
Security	 Applica.ons	 of	 GPUs	

Giorgos	 Vasiliadis	
Founda.on	 for	 Research	 and	
Technology	 –	 Hellas	 (FORTH)	

	

Outline	

•  Background	 and	 mo.va.on	
•  GPU-‐based	 Malware	 Signature-‐based	 Detec.on	

– Network	 intrusion	 detec.on/preven.on	
–  Virus	 scanning	

•  GPU-‐assisted	 Malware	
–  Code-‐armoring	 techniques	
–  Keylogger	

•  GPU	 as	 a	 Secure	 Crypto-‐Processor	
•  Conclusions	

2	 Giorgos	 Vasiliadis	

Outline	

•  Background	 and	 mo-va-on	
•  GPU-‐based	 Malware	 Signature-‐based	 Detec.on	

– Network	 intrusion	 detec.on/preven.on	
–  Virus	 scanning	

•  GPU-‐assisted	 Malware	
–  Code-‐armoring	 techniques	
–  Keylogger	

•  GPU	 as	 a	 Secure	 Crypto-‐Processor	
•  Conclusions	

3	 Giorgos	 Vasiliadis	

Why	 GPU?	
•  General-‐purpose	 compu.ng	

–  Flexible	 and	 programmable	
–  Portability	

•  Powerful	 and	 ubiquitous	
– Dominant	 co-‐processor	
–  Constant	 innova.on	
–  Inexpensive	 and	 always-‐present	

•  Data-‐parallel	 model	

4	 Giorgos	 Vasiliadis	

CPU	 vs.	 GPU	

CPU	 GPU	

Xeon X5550:

4 cores

731M transistors

GTX480:

480 cores

3,200M transistors

5	 Giorgos	 Vasiliadis	

Single	 Instruc.on,	 Mul.ple	 Threads	

•  Example:	 Vector	 addi.on	

6	

void vecadd(
int *A, int *B, int *C, int N)
{
 int i;
 //iterate over N elements
 for (i=0; i<N; ++i)
 C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

CPU	 code	

Giorgos	 Vasiliadis	

Single	 Instruc.on,	 Mul.ple	 Threads	

•  Example:	 Vector	 addi.on	

7	

void vecadd(
int *A, int *B, int *C, int N)
{
 int i;
 //iterate over N elements
 for (i=0; i<N; ++i)
 C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

CPU	 code	
__global__ void vecadd(
int *A, int *B, int *C)
{
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

//Launch N threads
vecadd<<<1, N>>>(A, B, C);

GPU	 code	

Giorgos	 Vasiliadis	

Single	 Instruc.on,	 Mul.ple	 Threads	

•  Example:	 Vector	 addi.on	

8	

CPU	 code	 GPU	 code	
void vecadd(
int *A, int *B, int *C, int N)
{
 int i;
 //iterate over N elements
 for (i=0; i<N; ++i)
 C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

__global__ void vecadd(
int *A, int *B, int *C)
{
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

//Launch N threads
vecadd<<<1, N>>>(A, B, C);

Giorgos	 Vasiliadis	

Single	 Instruc.on,	 Mul.ple	 Threads	

•  Threads	 within	 the	 same	 warp	 have	 to	 execute	
the	 same	 instruc.ons	

•  Great	 for	 regular	 computa/ons!	

SIMT	 group	
(warp)	

The College of William and Mary eddy@cs.wm.edu
3

a SIMD group
(warp)

Graphic Processing Unit (GPU)

• Massive parallelism

• Favorable

• computing power

• cost effectiveness

• energy efficiency
9	 Giorgos	 Vasiliadis	

Outline	

•  Background	 and	 mo.va.on	
•  GPU-‐based	 Signature	 Detec-on	

– Network	 intrusion	 detec-on/preven-on	
–  Virus	 matching	

•  GPU-‐assisted	 Malware	
–  Code-‐armoring	 techniques	
–  Keylogger	

•  GPU	 as	 a	 Secure	 Crypto-‐Processor	
•  Conclusions	

10	 Giorgos	 Vasiliadis	

Network	 Intrusion	 Detec.on	 Systems	

•  Typically	 deployed	 at	 ingress/egress	 points	
–  Inspect	 all	 network	 traffic	
– Look	 for	 suspicious	 ac.vi.es	
– Alert	 on	 malicious	 ac.ons	

