MIDeA: A Multi-Parallel Intrusion
Detection Architecture

Giorgos Vasiliadis, FORTH-ICS, Greece
Michalis Polychronakis, Columbia U., USA
Sotiris loannidis, FORTH-ICS, Greece

CCS 2011, 19 October 2011

Network Intrusion Detection Systems

* Typically deployed at ingress/egress points
— Inspect all network traffic
— Look for suspicious activities

— Alert on malicious actions

Internet “ Internal
) ﬂ Network
>

gvasil@ics.forth.gr N I DS

Challenges

* Trdaffic rates are increasing

— 10 Gbit/s Ethernet speeds are common in
metro/enterprise networks

— Up to 40 Gbit/s at the core

* Keep needing to perform more complex analysis
at higher speeds
— Deep packet inspection
— Stateful analysis
— 1000s of attack signatures

gvasil@ics.forth.gr

Designing NIDS

* Fast
— Need to handle many Gbit/s

— Scalable
* Moore’s law does not hold anymore ﬂ

e Commodity hardware
— Cheap

— Easily programmable

gvasil@ics.forth.gr

Today: fast or commodity

e Fast “hardware” NIDS
— FPGA/TCAM/ASIC based
— Throughput: High

e Commodity “software” NIDS
— Processing by general-purpose processors
— Throughput: Low

MIDeA

* A NIDS out of commodity components
— Single-box implementation
— Easy programmability
— Low price

Can we build a 10 Gbit/s NIDS with commod/ty
hardware?

gvasil@ics.forth.gr

Outline

Architecture
Implementation
Performance Evaluation
Conclusions

Single-threaded performance

Patt
NIC | Preprocess [— a e'.'” —> Output
matching

* Vanilla Snort: 0.2 Gbit/s

gvasil@ics.forth.gr

Problem #1: Scalability

e Single-threaded NIDS have limited
performance

— Do not scale with the number of CPU cores

Multi-threaded performance

Preprocess

Pattern
matching

_-‘

. Preprocess

Pattern
matching

>

Output

Preprocess

e Vanilla Snort: 0.2 Gbit/s
* With multiple CPU-cores: 0.9 Gbit/s

gvasil@ics.forth.gr

Pattern
matching

>

Output

>

Output

10

Problem #2: How to split traffic

cores

- x Synchronization overheads

11

Multi-queue performance

RSS
NIC

G

Preprocess

Pattern

matching

Preprocess

Pattern

>

Output

matching

* Vanilla Snort: 0.2 Gbit/s

Preprocess

Pattern

>

Output

matching

e With multiple CPU-cores: 0.9 Gbit/s
* With multiple Rx-queues: 1.1 Gbit/s

>

Output

Problem #3: Pattern matching is the

bottleneck

NIC

Preprocess

o

>

Pattern
matching

—

Output

v’ Offload pattern matching on the GPU

NIC

Preprocess

gvasil@ics.forth.gr

Pattern
matching

Output

13

Why GPU?

* General-purpose computing
— Flexible and programmable

* Powerful and ubiquitous
— Constant innovation

e Data-parallel model

— More transistors for data processing rather than
data caching and flow control

gvasil@ics.forth.gr 14

Offloading pattern matching to the GPU

>

Output

>

Output

Pattern

—3| Preprocess > .
matching -

RSS Preprocess - Pattern
NIC P I matching I
Pattern I
—>| Preprocess I > . v
matching .
.—] u I [} u J

* Vanilla Snort: 0.2 Gbit/s

e With multiple CPU-cores: 0.9 Gbit/s
* With multiple Rx-queues: 1.1 Gbit/s
* With GPU: 5.2 Gbit/s

>

Output

15

Outline

Architecture
Implementation
Performance Evaluation
Conclusions

Multiple data transfers

GPU
CPU

NIC

e Several data transfers between different devices

Are the data transfers worth the computational
gains offered?

gvasil@ics.forth.gr

Capturing packets from NIC

Ring buffers
AL AL AL AL User space

QQQQ

(Rx Queue A55|gned)

Network
Interface

Packets are hashed in the NIC and distributed to
different Rx-queues

Memory-mapped ring buffers for each Rx-queue

CPU Processing

Packet capturing is performed by different CPU-cores in parallel
— Process affinity

Each core normalizes and reassembles captured packets to streams
— Remove ambiguities
— Detect attacks that span multiple packets

Packets of the same connection always end up to the same core
— No synchronization
— Cache locality

Reassembled packet streams are then transferred to the GPU for
pattern matching

— How to access the GPU?

