MIDeA: A Multi-Parallel Intrusion Detection Architecture

Giorgos Vasiliadis, FORTH-ICS, Greece
Michalis Polychronakis, Columbia U., USA
Sotiris Ioannidis, FORTH-ICS, Greece

CCS 2011, 19 October 2011

Network Intrusion Detection Systems

- Typically deployed at ingress/egress points
 - Inspect all network traffic
 - Look for suspicious activities
 - Alert on malicious actions

Challenges

- Traffic rates are increasing
 - 10 Gbit/s Ethernet speeds are common in metro/enterprise networks
 - Up to 40 Gbit/s at the core
- Keep needing to perform more complex analysis at higher speeds
 - Deep packet inspection
 - Stateful analysis
 - 1000s of attack signatures

Designing NIDS

- Fast
 - Need to handle many Gbit/s
 - Scalable
 - Moore's law does not hold anymore

- Commodity hardware
 - Cheap
 - Easily programmable

Today: fast or commodity

- Fast "hardware" NIDS
 - FPGA/TCAM/ASIC based
 - Throughput: High

- Commodity "software" NIDS
 - Processing by general-purpose processors
 - Throughput: Low

MIDeA

- A NIDS out of commodity components
 - Single-box implementation
 - Easy programmability
 - Low price

Can we build a 10 Gbit/s NIDS with commodity hardware?

Outline

- Architecture
- Implementation
- Performance Evaluation
- Conclusions

Single-threaded performance

Vanilla Snort: 0.2 Gbit/s

Problem #1: Scalability

- Single-threaded NIDS have limited performance
 - Do not scale with the number of CPU cores

Multi-threaded performance

- Vanilla Snort: 0.2 Gbit/s
- With multiple CPU-cores: 0.9 Gbit/s

Problem #2: How to split traffic

Multi-queue performance

- Vanilla Snort: 0.2 Gbit/s
- With multiple CPU-cores: 0.9 Gbit/s
- With multiple Rx-queues: 1.1 Gbit/s

Problem #3: Pattern matching is the bottleneck

✓ Offload pattern matching on the GPU

gvasil@ics.forth.gr

Why GPU?

- General-purpose computing
 - Flexible and programmable

- Powerful and ubiquitous
 - Constant innovation

- Data-parallel model
 - More transistors for data processing rather than data caching and flow control

Offloading pattern matching to the GPU

- Vanilla Snort: 0.2 Gbit/s
- With multiple CPU-cores: 0.9 Gbit/s
- With multiple Rx-queues: 1.1 Gbit/s
- With GPU: 5.2 Gbit/s

Outline

- Architecture
- Implementation
- Performance Evaluation
- Conclusions

Multiple data transfers

Several data transfers between different devices

Are the data transfers worth the computational gains offered?

Capturing packets from NIC

- Packets are hashed in the NIC and distributed to different Rx-queues
- Memory-mapped ring buffers for each Rx-queue

CPU Processing

- Packet capturing is performed by different CPU-cores in parallel
 - Process affinity
- Each core normalizes and reassembles captured packets to streams
 - Remove ambiguities
 - Detect attacks that span multiple packets
- Packets of the same connection always end up to the same core
 - No synchronization
 - Cache locality
- Reassembled packet streams are then transferred to the GPU for pattern matching
 - How to access the GPU?

Accessing the GPU

Solution #1: Master/Slave model

Accessing the GPU

Solution #2: Shared execution by multiple threads

Transferring to GPU

- Small transfer results to PCIe throughput degradation
 - → Each core batches many reassembled packets into a single buffer

Pattern Matching on GPU

Uniformly, one GPU core for each reassembled packet stream

gvasil@ics.forth.gr

Pipelining CPU and GPU

Double-buffering

- Each CPU core collects new reassembled packets,
 while the GPUs process the previous batch
- Effectively hides GPU communication costs

Recap

Outline

- Architecture
- Implementation
- Performance Evaluation
- Conclusions

Setup: Hardware

NUMA architecture, QuickPath Interconnect

	Model	Specs
2 x CPU	Intel E5520	2.27 GHz x 4 cores
2 x GPU	NVIDIA GTX480	1.4 GHz x 480 cores
1 x NIC	82599EB	10 GbE

Pattern Matching Performance

 The performance of a single GPU increases, as the number of CPU-cores increases

gvasil@ics.forth.gr 28

Pattern Matching Performance

 The performance of a single GPU increases, as the number of CPU-cores increases

gvasil@ics.forth.gr 29

Setup: Network

Synthetic traffic

Randomly generated traffic

Real traffic

- 5.2 Gbit/s with zero packet-loss
 - Replayed trace captured at the gateway of a university campus

Summary

- MIDeA: A multi-parallel network intrusion detection architecture
 - Single-box implementation
 - Based on commodity hardware
 - Less than \$1500

- Operate on 5.2 Gbit/s with zero packet loss
 - 70 Gbit/s pattern matching throughput

Thank you!

gvasil@ics.forth.gr