10	 GbE	

Internet	 Internal	
Network	

11	 Giorgos	 Vasiliadis	

Challenges	 (1)	

•  Traffic	 rates	 are	 increasing	
– 10	 Gbit/s	 Ethernet	 speeds	 are	 common	 in	 metro/
enterprise	 networks	

– Up	 to	 40-‐100	 Gbit/s	 at	 the	 core	

12	

Challenges	 (2)	

•  Ever-‐increasing	 need	 to	 perform	 more	
complex	 analysis	 at	 higher	 traffic	 rates	
– Deep	 packet	 inspec.on	
– Stateful	 analysis	
– 1000s	 of	 adack	 signatures	

St
re
am

	 D
em

ux
	

O
ut
pu

t	

TC
P	
St
re
am

	
Re

as
se
m
bl
y	

Pr
ot
oc
ol
	 A
na

ly
si
s	

Pa
M
er
n	
M
at
ch
in
g	

13	 Giorgos	 Vasiliadis	

Designing	 NIDS	 and	 AVs	

•  Fast	
– Need	 to	 handle	 many	 Gbit/s	
– Scalable	

•  The	 future	 is	 many-‐core	

•  Commodity	 hardware	
– Cheap	
– Easily	 programmable	

14	 Giorgos	 Vasiliadis	

Today:	 fast	 or	 commodity	
•  Fast	 “hardware”	 IDS/IPS	

–  FPGA/TCAM/ASIC	 based	
– Usually,	 .ed	 to	 a	 specific	
implementa.on	

–  Throughput:	 High	

•  Commodity	 “sohware”	
NIDS/NIPS	 and	 AVs	
–  Processing	 by	 general-‐
purpose	 processors	

–  Throughput:	 Low	

IDS/IPS	 Sensors	 	
(10s	 of	 Gbps)	

	

IDS/IPS	 M8000	
(10s	 of	 Gbps)	

	

Open-‐source	 S/W	

	

~	 US$	 20,000	 -‐	 60,000	

~	 US$	 10,000	 -‐	 24,000	

≤	 ~1	 Gbps	

15	 Giorgos	 Vasiliadis	

Single-‐threaded	 NIDS	 performance	

NIC	 Preprocess	 Padern	
matching	 Output	

16	

alert	 tcp	 $EXTERNAL_NET	 any	 -‐>	 $HTTP_SERVERS	 80	 	
(msg:“WEB-‐PHP	 horde	 help	 module	 arbitrary	 command	 execu.on	 adempt”;	
flow:established,to_server;	 uricontent:”	 /services/help/";	 pcre:”	 /[\?\x20\x3b\x26]module=[a-‐zA-‐
Z0-‐9]*[^\x3b\x26]/U");	 metadata:service	 hdp;	

*	 PCRE:	 Perl	 Compa.ble	 Regular	 Expression	 	
Giorgos	 Vasiliadis	

Single-‐threaded	 NIDS	 performance	

NIC	 Preprocess	 Padern	
matching	 Output	

17	

alert	 tcp	 $EXTERNAL_NET	 any	 -‐>	 $HTTP_SERVERS	 80	 	
(msg:“WEB-‐PHP	 horde	 help	 module	 arbitrary	 command	 execu.on	 adempt”;	
flow:established,to_server;	 uricontent:”	 /services/help/";	 pcre:”	 /[\?\x20\x3b\x26]module=[a-‐zA-‐
Z0-‐9]*[^\x3b\x26]/U");	 metadata:service	 hdp;	

Giorgos	 Vasiliadis	

Single-‐threaded	 NIDS	 performance	

NIC	 Preprocess	 Padern	
matching	 Output	

18	

alert	 tcp	 $EXTERNAL_NET	 any	 -‐>	 $HTTP_SERVERS	 80	 	
(msg:“WEB-‐PHP	 horde	 help	 module	 arbitrary	 command	 execu.on	 adempt”;	
flow:established,to_server;	 uricontent:”	 /services/help/";	 pcre:”	 /[\?\x20\x3b\x26]module=[a-‐zA-‐
Z0-‐9]*[^\x3b\x26]/U");	 metadata:service	 hdp;	

