PixelVault: Using GPUs for Securing
Cryptographic Operations

Giorgos Vasiliadis
Elias Athanasopoulos
Michalis Polychronakis
Sotiris loannidis

gvasil@ics.forth.gr
elathan@ics.forth.gr
mikepo@cs.columbia.edu
sotiris@ics.forth.gr

How SSL/TLS works

* Secure Sockets Layer (SSL/TLS) is a de-facto

standard for secure communication (sse o

Secure
Connection M

— Authentication, confidentiality, integrity

Client Server

Client Initiates Handshake

Server Responds + Certificate RSA

ol decryption

Client sends secret

Server and Client create Keys AES

cipher
8 Secure Data Exchange 8

Motivation

e Secret keys may remain unencrypted in CPU
Registers, RAM, etc.

— Memory attacks
— DMA/Firewire attacks
— Heartbleed attack

PixelVault Overview

Host * Runsencryption
securely outside CPU/

RAM
x86 Host CPU
* Only on-chip memory
PLAINTEXT CIPHERTEXT of GPU is used as
storage

* Secret keys are never
observed from host

Graphics Card

Cryptographic Processing with GPUs

 GPU-accelerated SSL
— [CryptoGraphics, CT-RSA’05]
— [Harrison et al., Sec’08]
— [SSLShader, NSDI'11]

OpenSSL stub

* High-performance
e Cost-effective

Cryptographic Processing with GPUs

 GPU-accelerated SSL
— [CryptoGraphics, CT-RSA’05]
— [Harrison et al., Sec’08]
— [SSLShader, NSDI'11]

OpenSSL stub

°

VLECEGIEOED)

* High-performance
e Cost-effective

Can we also make it secure?
6

Implementation Challenges

e How to isolate GPU execution?

 Who holds the keys?

e Where is the code?

Implementation Challenges

e How to isolate GPU execution?

* Who holds the keys?

e Where is the code?

GPU as a coprocessor

* Typically handled by the host

— Load parameters, launch GPU kernel, transfer
data, etc.

* Not secure for our purposes

— Crypto keys have to be transferred every time

Autonomous GPU execution

* Force GPU kernel to run indefinitely
— i.e., using an infinite while loop

e Cannot rely on the typical parameter-passing
execution of GPU kernels

— Instead, we allocate a memory segment that is
shared between CPU/GPU

10

Shared Memory between CPU/GPU

Server Server Server ¢ PGQE'/OCkEd memory

— Accessed by the GPU
directly, via DMA

— Cannot be swapped to
disk

Shared Memory Segment

* Processing requests are
l I issued through this
shared memory space

11

Shared Memory between CPU/GPU

Server Server Server ¢ GPU COﬂﬁﬂUOUSly

monitors the shared

space for new requests
Shared Memory Segment

L]

12

Shared Memory between CPU/GPU

* When a new request is
available, it is
transferred to the
memory space of the
GPU

REQUEST
msg#

offsets[msg#] pry Segment
keyIDs [msqg#]

msg_buf[] T
v

13

Shared Memory between CPU/GPU

Shared Memory Segment

.

REQUEST RESPONSE
msg# 3| msg#
offsets[msg#] o’ offsets[msg#]

keyIDs [msg#]

> | keyIDs [msg#]
enc_msg_buf[]

msg_buf[]

* The requestis
processed by the GPU

14

Shared Memory between CPU/GPU

Shared Memo

RESPONSE
msg#

offsets[msg#]

keyIDs [msg#]
enc_msg _buf[]

l

* When processing is
finished, the host is
notified by setting the
response parameter
fields accordingly

15

Autonomous GPU execution

* Non-preemptive
execution

: : * Only the output block is
being written back to

host memory

Server Server Server

Shared Memory Segment

L

non-preemptive exec

16

Implementation Challenges

e How to isolate GPU execution?

 Who holds the keys?

e Where is the code?

