Parallelization and Characterization
of Pattern Matching using GPUs

Giorgos Vasiliadis, FORTH-ICS, Greece
Michalis Polychronakis, Columbia University, USA
Sotiris loannidis, FORTH-ICS, Greece

ISWC’2011, 8 November 2011

Problem Statement

* Pattern matching is a core operation in deep
packet inspection applications
— Network intrusion detection/prevention systems
— Traffic classification
— Spam filtering
— Content routing

Given a set of patterns, how to quickly scan
network packets to determine which are matched?

Challenges

* Traffic rates are increasing
— 10 Gbit/s Ethernet speeds are commoniytro

networks

— Up to 40 Gbit/s at the core ‘

* |[ncreasing number of patterns
— L7-filter: ~1K rules
— Snort IDS: ~10K rules

gvasil@ics.forth.gr

Hardware or Software?

* Prior regular expression matching algorithms are either
hardware-based or software-based

 Hardware-based algorithmes:
— FPGA/TCAM/ASIC based
— Usually tied to a specific implementation
— Throughput: High

e Software-based algorithms
— Processing by general-purpose processors
— Throughput: Low

Our Approach

 We propose an implementation of string
searching and regular expression matching on
the GPU
— Flexible and programmable
— Powerful and ubiquitous
— Constant innovation

* Thanks to video-game industry ©

— Data-parallel model

gvasil@ics.forth.gr 5

Background
Implementation
Performance
Conclusions

Outline

Pattern Matching

Exact-match string Regular expressions
— Fixed size patterns — Character sets
e “GET/HTTP/1.1” * [ci-cic]
* “GNUTELLA” — Repetitions
e “BitTorrent” e C+,C¥*,
etc. — Wildcards
° .*, [ACi'Cj]*
— Counters

* c{m, n}, [*ci-cj]{m, n},

Not expressive enough Provide flexibility and
expressiveness

Pattern Matching

Both string searching and regular expression
matching can be matched efficiently by combining
the patterns into Deterministic Finite Automata

(DFA)

Initial State > @

State —h @ @
Final State —» . @ @
Transition . ‘ ‘

{Edges pointing back to State 0 are not shown)

Example: P={he, she, his, hers}

gvasil@ics.forth.gr

DFA matching

State Transition Table

) J-,'.'\

Input Streamy

...a wo‘[k and now

h

Automaton

int state; // current state

char ch; // input characg

uint offset;// current offizet

 Move over the input data stream one byte at a time
e Switch the current state according to the state table
 When a final-state is reached, a match has been found

gvasil@ics.forth.gr

Background
Implementation
Performance
Conclusions

Outline

Data-Parallelism in Packet Processing

* The key insight

— Data level parallelism = packet level parallelism

Network Interface

il
N

1. Batching

2. Parallel Processing
in GPU

Pattern matching on the GPU

Packet Buffer

4

GPU GPU GPU
core core core

GPU GPU GPU
core core core

N\

Matches

———
——

* Uniformly one thread for each network packet

gvasil@ics.forth.gr 12

Optimizing Packet Processing for GPU

1) Memory access latency
2) Memory bandwidth

3) Memory hierarchies

1) Memory access latency

* Improve memory utilization by running many
threads

Cache miss Cache miss

L L~

\J

thread switch thread switch

GPU core:

gvasil@ics.forth.gr

14

2) Memory bandwidth

1-byte
accesses

* Only 1/32th of the total bandwidth is utilized

— Device memory transaction is 32 bytes (minimum)

gvasil@ics.forth.gr 15

2) Memory bandwidth

~

4-byte
accesses

38 Gbps

* Packet reading is boosted 4x with 4-byte fetches

gvasil@ics.forth.gr

16

2) Memory bandwidth

16-byte
accesses

38 Gbps

105 Gbps

12X

16

* Packet reading is boosted 4«/with ;I/byte fetches

gvasil@ics.forth.gr

17

3) Exploring memory hierarchies

What?

Where?

Network packets

Global Memory

How?

State tables

Texture Memory

1-Dimension (linear)

gvasil@ics.forth.gr

Constant Memory

2-Dimensions

Shared Memory

18

3) Exploring memory hierarchies

What?

Network packets

Where?

State tables

Global Memory

How?

Texture Memory

1-Dimension (linear)

gvasil@ics.forth.gr

Constant Memory

2-Dimensions

Shared Memory

19

3) Exploring memory hierarchies

What? Where? How?
Network packets _GlohalMepmery—) 1-Dimension (linear)
State tables ><-|'E'X‘l'UTE‘MErnU|y 2-Dimensions

Constant Memory

Shared Memory

 Rule of thumb

— Texture memory for packets Both L1- and texture
— Global memory for state table caches are utilized

gvasil@ics.forth.gr 20

Putting it all together

e Pattern matching on GPU is really fast

A
200b

400b

Packet size

800b

1500b

>

Gbit/s

* Unfortunately, packets have to be transferred to
the GPU, over the PCle bus

Transferring overheads

e PCle has evolved over the last versions
— 64 Gbit/s for a PCle x16 graphics card

* Unfortunately, PCle suffers from small data
transfers

Hostto Device 2.04 7.1 344 . 44.6 45.7
Gbit/s

=» Store many packets to a single buffer (CPU-side),

and transfer it to the GPU at once

gvasil@ics.forth.gr

22

How to store network packets?

* Fixed-buckets buffer

L o O

Buc

ucket 0:
ucket 1:

ucket 2:

Packet B
acket Buffer 1540

Pkt O

)

PCle x16

—

(
[Pkt1
(

Pkt 2

ket N:

PktN

e Performance

gvasil@ics.forth.gr

30

25 -

20 - B Buckets

15 | =8 CPU

10

R A" |
00 D £

Throughput (Gbit/s)

200 1500 23
Packet size (bytes)

How to store network packets?

Indexed buffer

Index O: @
Index 1: E
Index 2: @ PCIe X16
Index N: E
Packet Buffer:] [PktO j [Pktl]r@]‘ LI ‘
Performance

30

B Buckets

251 M Index

20 | =& CPU

15

gvasil@ics.forth.gr

Throughput (Gbit/s)

100

5x better ‘

200
Packet size (bytes

1500

24

Background
Implementation
Performance
Conclusions

Outline

Overall Performance

30 1

L 25-
@)
- -=—a CPU
3 15 A
-
2 10 -
O
SO |

0!

100 200 400 800 1500

Packet size (bytes)

GPU Speedup: 1

gvasil@ics.forth.gr 26

Scalability to number of patterns

B Throughput (w/ transfers)] Throughput

[
0 20 40 60 80 100 120 140 160 180
Throughput (Gbit/s)

* Constant throughput

— Independently of the number of patterns

gvasil@ics.forth.gr 27

What to expect?

200 - GTxzas GTx480
@ 100 -
5 QB0 A2
= 50 -
L
E 55 _ EﬂﬂﬂéT
3 124
= 64
o
= &éﬁ%ﬂwni__jﬁﬂ

| | | | | |
2005 2006 2007 2008 2009 2010

Year

* GPU throughput increased 6 times, in less
than two years
— From 28.1 Gbit/s to over 180 Gbit/s

Conclusions

* An efficient pattern matching implementation
on the GPU

* Several device-level optimizations
— Explore different memory hierarchies
— Alleviate memory congestions

* Improve transferring of small packets

Thank you!

gvasil@ics.forth.gr