Giorgos	 Vasiliadis	

Single-‐threaded	 NIDS	 performance	

NIC	 Preprocess	 Padern	
matching	 Output	

19	

alert	 tcp	 $EXTERNAL_NET	 any	 -‐>	 $HTTP_SERVERS	 80	 	
(msg:“WEB-‐PHP	 horde	 help	 module	 arbitrary	 command	 execu.on	 adempt”;	
flow:established,to_server;	 uricontent:”	 /services/help/";	 pcre:”	 /[\?\x20\x3b\x26]module=[a-‐zA-‐
Z0-‐9]*[^\x3b\x26]/U");	 metadata:service	 hdp;	

Giorgos	 Vasiliadis	

Single-‐threaded	 NIDS	 performance	

NIC	 Preprocess	 Padern	
matching	 Output	

20	

alert	 tcp	 $EXTERNAL_NET	 any	 -‐>	 $HTTP_SERVERS	 80	 	
(msg:“WEB-‐PHP	 horde	 help	 module	 arbitrary	 command	 execu.on	 adempt”;	
flow:established,to_server;	 uricontent:”	 /services/help/";	 pcre:”	 /[\?\x20\x3b\x26]module=[a-‐zA-‐
Z0-‐9]*[^\x3b\x26]/U");	 metadata:service	 hdp;	

Giorgos	 Vasiliadis	

Single-‐threaded	 NIDS	 performance	

•  Vanilla	 Snort:	 0.2	 Gbit/s	

NIC	 Preprocess	 Padern	
matching	 Output	

21	 Giorgos	 Vasiliadis	

Single-‐threaded	 NIDS	 performance	

•  Vanilla	 Snort:	 0.2	 Gbit/s	

NIC	 Preprocess	 Padern	
matching	 Output	

22	

BoMlenecks	

Giorgos	 Vasiliadis	

Problem	 #3:	 Padern	 matching	 is	 the	
bodleneck	

•  On	 a	 Intel	 Xeon	 X5520,	 2.27	 GHz,	 8	 MB	 L3	 Cache	
–  String	 matching	 analyzing	 bandwidth	 per	 core:	 1.1	 Gbps	
–  PCRE	 	 analyzing	 bandwidth	 per	 core:	 0.52	 Gbps	

	

NIC	 Padern	
matching	 Output	 Preprocess	

>	 75%	

23	

strings	 pcre	

Giorgos	 Vasiliadis	

Offload	 padern	 matching	 on	 the	 GPU	

NIC	 Preprocess	 Padern	
matching	 Output	

24	

strings	 pcre	

Giorgos	 Vasiliadis	

Padern	 matching	 on	 the	 GPU	

•  Data	 level	 parallelism	 ==	 Packet	 level	 parallelism	
–  Uniformly	 one	 core	 for	 each	 reassembled	 packet	 stream	

GPU	
core	

Matches	

GPU	
core	

GPU	
core	

GPU	
core	

Packet	 Buffer	

GPU	
core	

GPU	
core	

25	 Giorgos	 Vasiliadis	

Padern	 matching	 on	 the	 GPU	

	 Both	 string	 searching	 and	 regular	 expression	
matching	 can	 be	 matched	 efficiently	 by	 combining	
the	 paderns	 into	 Determinis/c	 Finite	 Automata	
(DFA)	

26	 Giorgos	 Vasiliadis	

NIC	

match0	

Output	 Preprocess	

27	

NVIDIA	 GTX	 480	 GPU	

Giorgos	 Vasiliadis	

match1	

matchN	

Padern	 matching	 on	 the	 GPU	

On	 an	 Intel	 Xeon	 X5520,	 2.27	 GHz,	 8	 MB	 L3	 Cache	
String	 matching	 analyzing	 bandwidth:	 1.1	 Gbps	
PCRE	 analyzing	 bandwidth:	 0.52	 Gbps	

30	 Gbps	
8	 Gbps	

Pipelining	 CPU	 and	 GPU	

•  Double-‐buffering	
– Each	 CPU	 core	 collects	 new	 reassembled	 packets,	
while	 the	 GPUs	 process	 the	 previous	 batch	

– Effec.vely	 hides	 GPU	 communica.on	 costs	

CPU	

Packet	 buffers	

28	 Giorgos	 Vasiliadis	

Mul.-‐Parallel	 Network	 Intrusion	 Detec.on	

•  Vanilla	 Snort: 	 	 	 	 0.2	 Gbit/s	
•  With	 mul.ple	 CPU-‐cores:	 0.9	 Gbit/s	
•  With	 GPU:	 	 	 	 	 5.2	 Gbit/s	