Accessing the GPU

e Solution #1: Master/Slave model

Thread 2
Thread 3

Thread 4

“Threhd 1
) PCle
I 64 Gbit/s

GPU

e Execution flow example %

Transfer to GPU:
GPU execution:

Transfer from GPU:

gvasil@ics.forth.gr

P1

P1

P1

P1

P1

P1

20

Accessing the GPU

* Solution #2: Shared execution by multiple threads

Thread 1
Thread 2 PCle
Thread 3 o4 Gbit/s.' GE
Thread 4
* Execution flow example

Transfer to GPU:
GPU execution:

Transfer from GPU:

gvasil@ics.forth.gr 21

Transferring to GPU

CPU-core W —
! Scan ¢ —_—

Push, —
GPU]

* Small transfer results to PCle throughput degradation

=» Each core batches many reassembled packets into a single
buffer

gvasil@ics.forth.gr

Pattern Matching on GPU

———
=

Packet Buffer

4

GPU GPU GPU
core core core

GPU GPU GPU
core core core

N\

Matches

=
—

* Uniformly, one GPU core for each reassembled
packet stream

gvasil@ics.forth.gr

* Doub

— Eac
whi

Pipelining CPU and GPU

CPU

‘o\‘,‘

@

Packet buffers

e-buffering
N CPU core collects new reassembled packets,

e the GPUs process the previous batch

— Effectively hides GPU communication costs

gvasil@ics.forth.gr

24

GPUs:

CPUs:

NIC:

gvasil@ics.forth.gr

Recap

—
—

/]

Data-parallel
content matching

T T 7T 1

Reassembled
packet streams

A

Per-flow
protocol analysis

~X1 7/

Packet streams

AN\V//<4

[e—

I I |

: < Demux

1-10Gbps

Packets
—

25

Outline

Architecture
Implementation
Performance Evaluation
Conclusions

Setup: Hardware

CPU-0 CPU-1

)
o
E c

e NUMA architecture, QuickPath Interconnect

2 X CPU Intel E5520 2.27 GHz x 4 cores
2xGPU NVIDIAGTX480 1.4 GHz x 480 cores
1 xNIC 82599EB 10 GbE

gvasil@ics.forth.gr 27

<
o

Pattern Matching Performance

Bounded by
/ PCle capacity

>

)
-
Q.
<
S []
>
O
-
|_
D
(ol
G)
=
1 2 4 8
#HCPU-cores

* The performance of a single GPU increases, as
the number of CPU-cores increases

Pattern Matching Performance

(707)
A
)
>
Q
<
oo
> :
O Adding a
e second GPU
|_
-
o
O
—
1 2 A 8
#CPU-cores

* The performance of a single GPU increases, as
the number of CPU-cores increases

gvasil@ics.forth.gr 29

Setup: Network

\'_/
c 10 GbE g
) = > ’ =
Traffic
MIDeA

Generator/Replayer

gvasil@ics.forth.gr 30

Synthetic traffic

MiDeA 7.2
2
= 4.8
O
G
1.5
200b 800b 1500b

Packet size

 Randomly generated traffic

gvasil@ics.forth.gr 31

Real traffic
U MiDeA

Gbit/s

* 5.2 Gbit/s with zero packet-loss

— Replayed trace captured at the gateway of a university
campus

gvasil@ics.forth.gr 32

Summary

 MIDeA: A multi-parallel network intrusion
detection architecture
— Single-box implementation
— Based on commodity hardware
— Less than $1500

* Operate on 5.2 Gbit/s with zero packet loss
— 70 Gbit/s pattern matching throughput

Thank you!

gvasil@ics.forth.gr

