still sound and safe. Once again, even though the attackers may have
full read/write/execute rights in the whole system, they cannot read/write/exe-
cute code inside the enclave. As a result, any attempt to modify or read enclave
code will result in a Segmentation violation since this memory is not mappable
outside the enclave code, keeping the data secured.

Integrity of data In a typical scenario, attackers can exploit software vulnera-
bilities and manage to inject code of their choice to a running service. Sensitive
data, such as secret keys and checksums, stored in the address space of the pro-
cess, can be easily acquired. In contrast, hiding sensitive data in a secure enclave
prevents access even to fully privileged processes. To verify this, we attach our
process with gdb in order to check the allocated pointers in the enclave code
and trace the calls. However, no such data can be extracted since the enclave
code and data are inaccessible from non-enclave code nor the function calls or
memory stack. Such operations always result in Segmentation violations.

7.2 Performance Analysis

We now assess the performance of Andromeda and the extra overhead introduced
for the execution of the secure enclaves. For our experiments we use an Intel NUC
8i5BEK kit with an SGX-enabled Intel i5-8259U CPU at 2.3 GHz and 8 GB of
DDR4 RAM. The system is running Android x86 version 7.1.2 r33.



AES Evaluation We compare the performance of the AES-128 crypto algo-
rithm, as achieved by the vanilla Android Keystore system, versus the SGX-en-
abled implementation provided by Andromeda, using a custom benchmarking
tool. In each processing loop, the tool generates a random secret key and a ran-
dom stream of data. The data vary in size from 32 B up to 32 MB. To avoid
any potential caching effects that may result in inaccurate results, we generate
a new key and data stream in each processing loop. Once an AES key and a
stream of data are prepared in memory, the tool performs cryptographic op-
erations on the data using AES-128 in CTR mode, using both the vanilla and
the SGX-enhanced Keystore system, provided by Andromeda. Figure 3(a) shows
the performance characteristics of the native AES code execution. We achieve
this by monitoring only the AES functions found in the native C code part of
the Android Keystore system. Our evaluation indicates that the overhead intro-
duced by the SGX-enabled implementation ranges between 51% and 84% for the
encryption operations and from 51% to 78% for the decryption.
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Fig. 3: Throughput comparison between the AES-128 CTR found in Android’s
Keystore and the SGX-enabled version provided by Andromeda’s Keystore.

In the next experiment we explore the throughput sustained in the APK
scope. We achieve this by performing the same experiment but in this case we
monitor the execution time of the Java cryptographic functions provided to the
APK by the Keystore system (Figure 3(b)). The execution time includes the
entire execution path and the overhead introduced by the various layers of the
Android architecture, including the IPC, the binder and the numerous function
calls until the actual cryptographic operations are performed. We notice that
the sustained throughput perceived by the APK is one order of magnitude lower
(compared to Figure 3(a)), due to the overhead introduced by the various layers
of the software stack involved in the process (i.e., JNI, IPC, and the binder).
Similarly, the perceived overhead introduced by the SGX enclaves is minimised,
between 0.6% to 13% for encryption and 0.6% to 11% for decryption.
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Fig. 4: Sustained throughput achieved for the vanilla and the SGX-enabled im-
plementation of the RSA-1024 cryptographic algorithm.

RSA Evaluation We now present the performance comparison between the
vanilla and our SGX-enabled implementation of the RSA algorithm. We per-
form the evaluation as follows. We develop a benchmarking application capable
to perform RSA key generation, encryption and decryption. In each process-
ing loop, the tool generates a new RSA key-pair and performs cryptographic
operations against a set of input data. The data set consist of 10,000 random
data chunks, varying in size from 32 B up to 32 KB, with each set containing
chunks of the same size. We choose to generate a new set of random data in
each processing loop in order to eliminate any caching effects. We execute the
benchmarking application for every data set, each time monitoring the number of
sustained cryptographic operations per second. The outcome of this experiment
is displayed in Figure 4.