RSS	
NIC	

Output	

Preprocess	 Output	

match0	

Output	 Preprocess	

Preprocess	

29	

match1	

matchN	

match0	
match1	

matchN	

match0	
match1	

matchN	

Outline	

•  Background	 and	 mo.va.on	
•  GPU-‐based	 Signature	 Detec-on	

– Network	 intrusion	 detec.on/preven.on	
– Virus	 matching	

•  GPU-‐assisted	 Malware	
–  Code-‐armoring	 techniques	
–  Keylogger	

•  GPU	 as	 a	 Secure	 Crypto-‐Processor	
•  Conclusions	

30	 Giorgos	 Vasiliadis	

An.-‐Virus	 Databases	

•  Contain	 thousands	 of	 signatures	
– ClamAV	 contains	 more	 than	 60K	 signatures	

31	 Giorgos	 Vasiliadis	

An.-‐Virus	 Databases	

•  ClamAV	 signatures	 are	 significant	 longer	 than	
NIDS	
–  length	 varying	 from	 4	 to	 392	 bytes	

>	 80%	

>	 90%	

32	 Giorgos	 Vasiliadis	

An.-‐Virus	 Databases	

•  Memory	 requirements	

~14	 GB	

~0.8	 GB	

33	 Giorgos	 Vasiliadis	

Opportunity:	 Prefix	 Filtering	

•  Take	 the	 first	 n	 bytes	 from	 each	 signature	
– e.g.	

 Worm.SQL.Slammer.A:0:*:	

 4e65742d576f726d2e57696e33322e536c616d6d65725554

•  Compile	 all	 n-‐bytes	 sub-‐signatures	 into	 a	
single	 Scanning	 Trie	

•  The	 Scanning	 Trie	 can	 quickly	 filter	 clean	 data	
segments	 in	 linear	 .me.	

34	 Giorgos	 Vasiliadis	

Scanning	 Trie	

•  Variable	 trie	 height	

35	 Giorgos	 Vasiliadis	

Longer	 prefix	 =	 Fewer	 matches	

36	

2%	

0.0001%	

Giorgos	 Vasiliadis	

Longer	 prefix	 =	 More	 memory	

Prefix length
2 3 4 5 6 7 8 9 10 11 12 13 14N

um
be

r o
f s

ta
te

s
(1

00
0’

s)

100

200

300

400

Fig. 6. Memory requirements for the storage of the DFA as a function of the signature
prefix length.

Prefix length
2 3 4 5 6 7 8 9 10 11 12 13 14Th

ro
ug

hp
ut

 (G
Bi

ts
/s

ec
)

0.2

1

5
20

GrAVity
ClamAV (1x core)
ClamAV (8x cores)

Fig. 7. Performance of GrAVity and ClamAV. We also include the performance num-
ber for ClamAV running on 8 cores. The CPU-only performance is still an order of
magnitude less that the GPU-assisted. The numbers demonstrate that additional CPU
cores offer less benefit than that of utilizing the GPU.

experiments. We have verified the absence of I/O latencies using the iostat(1)
tool.

Throughput In this experiment we evaluate the performance of GrAVity com-
pared to vanilla ClamAV. Figure 7 shows the throughput achieved for different
prefix lengths. The overall throughput increases rapidly, raising at a maximum
of 20 Gbits/s. A plateau is reached for a prefix length of around 10.

As the prefix length increases, the number of potential matches decreases, as
shown in Figure 9. This results to lower CPU post-processing, hence the overall
application throughput increases. In the next section, we investigate in more
detail the breakdown of the execution time.

37	

To
ta
l	 M

em
or
y	
(M

Bs
)	

Giorgos	 Vasiliadis	

Virus	 Scanning	 on	 the	 GPU	

•  Each	 thread	 operate	 on	 different	 data	
– May	 overlap	 for	 spanning	 paderns,	 but	 …	
– …	 no	 communica.on/synchroniza.on	 costs.	
– Highly	 scalable	 (million	 threads	 can	 run	 in	 parallel)	

	

38	

Execu.on	 Time	 Breakdown	

•  CPU	 .me	 results	 in	 20%	 of	 the	 total	 execu.on	 .me,	
with	 a	 	 prefix	 length	 equal	 to	 14	

39	 Giorgos	 Vasiliadis	

GPU	 vs	 CPU	

Ø Up	 to	 20	 Gbps	 end-‐to-‐end	 performance	

100x	

12x	

GPU	

40	 Giorgos	 Vasiliadis	

Summary	

•  Both	 Network	 Intrusion	 Detec/on	 and	 Virus	
Scanning	 on	 the	 GPU	 are	 prac-cal	 and	 fast!	

