
PixelVault:+Using+GPUs+for+Securing+
Cryptographic+Opera;ons+!

Giorgos+Vasiliadis + + +gvasil@ics.forth.gr+
Elias!Athanasopoulos ! !elathan@ics.forth.gr!

Michalis!Polychronakis ! !mikepo@cs.columbia.edu!

So=ris!Ioannidis! ! ! !so=ris@ics.forth.gr!

1!



How!SSL/TLS!works!

•  Secure!Sockets!Layer!(SSL/TLS)!is!a!deGfacto!
standard!for!secure!communica=on!!

– Authen=ca=on,!confiden=ality,!integrity!!

2!

Client Server 

Client Initiates Handshake 

Server Responds + Certificate 

Client sends secret 

Server and Client create Keys 

Secure Data Exchange 

RSA 
decryption 

AES 
cipher 



Mo=va=on!

•  Secret!keys!may!remain!unencrypted!in!CPU!

Registers,!RAM,!etc.!

– Memory!aOacks!

– DMA/Firewire!aOacks!

– Heartbleed!aOack!
– …!

3!



PixelVault!Overview!

•  Runs!encryp=on!
securely!outside!CPU/
RAM!

•  Only!onGchip!memory!

of!GPU!is!used!as!
storage!

•  Secret!keys!are!never!
observed!from!host!

Host!

x86+Host+CPU+

PLAINTEXT CIPHERTEXT 

Graphics+Card+
ENCRYPT 

4!



Cryptographic!Processing!with!GPUs!

•  GPUGaccelerated!SSL!
–  [CryptoGraphics,!CTGRSA’05]!
–  [Harrison!et!al.,!Sec’08]!
–  [SSLShader,!NSDI’11]!
–  …!

•  HighGperformance!

•  CostGeffec=ve!

OpenSSL!stub!

SSH!

Server!
Web!

Server!

IMAP!

Server!

GPU!

5!



Cryptographic!Processing!with!GPUs!

•  GPUGaccelerated!SSL!
–  [CryptoGraphics,!CTGRSA’05]!
–  [Harrison!et!al.,!Sec’08]!
–  [SSLShader,!NSDI’11]!
–  …!

•  HighGperformance!

•  CostGeffec=ve!

Can+we+also+make+it+secure?+

OpenSSL!stub!

SSH!

Server!
Web!

Server!

IMAP!

Server!

GPU!

6!



Implementa=on!Challenges!

•  How!to!isolate!GPU!execu=on?!

•  Who!holds!the!keys?!

•  Where!is!the!code?!

7!



Implementa=on!Challenges!

•  How!to!isolate!GPU!execu=on?!

•  Who!holds!the!keys?!

•  Where!is!the!code?!

8!



GPU!as!a!coprocessor!

•  Typically!handled!by!the!host!
– Load!parameters,!launch!GPU!kernel,!transfer!

data,!etc.!

•  Not!secure!for!our!purposes!
– Crypto!keys!have!to!be!transferred!every!=me!

9!



Autonomous!GPU!execu=on!

•  Force!GPU!kernel!to!run!indefinitely!
–  i.e.,!using!an!infinite!while!loop!

•  Cannot!rely!on!the!typical!parameterGpassing!

execu=on!of!GPU!kernels!!

–  Instead,!we!allocate!a!memory!segment!that!is!

shared!between!CPU/GPU!

10!



Shared!Memory!between!CPU/GPU!

•  Page%locked+memory!

–  Accessed!by!the!GPU!
directly,!via!DMA!

–  Cannot!be!swapped!to!
disk!

•  Processing!requests!are!
issued!through!this!

shared!memory!space!

OpenSSL!stub!

SSH!

Server!
Web!

Server!

IMAP!

Server!

Shared+Memory+Segment+

GPU+
11!



Shared!Memory!between!CPU/GPU!

•  GPU!con=nuously!
monitors!the!shared!

space!for!new!requests!

!

OpenSSL!stub!

SSH!

Server!
Web!

Server!

IMAP!

Server!

Shared+Memory+Segment+

GPU+
12!



Shared!Memory!between!CPU/GPU!

•  When!a!new!request!is!

available,!it!is!

transferred!to!the!

memory!space!of!the!

GPU!

!

OpenSSL!stub!

SSH!

Server!
Web!

Server!

IMAP!

Server!

Shared+Memory+Segment+

GPU+

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

13!



Shared!Memory!between!CPU/GPU!

•  The!request!is!
processed!by!the!GPU!

!OpenSSL!stub!

SSH!

Server!
Web!

Server!

IMAP!

Server!

Shared+Memory+Segment+

14!

