
Parallelization and Characterization
of Pattern Matching using GPUs

Giorgos Vasiliadis, FORTH-ICS, Greece
Michalis Polychronakis, Columbia University, USA
Sotiris Ioannidis, FORTH-ICS, Greece

IISWC’2011, 8 November 2011

Problem Statement

• Pattern matching is a core operation in deep
packet inspection applications

– Network intrusion detection/prevention systems

– Traffic classification

– Spam filtering

– Content routing

 Given a set of patterns, how to quickly scan
network packets to determine which are matched?

gvasil@ics.forth.gr 2

Challenges

• Traffic rates are increasing

– 10 Gbit/s Ethernet speeds are common in metro
networks

– Up to 40 Gbit/s at the core

• Increasing number of patterns

– L7-filter: ~1K rules

– Snort IDS: ~10K rules

gvasil@ics.forth.gr 3

Hardware or Software?

• Prior regular expression matching algorithms are either
hardware-based or software-based

• Hardware-based algorithms:
– FPGA/TCAM/ASIC based
– Usually tied to a specific implementation
– Throughput: High

• Software-based algorithms

– Processing by general-purpose processors
– Throughput: Low

gvasil@ics.forth.gr 4

Our Approach

• We propose an implementation of string
searching and regular expression matching on
the GPU

– Flexible and programmable

– Powerful and ubiquitous

– Constant innovation

• Thanks to video-game industry 

– Data-parallel model

gvasil@ics.forth.gr 5

Outline

• Background

• Implementation

• Performance

• Conclusions

gvasil@ics.forth.gr 6

Pattern Matching

 Exact-match string
– Fixed size patterns

• “GET / HTTP/1.1”

• “GNUTELLA”

• “BitTorrent”

• etc.

 Not expressive enough

 Regular expressions
– Character sets

• [ci-cjck]

– Repetitions
• , c+, c*,

– Wildcards
• .*, [^ci-cj]*

– Counters
• c{m, n}, [^ci-cj]{m, n},

 Provide flexibility and
expressiveness

gvasil@ics.forth.gr 7

Pattern Matching

 Both string searching and regular expression
matching can be matched efficiently by combining
the patterns into Deterministic Finite Automata
(DFA)

gvasil@ics.forth.gr 8
Example: P={he, she, his, hers}

DFA matching

• Move over the input data stream one byte at a time

• Switch the current state according to the state table

• When a final-state is reached, a match has been found

gvasil@ics.forth.gr 9

Outline

• Background

• Implementation

• Performance

• Conclusions

gvasil@ics.forth.gr 10

Data-Parallelism in Packet Processing

• The key insight

– Data level parallelism = packet level parallelism

Network Interface

1. Batching

2. Parallel Processing
in GPU

gvasil@ics.forth.gr 11

Pattern matching on the GPU

• Uniformly one thread for each network packet

GPU
core

Matches

GPU
core

GPU
core

GPU
core

Packet Buffer

GPU
core

GPU
core

gvasil@ics.forth.gr 12

Optimizing Packet Processing for GPU

1) Memory access latency

2) Memory bandwidth

3) Memory hierarchies

gvasil@ics.forth.gr 13

1) Memory access latency

• Improve memory utilization by running many
threads

Cache miss

thread switch

Cache miss

thread switch

GPU core:

gvasil@ics.forth.gr 14

2) Memory bandwidth

• Only 1/32th of the total bandwidth is utilized

– Device memory transaction is 32 bytes (minimum)

gvasil@ics.forth.gr 15

10Gbps

1-byte
accesses

2) Memory bandwidth

• Packet reading is boosted 4x with 4-byte fetches

gvasil@ics.forth.gr 16

38 Gbps

4-byte
accesses

10Gbps

2) Memory bandwidth

• Packet reading is boosted 4x with 4-byte fetches

gvasil@ics.forth.gr 17

105 Gbps 38 Gbps 10Gbps

12x 16

16-byte
accesses

3) Exploring memory hierarchies

What?

Network packets

State tables

Where?

Global Memory

Texture Memory

Constant Memory

Shared Memory

How?

1-Dimension (linear)

2-Dimensions

gvasil@ics.forth.gr 18

3) Exploring memory hierarchies

What?

Network packets

State tables

Where?

Global Memory

Texture Memory

Constant Memory

Shared Memory

How?

1-Dimension (linear)

2-Dimensions

gvasil@ics.forth.gr 19

3) Exploring memory hierarchies

• Rule of thumb

– Texture memory for packets

– Global memory for state table

What?

Network packets

State tables

Where?

Global Memory

Texture Memory

Constant Memory

Shared Memory

How?

1-Dimension (linear)

2-Dimensions

gvasil@ics.forth.gr 20

Both L1- and texture
caches are utilized

Putting it all together

• Pattern matching on GPU is really fast

• Unfortunately, packets have to be transferred to
the GPU, over the PCIe bus

Gbit/s

1240.1

687.6

330.4

186.3

200b

400b

800b

1500b

P
ac

ke
t

si
ze

gvasil@ics.forth.gr 21

Transferring overheads

• PCIe has evolved over the last versions
– 64 Gbit/s for a PCIe x16 graphics card

• Unfortunately, PCIe suffers from small data
transfers

Store many packets to a single buffer (CPU-side),
and transfer it to the GPU at once

Buffer Size 1KB 4KB 64KB 256KB 1MB 16MB

Host to Device 2.04 7.1 34.4 42.1 44.6 45.7

Gbit/s

gvasil@ics.forth.gr 22

How to store network packets?

• Fixed-buckets buffer

• Performance

gvasil@ics.forth.gr 23

PCIe x16

How to store network packets?

• Indexed buffer

• Performance

5x better

gvasil@ics.forth.gr 24

PCIe x16

Outline

• Background

• Implementation

• Performance

• Conclusions

gvasil@ics.forth.gr 25

Overall Performance

41.2x 8.75x GPU Speedup: 21.2x 30.2x 35.0x

gvasil@ics.forth.gr 26

GPU

Scalability to number of patterns

• Constant throughput

– Independently of the number of patterns

2,000

10,000

30,000

50,000

gvasil@ics.forth.gr 27

What to expect?

• GPU throughput increased 6 times, in less
than two years
– From 28.1 Gbit/s to over 180 Gbit/s

gvasil@ics.forth.gr 28

Conclusions

• An efficient pattern matching implementation
on the GPU

• Several device-level optimizations

– Explore different memory hierarchies

– Alleviate memory congestions

• Improve transferring of small packets

gvasil@ics.forth.gr 29

Thank you!

gvasil@ics.forth.gr

gvasil@ics.forth.gr 30