•  More	 technical	 details	
– See	 our	 RAID’08,	 RAID’09,	 RAID’10,	 CCS’2011,	
and	 	 	 USENIX	 ATC’14	 papers	

41	 Giorgos	 Vasiliadis	

Outline	

•  Background	 and	 mo.va.on	
•  GPU-‐based	 Malware	 Signature	 Detec.on	

– Network	 intrusion	 detec.on/preven.on	
–  Virus	 scanning	

•  GPU-‐assisted	 Malware	
–  Code-‐armoring	 techniques	
–  Keylogger	

•  GPU	 as	 a	 Secure	 Crypto-‐Processor	
•  Conclusions	

42	 Giorgos	 Vasiliadis	

Mo.va.on	

•  Malware	 con.nually	 seek	 new	 methods	 for	
hiding	 their	 malicious	 ac.vity,	 …	
–  Packing/Polymorphism	
–  Polymorphism	

•  …	 as	 well	 as,	 hinder	 reverse	 engineering	 and	 code	
analysis	
–  Code	 obfusca.on	
– An.-‐debugging	 tricks	

•  Is	 it	 possible	 for	 a	 malware	 to	 exploit	 the	 rich	
func.onality	 of	 modern	 GPUs?	

43	 Giorgos	 Vasiliadis	

Proof-‐of-‐Concept	 GPU-‐based	 Malware	

•  Design	 and	 implementa.on	 of	 code	 armoring	
techniques	 based	 on	 GPU	 code	
– Self-‐unpacking	
– Run-‐.me	 polymorphism	

•  Design	 and	 implementa.on	 of	 stealthy	 host	
memory	 scanning	 techniques	
– Keylogger	

44	 Giorgos	 Vasiliadis	

Outline	

•  Background	 and	 mo.va.on	
•  GPU-‐based	 Malware	 Signature	 Detec.on	

– Network	 intrusion	 detec.on/preven.on	
–  Virus	 scanning	

•  GPU-‐assisted	 Malware	
–  Code-‐armoring	 techniques	
–  Keylogger	

•  GPU	 as	 a	 Secure	 Crypto-‐Processor	
•  Conclusions	

45	 Giorgos	 Vasiliadis	

Self-‐unpacking	 GPU-‐malware	

46	 Giorgos	 Vasiliadis	

Self-‐unpacking:	 Strengths	

•  Current	 analysis	 and	 unpacking	 systems	
cannot	 handle	 GPU	 code	

•  Exposes	 minimal	 x86	 code	 footprint	
•  GPU	 can	 use	 extremely	 complex	 encryp.on	
schemes	

47	 Giorgos	 Vasiliadis	

Self-‐unpacking:	 Weaknesses	

•  Malware	 code	 lies	 unencrypted	 in	 main	
memory	 aher	 unpacking	

•  Can	 be	 detected	 by	 dumping	 the	 memory	

•  Can	 we	 do	 beder?	

48	 Giorgos	 Vasiliadis	

Run.me-‐polymorphic	 GPU-‐malware	

49	 Giorgos	 Vasiliadis	

Run-‐.me	 polymorphism:	 Strengths	

•  Only	 the	 necessary	 code	 blocks	 are	 decrypted	
each	 .me	

•  GPU	 can	 use	 different	 encryp.on	 keys	
occasionally	
– Random-‐generated	

•  Newly	 generated	 encryp.on	 keys	 are	 stored	 in	
device	 memory	
– Not	 accessible	 from	 CPU	

50	 Giorgos	 Vasiliadis	

Outline	

•  Background	 and	 mo.va.on	
•  GPU-‐based	 Malware	 Signature	 Detec.on	

– Network	 intrusion	 detec.on/preven.on	
–  Virus	 scanning	

•  GPU-‐assisted	 Malware	
–  Code-‐armoring	 techniques	
–  Keylogger	

•  GPU	 as	 a	 Secure	 Crypto-‐Processor	
•  Conclusions	

51	 Giorgos	 Vasiliadis	

Overall	 approach	

•  Scan	 kernel’s	 memory	 to	 locate	 the	 keyboard	
buffer	

•  Remap	 the	 memory	 page	 of	 the	 buffer	 to	 user	
space	

•  Set	 the	 GPU	 to	 periodically	 read	 and	 scan	 them	
for	 sensi.ve	 informa.on	 (e.g.,	 credit	 card	
numbers)	 	