We notice that the SGX-enabled implementation introduces a maximum
overhead of 16%, observed when processing 64 B long data, with the lowest
introduced overhead being 2.3% during the encryption of 2 KB long data. The
maximum sustained decryption rate is observed for the vanilla implementation
during the encryption of 32 B long data with the introduced overhead being
12.6%. The minimum observed overhead introduced by the use of SGX enclaves
is 0.9%, encountered during the decryption of 2 KB long values. For both crypto
operations, we observe that the perceived overhead introduced by the I/O be-
tween the benchmarking application and the SGX-enclave is minimised due to
the processing complexity of the RSA algorithm.

Computation Offloading We present the performance of three benchmarking
applications, executed, using the different methods provided by the Andromeda
framework, as well as the overhead introduced by executing them remotely. In



 0.1

 1

 10

 100

MatMul BubbleSort CNN

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Benchmarks

Java
C-SGX

Java-JNI-SGX
Java-Remote

C-SGX-Remote
Java-JNI-SGX-Remote

Fig. 5: Performance comparison of the different Andromeda-enabled execution
methods, including offloading, against the vanilla Java versions.

particular, we compare the execution of the vanilla Java implementation against
their secure implementation using C and SGX natively, compiled with our cus-
tom cross-compiler, and their implementation using the Andromeda Java API
for SGX. These benchmarks consist of some typical operations that external de-
vices or wearables may perform on sensitive data (e.g., for analytics on finance
or health data, image processing, etc.) and also exhibit different performance
characteristics (i.e., IO-bound, memory-intensive, computational-intensive). The
first benchmark performs matrix multiplication on two tables with 10K rows and
columns. The second benchmark performs bubble sort on an array of 20K ran-
dom integers. Finally, the third benchmark is a convolutional neural network
that performs image classification using as input images with size 800x600 pix-
els, generated by an external device.

As we can see in Figure 5, the vanilla Java implementation requires 5.4%
to 11.2% more time to finish its execution than the respective SGX-enabled
implementations (developed either in native C or using the Andromeda SGX
Java API) whereas the time needed for code offloading ranges from 5.13% to
7.5% for Java. The reason for this is that in both SGX-enabled versions, the
functions are executed natively using C. The overhead introduced by the I/O
with the secure enclave, the JNI layer (in the SGX-enabled Java implementation)
and the data offloading on the socket level are minimal in these cases and does
not overshadow the speedup gained by the native execution.

8 Discussion and Limitations

Misusing Andromeda Keystore for encrypting/decrypting messages
Intel SGX cannot verify whether a request for an operation has been received



from a benign or a malicious user. As a result, an attacker who has managed to
gain access to the base Android system or the Keystore service could leverage
Intel SGX to encrypt and decrypt messages. Still, the adversary cannot steal
any key stored in secure enclaves.

Denial-of-Service Adversaries who have compromised the Android system
can easily disrupt the operation of Intel SGX. For example, they can delete or
modify input or output data by hooking the functions that communicate with
the SGX application or even kill or suspend the execution of enclaves. As the
main purpose of Intel SGX is to protect sensitive data and perform trusted
operations, defending against these attacks is out of the scope of this work.

Portability Andromeda is currently implemented on Intel SGX-equipped CPUs.
Even though this prevents us from adopting it to other CPU models, we note
that Andromeda is not fundamentally bound to Intel SGX; instead our proposed
architecture could be implemented on top of other approaches that offer secure
user-level enclaves. For instance, there are recently proposed approaches that
implement user-level secure enclaves, similar to SGX, either independent of the
underlying CPU [27] either on top of ARM TrustZone [20]; porting Andromeda
to these approaches is part of our future work.