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.



Shared!Memory!between!CPU/GPU!

•  When!processing!is!

finished,!the!host!is!

no=fied!by!segng!the!

response!parameter!

fields!accordingly!

OpenSSL!stub!

SSH!

Server!
Web!

Server!

IMAP!

Server!

Shared+Memory+Segment+

GPU+

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

15!



Autonomous!GPU!execu=on!

•  NonGpreemp=ve!

execu=on!

•  Only!the!output!block!is!
being!wriOen!back!to!

host!memory!

OpenSSL!stub!

SSH!

Server!
Web!

Server!

IMAP!

Server!

Shared+Memory+Segment+

GPU+
16!

non-preemptive exec 



Implementa=on!Challenges!

•  How!to!isolate!GPU!execu=on?!

•  Who!holds!the!keys?!

•  Where!is!the!code?!

17!



Who!holds!the!keys?!

•  GPUs!contain!different!memory!hierarchies!of!…!
–  different!sizes,!and!…!
–  different!characteris=cs!

18!

Host!Memory!

CPU!

(Host)!

G
lo
b
a
l!
M
e
m
o
ry
!

Shared!

Memory!

Regs!

Cache!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

Mul=processor!N!

Mul=processor!2!

Mul=processor!1!

GPU!



Who!holds!the!keys?!

•  GPUs!contain!different!memory!hierarchies!of!…!
–  different!sizes,!and!…!
–  different!characteris=cs!

19!

Host!Memory!

CPU!

(Host)!

G
lo
b
a
l!
M
e
m
o
ry
!

Shared!

Memory!

Regs!

Cache!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

Mul=processor!N!

Mul=processor!2!

Mul=processor!1!

GPU!

OffGchip!global!memory.!

No!protec=on;!data!can!

be!acquired!by!the!CPU!

directly.!!



Who!holds!the!keys?!

•  GPUs!contain!different!memory!hierarchies!of!…!
–  different!sizes,!and!…!
–  different!characteris=cs!

20!

Host!Memory!

CPU!

(Host)!

G
lo
b
a
l!
M
e
m
o
ry
!

Shared!

Memory!

Regs!

Cache!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

Mul=processor!N!

Mul=processor!2!

Mul=processor!1!

GPU!

OnGchip!memories!



Who!holds!the!keys?!

•  GPUs!contain!different!memory!hierarchies!of!…!
–  different!sizes,!and!…!
–  different!characteris=cs!

21!

Host!Memory!

CPU!

(Host)!

G
lo
b
a
l!
M
e
m
o
ry
!

Shared!

Memory!

Regs!

Cache!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

Mul=processor!N!

Mul=processor!2!

Mul=processor!1!

GPU!Comparable!with!

scratchpad!RAM!in!other!

architectures.!

!

Unfortunately,!its!contents!
can!be!acquired!by!a!

subsequent!GPU!kernel.!!



Who!holds!the!keys?!

•  GPUs!contain!different!memory!hierarchies!of!…!
–  different!sizes,!and!…!
–  different!characteris=cs!

22!

Host!Memory!

CPU!

(Host)!

G
lo
b
a
l!
M
e
m
o
ry
!

Shared!

Memory!

Regs!

Cache!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

Mul=processor!N!

Mul=processor!2!

Mul=processor!1!

GPU!

Many!different!caches!(L1GL3,!

texture,!constant).!

Unfortunately,!the!data!stored!
there!cannot!be!managed!by!

the!programmer!



Who!holds!the!keys?!

•  GPUs!contain!different!memory!hierarchies!of!…!
–  different!sizes,!and!…!
–  different!characteris=cs!

23!

Host!Memory!

CPU!

(Host)!

G
lo
b
a
l!
M
e
m
o
ry
!

Shared!

Memory!

Regs!

Cache!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

SP!

Mul=processor!N!

Mul=processor!2!

Mul=processor!1!

GPU!

Not!fullyGaddressable.!

Reset!to!zero!on!each!

GPU!kernel!execu=on.!



Keeping!secrets!on!GPU!registers!

•  Secret!keys!are!loaded!on!GPU!registers!at!an!
early!stage!of!the!bootstrapping!phase!

– Preferably!from!an!external!storage!device!

•  Unfortunately,!the!number!of!available!

registers!in!current!GPU!models!is!small!

– Enough!for!a!single/few!secret!keys,!but!what+
about+mul7%homing+servers?+

24!



Support!for!an!arbitrary!number!of!keys!

•  We!can!use!a!separate!KeyStore!array!that!

holds!an!arbitrary!number!of!secret!keys!

KeyStore+

Enc’ed!Key! Dec’ed!Key!