•  Unmap	 the	 memory	 in	 order	 to	 leave	 no	 traces	
•  GPU	 periodically	 collects	 newly-‐typed	 keystrokes	

52	 Giorgos	 Vasiliadis	

How	 the	 GPU	 access	 host	 memory	

53	

GPU	

	
	
	

User-‐space	

CUDA	
Run.me	
Library	

User	
Virtual	
Address	

	
	
	

Kernel-‐space	

Kernel	
Virtual	
Address	

	
	
	

Physical	 Mem.	

GPU	
Buffer	

Keybd	
Buffer	

Giorgos	 Vasiliadis	

How	 the	 GPU	 access	 host	 memory	

54	

GPU	

	
	
	

User-‐space	

CUDA	
Run.me	
Library	

User	
Virtual	
Address	

	
	
	

Kernel-‐space	

Kernel	
Virtual	
Address	

	
	
	

Physical	 Mem.	

GPU	
Buffer	

Keybd	
Buffer	

Giorgos	 Vasiliadis	

How	 the	 GPU	 access	 host	 memory	

55	

GPU	

	
	
	

User-‐space	

CUDA	
Run.me	
Library	

User	
Virtual	
Address	

	
	
	

Kernel-‐space	

Kernel	
Virtual	
Address	

	
	
	

Physical	 Mem.	

GPU	
Buffer	

Keybd	
Buffer	

DMA	

Giorgos	 Vasiliadis	

Opportunity:	 Remap	 process’	 virtual	
memory	 to	 sensi.ve	 physical	 pages	

56	

GPU	

	
	
	

User-‐space	

CUDA	
Run.me	
Library	

User	
Virtual	
Address	

	
	
	

Kernel-‐space	

Kernel	
Virtual	
Address	

	
	
	

Physical	 Mem.	

GPU	
Buffer	

Keybd	
Buffer	

Giorgos	 Vasiliadis	

Opportunity:	 Remap	 process’	 virtual	
memory	 to	 sensi.ve	 physical	 pages	

57	

GPU	

	
	
	

User-‐space	

CUDA	
Run.me	
Library	

User	
Virtual	
Address	

	
	
	

Kernel-‐space	

Kernel	
Virtual	
Address	

	
	
	

Physical	 Mem.	

GPU	
Buffer	

Keybd	
Buffer	

DMA	

Giorgos	 Vasiliadis	

Implementa.on	

•  Use	 polling	 to	 catch	 keystrokes	
– “wake	 up”	 GPU	 process	 periodically	 through	 the	
CPU	 controller	 process	 	

•  Simple	 state	 machine	 translates	 keystrokes	
into	 ASCII	 characters	 	

•  Store	 keystrokes	 into	 Video	 RAM	

58	 Giorgos	 Vasiliadis	

59

CPU	 U.liza.on	

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100 1000

CP
U

ut
ili

za
tio

n
(p

er
ce

nt
)

Kernel invocation interval (msecs)

Giorgos	 Vasiliadis	

CPU	 U.liza.on	

60

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100 1000

CP
U

ut
ili

za
tio

n
(p

er
ce

nt
)

Kernel invocation interval (msecs)

Fastest	
Typists	

Giorgos	 Vasiliadis	

GPU	 U.liza.on	

61

10-6

10-5

10-4

10-3

 0.01

 0.1

 0.001 0.01 0.1 1 10 100 1000

GP
U

ut
ili

za
tio

n
(p

er
ce

nt
)

Kernel invocation interval (msecs)

Fastest	
Typists	

Giorgos	 Vasiliadis	

Current	 Prototype	 Limita.ons	

•  Requires	 a	 CPU	 process	 to	 control	 its	
execu.on	
– Future	 GPGPU	 SDKs	 might	 allow	 us	 to	 drop	 the	
CPU	 controller	 process	

•  Requires	 administra.ve	 privileges	
– For	 installing	 and	 using	 the	 module	
– However	 the	 control	 process	 runs	 in	 user-‐space	