9 Related Work

ARM TrustZone [14] enables the development of two separate environments, the
trusted and the untrasted world. This split enables the execution of the rich
OS (that runs in the untrusted world) and the system software that controls
basic operations that must be protected and runs in the trusted world. Santos
et al [33] use TrustZone for securing mobile applications, by establishing and
isolating trusted components. However, their approach requires a trusted lan-
guage runtime in the TCB, due to the fact that there is only a single trusted
world. DroidVault [29] presents a security solution for storing and manipulating
sensitive data. The data are stored in an encrypted form on the filesystem and
are only processed (decrypted) in TrustZone. TZ-RKP implements a low-TCB
system level safe security monitor on top of the TrustZone architecture [16] that
provides a real-time OS kernel protection. The monitor routes privileged sys-
tem functions through secure world for examination. Samsung KNOX [32] is a
secure container framework, leveraging ARM TrustZone, that offers protection
from both the software and the hardware. However, KNOX is primarily a closed-
source system and its architecture is not well documented in the open literature.
A major limitation of all these TrustZone-based approaches is that they do not
protect against attackers with physical DRAM access. Moreover, TrustZone is
not best suited to be securely shared by multiple applications, as there is only
one shared TEE provided by the hardware, offering limited isolation granular-
ity compared to SGX. This prevents it from being leveraged simultaneously by



different applications, either in user-space (e.g., banking applications, etc.) or
kernel-space (security monitors, device keystore, etc.).

Intel SGX [8] offers fine-grained confidentiality and integrity at the enclave
level. Haven [18] aims to execute unmodified legacy Windows applications inside
SGX enclaves by porting a Windows library OS into SGX. TrustAV [25] offloads
malware analysis operations within secure enclaves to shield the transfer and
processing of private user data in untrusted environments. Graphene-SGX [37]
encapsulates the entire libOS, including the unmodified application binary, sup-
porting libraries, and a trusted runtime with a customized C library and ELF
loader inside an SGX enclave. VC3 [34] uses SGX to achieve confidentiality and
integrity for the Map Reduce framework. SCONE [15] is a shielded execution
framework that enables developers to compile their C applications into Docker
containers. SGX-Mon [24] is a host-based kernel integrity monitor that resides in
SGX enclaves to prevent attackers from tampering its execution and operation-
critical data. In contrast with these works, Andromeda is the first approach,
to the best of our knowledge, that enables SGX enclaves for the Android OS.
Moreover, there are recently proposed approaches that implement user-level en-
claves, similar to SGX, either independent of the underlying CPU [27] or on top
of ARM TrustZone [20]; Andromeda is not fundamentally tight to Intel SGX
and, as such, could be implemented on top of such approaches instead.

Finally, several improvements for SGX have been recently developed in or-
der to protect against memory bugs [28,35,30] or controlled-channel attacks [36].
SGXBOUNDS [28] enables bounds-checking with low memory overheads, in or-
der to fit within the limited EPC size. SGX-Shield [35] implements Address Space
Layout Randomization (AS-LR) in enclaves, with a scheme to maximize the en-
tropy, and the ability to hide and enforce ASLR decisions. Eleos [30] proposes to
reduce the number of enclave exits by asynchronously servicing system calls out-
side of the enclaves, and enabling user-space memory paging. T-SGX [36] is an
approach that combines SGX with Transactional Synchronization Extensions,
in order to mitigate controlled-channel attacks. All these works are orthogonal
to our approach and can be integrated to Andromeda.

10 Conclusion

In this work, we present the design, implementation, and evaluation of An-
dromeda, a framework that provides the first SGX interface for Android OS.
Using Andromeda, developers can explicitly use SGX for their applications via
the native API in C/C++ or the Java interface that provides access to the
secure enclaves through JNI bindings. Also, Andromeda offers services that en-
hance Android’s security and provides protection schemes for applications that
deal with sensitive data.

As part of our future work, we plan to port Andromeda to SGX-compliant
approaches that do not depend on specific CPU models though, either using
software-only techniques [27], either on top of ARM TrustZone [20]. Also, we
plan to enhance our secure pairing mechanism by utilizing protocols that offer



mutually trusted secure communication channels between enclaves that reside
in different physical devices, similar to [22].
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