GPU+Registers+File+

encrypted!keys!are!

stored!in!GPU!RAM:!

each!key!is!decrypted!in!registers!

during!encryp=on/decryp=on:!

copy!to!registers!

Master!

Key!

25!



Implementa=on!Challenges!

•  How!to!isolate!GPU!execu=on?!

•  Who!holds!the!keys?!

•  Where!is!the!code?!

26!

Graphics Processors for Security 

GPU-assisted 
Malware 

GPU-assisted 
Malware Detection 

Signature matching 
Regular expression matching 
Malicious code analysis 
 April*2,*2013* 57*



Where!is!the!code?!

•  GPU!code!is!ini=ally!stored!in!global!device!
memory!for!the!GPU!to!execute!it!

– An!adversary!could!replace!it!with!a!malicious!

version!

Graphics Processors for Security 

GPU-assisted 
Malware 

GPU-assisted 
Malware Detection 

Signature matching 
Regular expression matching 
Malicious code analysis 
 April*2,*2013* 57*

Global!Device!

Memory!

27!



Preven=ng!code!modifica=on!aOacks!

•  Three!levels!of!instruc=on!caching!(icache)!
– 4KB,!8KB,!and!32KB,!respec=vely!
– HardwareGmanaged!

•  Opportunity:!Load!the!code!to!the!icache,!and!
then!erase!it!from!global!device!memory!

– The!code!runs!indefinitely!from!the!icache!

– Not!possible!to!be!flushed!or!modified!

28!



PixelVault!Crypto!Suite!

•  AESG128!

•  RSAG1024!

29!



AES!Implementa=on!

•  The!key!and!all!intermediate!states!are!stored!

in!GPU!registers!

– 16!bytes!for!the!key!
– 16!bytes!for!the!round!key!
– 16!bytes!for!the!input/output!block!

•  The!only!data!that!is!wriOen!back!to!global,!
offGchip!device!memory!is!the!output!block!

30!



RSA!Implementa=on!

•  During!exponen=a=on,!each!thread!needs!three!
temporary!values!of!(n!+!2)!words!each,!where!n!
is!the!size!of!the!key!in!bits!

–  408!words!for!1024Gbit!keys!

•  Unfortunately,!there!is!not!always!enough!space!
to!hold!all!three!temporary!values!in!registers!

–  Store!the!three!temporary!values!in!shared!memory!

(i.e.!scratchpad!memory)!

31!



Performance!Evalua=on!

•  Hardware!setup!
– 2x!Intel!Xeon!E5520!QuadGcore!CPUs!at!2.27GHz!
– 12GB!of!RAM!

– GeForce!GTX480!

•  Comparison!against!the!standard!OpenSSL!

implementa=on!

– No!AESGNI!support!

33!



AESG128!CBC!Performance!

34!

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3
GPU
PixelVault
PixelVault (w/ KeyStore)

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

CPU

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Decryp=on!Encryp=on!

Up!to!20%!overhead!

on!GPU!execu=on!

Up!to!13%!overhead!!

on!GPU!execu=on!



AESG128!CBC!Performance!

35!

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3
GPU
PixelVault
PixelVault (w/ KeyStore)

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

CPU

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Decryp=on!Encryp=on!

Intel!Nehalem!

single!core!(2.27GHz)!!

3xG4x!faster!than!CPU!

for!a!sufficient!number!

of!messages!



RSA!1024Gbit!Performance!

36!

the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)
1 1632.7 15.5 15.3 14.3

16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-

•  PixelVault!adds!an!1%G15%!overhead!over!the!default!!
GPUGaccelerated!RSA!



RSA!1024Gbit!Performance!

37!

the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)
1 1632.7 15.5 15.3 14.3

16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-

•  S=ll!faster!than!CPU!when!batch!processing!!>128!messages!!



Conclusions!

•  Cryptography!on!the!GPU!is!not!only!fast!…!
•  …!but!also!secure!+

– Preserves!the!secrecy!of!keys!even!when!the!base!
system!is!fully!compromised!

•  Future!work!
– Adapt!to!other!ciphers!and!applica=on!domains!!

– Apply!to!mobile!and!embedded!devices!

38!



PixelVault:+Using+GPUs+for+Securing+
Cryptographic+Opera;ons+!

Giorgos+Vasiliadis + + +gvasil@ics.forth.gr+
Elias!Athanasopoulos ! !elathan@ics.forth.gr!

Michalis!Polychronakis ! !mikepo@cs.columbia.edu!

So=ris!Ioannidis! ! ! !so=ris@ics.forth.gr!

thank+you!+

39!