•  No	 OS	 modifica.on	 needed	 or	 data	 structure	
manipula.on,	 in	 order	 to	 hide	

62	 Giorgos	 Vasiliadis	

Summary
•  GPUs	 offer	 new	 ways	 for	 robust	 and	 stealthy	
malware	
– We	 demonstrated	 how	 a	 malware	 can	 increase	 its	
robustness	 against	 detec.on	 using	 the	 GPU	

•  Unpacking	 /	 Run.me	 polymorphism	
–  Presented	 a	 fully	 func.onal	 and	 stealthy	 GPU-‐based	
keylogger	

•  Low	 CPU	 and	 GPU	 usage	
•  No	 device	 hooking	

•  Graphics	 cards	 may	 be	 a	 promising	 new	
environment	 for	 future	 malware

64 Giorgos	 Vasiliadis	

Outline	

•  Background	 and	 mo.va.on	
•  GPU-‐based	 Malware	 Signature	 Detec.on	

– Network	 intrusion	 detec.on/preven.on	
–  Virus	 scanning	

•  GPU-‐assisted	 Malware	
–  Code-‐armoring	 techniques	
–  Keylogger	

•  GPU	 as	 a	 Secure	 Crypto-‐Processor	
•  Conclusions	

65	 Giorgos	 Vasiliadis	

Mo.va.on	

•  Modern	 cryptography	 is	 based	 on	 keys	

•  Problem:	 Secret	 keys	 may	 remain	 unencrypted	 in	
CPU	 Registers,	 RAM,	 etc.	
– Memory	 disclosure	 adacks	

•  Heartbleed	
– DMA/Firewire	 adacks	
–  Physical	 adacks	

•  Cold-‐boot	 adacks	
– …	

66	 Giorgos	 Vasiliadis	

PixelVault	 Overview	

•  Runs	 encryp.on	
securely	 outside	 CPU/
RAM	

•  Only	 on-‐chip	 memory	
of	 GPU	 is	 used	 as	
storage	

•  Secret	 keys	 are	 never	
observed	 from	 host	

Host	

Host	 CPU	

PLAINTEXT CIPHERTEXT

Graphics	 Card	
CIPHER

67	 Giorgos	 Vasiliadis	

Cryptographic	 Processing	 with	 GPUs	

•  GPU-‐accelerated	 SSL	
–  [CryptoGraphics,	 CT-‐RSA’05]	
–  [Harrison	 et	 al.,	 Sec’08]	
–  [SSLShader,	 NSDI’11]	
–  …	

•  High-‐performance	
•  Cost-‐effec.ve	

OpenSSL	 stub	

SSH	
Server	

Web	
Server	

IMAP	
Server	

GPU	

68	 Giorgos	 Vasiliadis	

Cryptographic	 Processing	 with	 GPUs	

•  GPU-‐accelerated	 SSL	
–  [CryptoGraphics,	 CT-‐RSA’05]	
–  [Harrison	 et	 al.,	 Sec’08]	
–  [SSLShader,	 NSDI’11]	
–  …	

•  High-‐performance	
•  Cost-‐effec.ve	

Can	 we	 also	 make	 it	 secure?	

OpenSSL	 stub	

SSH	
Server	

Web	
Server	

IMAP	
Server	

GPU	

69	

Implementa.on	 Challenges	

•  How	 to	 isolate	 GPU	 execu.on?	

•  Who	 holds	 the	 keys?	

•  Where	 is	 the	 code?	

70	 Giorgos	 Vasiliadis	

Implementa.on	 Challenges	

•  How	 to	 isolate	 GPU	 execu.on?	

•  Who	 holds	 the	 keys?	

•  Where	 is	 the	 code?	

71	 Giorgos	 Vasiliadis	

Autonomous	 GPU	 execu.on	

•  Force	 GPU	 program	 to	 run	 indefinitely	
–  i.e.,	 using	 an	 infinite	 while	 loop	

•  GPUs	 are	 non-‐preemp.ve	
– No	 other	 program	 can	 run	 at	 the	 same	 .me	

•  We	 use	 a	 shared	 memory	 segment	 for	
communica.on	 between	 the	 CPU	 and	 the	
GPU	