17

Who holds the keys?

e N
GPU

SR -
(Multiprocessor N
Host Memory

\
(Multiprocessor 2
4 N
CPU N
(Host)
\. /

Multiprocessor 1
Shared Regs
Memory Cache w.
 GPUs contain different memory hierarchies of ...
— different sizes, and ...

s | sp | sp|[P
s | sp s
— different characteristics

Global Memory

(2N
© (| O

P
S P)
./ \ Y

N N
N N/

Who holds the keys?

4 N
[Host Memory }

GPU
(Multiprocessor N
shared Regs
: are
Off-chip glc_)bal memory. Memory | | Cache »
No protection; data can

be acquired by the CPU _sp L sp] % P
S

directly. (o) s (s[5)
v

 GPUs contain different memory hierarchies of ...

— different sizes, and ...
— different characteristics

~

(Multiprocessor 2
p

Multiprocessor 1

Global Memory

He

A N

(2N

P
P

© (| O

19

Who holds the keys?

GPU

N
_ _ Multiprocessor N
GN8N On-chip memories X
(erocessor 2

Multiprodessor 1

Shared e
are
Memory Cache

v
Global Memory

- [SPHSPHSPHSPJ/

\. y

 GPUs contain different memory hierarchies of ...
— different sizes, and ...
— different characteristics

20

Who holds the keys?

\
Comparable with GPU
scratchpad RAM in other . N
. Multiprocessor N
architectures. (
N
Multiprocessor 2
5 a S
Unfc;)rtunate/y, Ollt; contents S ultiprocessor 1
can be acquired by a o
=
subsequent GPU kernel. E
g Cache)
sp || sp |
s s (s s
SP
_/) y

 GPUs contain different memory hierarchies of ...
— different sizes, and ...
— different characteristics

Who holds the keys?

GPU

(Multiprocessor N

Many different caches (L1-L3,

p
IVI'LH{processor 2

~

texture, constant).
Unfortunately, the data stored

there cannot be managed by
Shared
the programmer Memory |

\

Multipro®essor 1

s

' sp | sp |

/

 GPUs contain different memory hierarchies of ...

— different sizes, and ...
— different characteristics

22

Who holds the keys?

GPU

4 . N
Multiprocessor N

it Not fully-addressable. =\
Reset to zero on each Mu'ﬁpf&{SSOf 2
Pl sp|lsp)

| GPU kernel execution.
Pl sp|lsp)

A\ A \ ‘ J)

Global M

\.

 GPUs contain different memory hierarchies of ...

— different sizes, and ...
— different characteristics

23

Keeping secrets on GPU registers

e Secret keys are loaded on GPU registers at an
early stage of the bootstrapping phase

— Preferably from an external storage device

* Unfortunately, the number of available
registers in current GPU models is small

— Enough for a single/few secret keys, but what
about multi-homing servers?

24

Support for an arbitrary number of keys

 We can use a separate KeyStore array that
holds an arbitrary number of secret keys

encrypted keys are each key is decrypted in registers
stored in GPU RAM: during encryption/decryption:
KeyStore GPU Registers File

Master
Key
copy to registers

| | rcedker Regediis)

25

Implementation Challenges

e How to isolate GPU execution?
* Who holds the keys?

e Where is the code?

mov.u32 %r2, o;
setp.le.s32 ¥pl, %rl, %*r2;
mov.s32 %r5, %rd;

add.u32? ¥r6, %rl, %rd;
i*pl bra $Lt & 1282;
mov.s32 %r8, Ar3d;

xor.b32 %rle, 7, %ro;
st.global.u8 [%r5+8], %rile;
add.u3?2 %r5, %r5, 1;
setp.ne.s32 ¥p2, %r5, *r

Where is the code?

