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Network Intrusion Detection Systems

* Typically deployed at ingress/egress points
— Inspect all network traffic
— Look for suspicious activities

— Alert on malicious actions
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Challenges

* Trdaffic rates are increasing

— 10 Gbit/s Ethernet speeds are common in
metro/enterprise networks

— Up to 40 Gbit/s at the core

* Keep needing to perform more complex analysis
at higher speeds
— Deep packet inspection
— Stateful analysis
— 1000s of attack signatures

gvasil@ics.forth.gr



Designing NIDS

* Fast
— Need to handle many Gbit/s

— Scalable
* Moore’s law does not hold anymore ﬂ

e Commodity hardware
— Cheap

— Easily programmable
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Today: fast or commodity

e Fast “hardware” NIDS
— FPGA/TCAM/ASIC based
— Throughput: High

e Commodity “software” NIDS
— Processing by general-purpose processors
— Throughput: Low



MIDeA

* A NIDS out of commodity components
— Single-box implementation
— Easy programmability
— Low price

Can we build a 10 Gbit/s NIDS with commod/ty
hardware?
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Single-threaded performance

Patt
NIC | Preprocess [— a e'.'” —> Output
matching

* Vanilla Snort: 0.2 Gbit/s
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Problem #1: Scalability

e Single-threaded NIDS have limited
performance

— Do not scale with the number of CPU cores



Multi-threaded performance
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e Vanilla Snort: 0.2 Gbit/s
* With multiple CPU-cores: 0.9 Gbit/s
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Problem #2: How to split traffic

cores

- x Synchronization overheads
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Multi-queue performance
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Problem #3: Pattern matching is the

bottleneck
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Why GPU?

* General-purpose computing
— Flexible and programmable

* Powerful and ubiquitous
— Constant innovation

e Data-parallel model

— More transistors for data processing rather than
data caching and flow control
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Offloading pattern matching to the GPU
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* Vanilla Snort: 0.2 Gbit/s

e With multiple CPU-cores: 0.9 Gbit/s
* With multiple Rx-queues: 1.1 Gbit/s
* With GPU: 5.2 Gbit/s
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Multiple data transfers

GPU
CPU

NIC

e Several data transfers between different devices

Are the data transfers worth the computational
gains offered?
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Capturing packets from NIC

Ring buffers
AL AL AL AL User space
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( Rx Queue A55|gned )

Network
Interface

Packets are hashed in the NIC and distributed to
different Rx-queues

Memory-mapped ring buffers for each Rx-queue



CPU Processing

Packet capturing is performed by different CPU-cores in parallel
— Process affinity

Each core normalizes and reassembles captured packets to streams
— Remove ambiguities
— Detect attacks that span multiple packets

Packets of the same connection always end up to the same core
— No synchronization
— Cache locality

Reassembled packet streams are then transferred to the GPU for
pattern matching

— How to access the GPU?



Accessing the GPU

e Solution #1: Master/Slave model

Thread 2
Thread 3

Thread 4

“Threhd 1
) PCle
I 64 Gbit/s

GPU

e Execution flow example %

Transfer to GPU:
GPU execution:

Transfer from GPU:
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Accessing the GPU

* Solution #2: Shared execution by multiple threads

Thread 1
Thread 2 PCle
Thread 3 o4 Gbit/s.' GE
Thread 4
* Execution flow example

Transfer to GPU:
GPU execution:

Transfer from GPU:
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Transferring to GPU

CPU-core W —
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* Small transfer results to PCle throughput degradation

=» Each core batches many reassembled packets into a single
buffer
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Pattern Matching on GPU
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* Uniformly, one GPU core for each reassembled
packet stream
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Pipelining CPU and GPU
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Packet buffers

e-buffering
N CPU core collects new reassembled packets,

e the GPUs process the previous batch

— Effectively hides GPU communication costs
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GPUs:

CPUs:

NIC:
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Setup: Hardware

CPU-0 CPU-1
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e NUMA architecture, QuickPath Interconnect

2 X CPU Intel E5520 2.27 GHz x 4 cores
2xGPU NVIDIAGTX480 1.4 GHz x 480 cores
1 xNIC 82599EB 10 GbE
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Pattern Matching Performance
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* The performance of a single GPU increases, as
the number of CPU-cores increases



Pattern Matching Performance
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* The performance of a single GPU increases, as
the number of CPU-cores increases
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Setup: Network
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Synthetic traffic
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 Randomly generated traffic
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Real traffic
U MiDeA

Gbit/s

* 5.2 Gbit/s with zero packet-loss

— Replayed trace captured at the gateway of a university
campus
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Summary

 MIDeA: A multi-parallel network intrusion
detection architecture
— Single-box implementation
— Based on commodity hardware
— Less than $1500

* Operate on 5.2 Gbit/s with zero packet loss
— 70 Gbit/s pattern matching throughput



Thank you!
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