* GPU code is initially stored in global device
memory for the GPU to execute it

— An adversary could replace it with a malicious
version

Global Device
Memory

mov.u32 %r2, 0;

setp.le.s32 %pl, ¥rl, ¥r2;
mov.s32 %&rs, %rd;

add.u32 %r6, %rl, %rd;

i*pl bra $Lt © 1282;
mov.s32 %r8, %r3;

¥or.b32 %rie, ZIr7, %ro9;
st.global.u8 [%r5+8], %ril@;
add.u32 %rs, %rs, 1;
setp.ne.s32 ¥p2, %r5, *r

Preventing code modification attacks

* Three levels of instruction caching (icache)
— 4KB, 8KB, and 32KB, respectively
— Hardware-managed

* Opportunity: Load the code to the icache, and
then erase it from global device memory

— The code runs indefinitely from the icache
— Not possible to be flushed or modified

PixelVault Crypto Suite

 AES-128

* RSA-1024

AES Implementation

* The key and all intermediate states are stored
iIn GPU registers

— 16 bytes for the key
— 16 bytes for the round key

— 16 bytes for the input/output block

* The only data that is written back to global,
off-chip device memory is the output block

RSA Implementation

* During exponentiation, each thread needs three
temporary values of (n + 2) words each, where n
is the size of the key in bits

— 408 words for 1024-bit keys

 Unfortunately, there is not always enough space
to hold all three temporary values in registers

— Store the three temporary values in shared memory
(i.e. scratchpad memory)

Performance Evaluation

 Hardware setup
— 2x Intel Xeon E5520 Quad-core CPUs at 2.27GHz
— 12GB of RAM
— GeForce GTX480

 Comparison against the standard OpenSSL
implementation

— No AES-NI support

AES-128 CBC Performance

] GPU
[PixelVault
B PixelVault (w/ KeyStore)

Up to 13% overhead
on GPU execution

¢ Up to 20% overhead

on GPU execution

1 16 64 128 1024 4096 1 16 64 128 1024 4096
Number of Messages Number of Messages

Throughput (Gbit/s)

Encryption Decryption

34

Throughput (Gbit/s)

AES-128 CBC Performance

[GPU

[PixelVault
B PixelVault (w/ KeyStore

— CPU

Intel Nehalem

single core (2.27GHz) Of messages

3x-4x faster than CPU
for a sufficient number

16 64 128 1024 4096

Number of Messages

16 64 128 1024 4096
Number of Messages

Encryption Decryption

35

RSA 1024-bit Performance

#Msgs | CPU || GPU [25] ‘ PixelVault]| PixelVault (w/ KeyStore)
1 | 1632.7 15.3 14.3
16 | 1632.7 240.4 239.2
64 | 1632.7 949.9 939.6
112 | 1632.7 1652.4 1630.3
128 | 1632.7 1888.3 1861.7
1024 | 1632.7]| 10643.2 10640.8 9793.1
4096 | 1632.7§ 17623.5 17618.3 14998.8
8192 | 1632. 7| 24904.2 24896.1 21654.4

* PixelVault adds an 1%-15% overhead over the default
GPU-accelerated RSA

RSA 1024-bit Performance

#Msgs | CPU | GPU [25] | PixelVault | PixelVault (w/ KeyStore)
1 15.5 15.3 14.3
16 242.2 240.4
64 954.9 949.9
112 1659.5 1652.4
128 1892.3 1888.3
1024 10643.2 10640.8
4096 17623.5 17618.3 14998.8
8192 24904.2 24896.1 21654.4

 Still faster than CPU when batch processing >128 messages

37

Conclusions

* Cryptography on the GPU is not only fast ...
* ... but also secure!

— Preserves the secrecy of keys even when the base
system is fully compromised

* Future work
— Adapt to other ciphers and application domains
— Apply to mobile and embedded devices

PixelVault: Using GPUs for Securing
Cryptographic Operations

thank you!

Giorgos Vasiliadis
Elias Athanasopoulos
Michalis Polychronakis
Sotiris loannidis

gvasil@ics.forth.gr
elathan@ics.forth.gr
mikepo@cs.columbia.edu
sotiris@ics.forth.gr

39