73	 Giorgos	 Vasiliadis	

Shared	 Memory	 between	 CPU/GPU	

•  Page-‐locked	 memory	
–  Accessed	 by	 the	 GPU	
directly,	 via	 DMA	

–  Cannot	 be	 swapped	 to	
disk	

•  Processing	 requests	 are	
issued	 through	 this	
shared	 memory	 space	

OpenSSL	 stub	

SSH	
Server	

Web	
Server	

IMAP	
Server	

Shared	 Memory	 Segment	

GPU	
74	

Shared	 Memory	 between	 CPU/GPU	

•  GPU	 con.nuously	
monitors	 the	 shared	
space	 for	 new	 requests	

	

OpenSSL	 stub	

SSH	
Server	

Web	
Server	

IMAP	
Server	

Shared	 Memory	 Segment	

GPU	
75	

Shared	 Memory	 between	 CPU/GPU	

•  When	 a	 new	 request	 is	
available,	 it	 is	
transferred	 to	 the	
memory	 space	 of	 the	
GPU	

	

OpenSSL	 stub	

SSH	
Server	

Web	
Server	

IMAP	
Server	

Shared	 Memory	 Segment	

GPU	

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

76	

Shared	 Memory	 between	 CPU/GPU	

•  The	 request	 is	
processed	 by	 the	 GPU	

	 OpenSSL	 stub	

SSH	
Server	

Web	
Server	

IMAP	
Server	

Shared	 Memory	 Segment	

77	

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

Shared	 Memory	 between	 CPU/GPU	

•  When	 processing	 is	
finished,	 the	 host	 is	
no.fied	 by	 se�ng	 the	
response	 parameter	
fields	 accordingly	

OpenSSL	 stub	

SSH	
Server	

Web	
Server	

IMAP	
Server	

Shared	 Memory	 Segment	

GPU	

SSH
Server

KeyStore
(Encrypted)

OpenSSL stub

IMAP
Server

Web
Server

Page-locked Host Memory

Fetch
Key

bootstrap

icachePixelVault daemon

Registers File Protected
Space

GPU

REQUEST

offsets[msg#]
msg#

RESPONSE

offsets[msg#]
msg#

keyIDs[msg#] keyIDs[msg#]
msg_buf[] enc_msg_buf[]

Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.

78	

Autonomous	 GPU	 execu.on	

•  Non-‐preemp.ve	
execu.on	

•  Only	 the	 output	 block	 is	
being	 wriden	 back	 to	
host	 memory	

OpenSSL	 stub	

SSH	
Server	

Web	
Server	

IMAP	
Server	

Shared	 Memory	 Segment	

GPU	
79	

non-preemptive exec

input output

Implementa.on	 Challenges	

•  How	 to	 isolate	 GPU	 execu.on?	

•  Who	 holds	 the	 keys?	

•  Where	 is	 the	 code?	

80	 Giorgos	 Vasiliadis	

Who	 holds	 the	 keys?	

•  GPUs	 contain	 different	 memory	 hierarchies	 of	 …	
–  different	 sizes,	 and	 …	
–  different	 characteris.cs	

81	

Host	 Memory	

CPU	
(Host)	

Gl
ob

al
	 M

em
or
y	

Shared	
Memory	

Regs	

Cache	

SP	

SP	

SP	

SP	

SP	

SP	

SP	

SP	

Mul.processor	 N	

Mul.processor	 2	

Mul.processor	 1	

GPU	

Giorgos	 Vasiliadis	

Who	 holds	 the	 keys?	

•  GPUs	 contain	 different	 memory	 hierarchies	 of	 …	
–  different	 sizes,	 and	 …	
–  different	 characteris.cs	

82	

Host	 Memory	

CPU	
(Host)	

Gl
ob

al
	 M

em
or
y	

Shared	
Memory	

Regs	

Cache	

SP	

SP	

SP	

SP	

SP	

SP	

SP	

SP	

Mul.processor	 N	

Mul.processor	 2	

Mul.processor	 1	

GPU	

Reset	 to	 zero	 on	 each	
GPU	 kernel	 execu.on.	

Giorgos	 Vasiliadis	

Support	 for	 an	 arbitrary	 number	 of	 keys	

•  We	 can	 use	 a	 separate	 KeyStore	 array	 that	
holds	 an	 arbitrary	 number	 of	 secret	 keys	

KeyStore	

Enc’ed	 Key	 Dec’ed	 Key	

GPU	 Registers	 File	

encrypted	 keys	 are	
stored	 in	 GPU	 global	
device	 memory:	

each	 key	 is	 decrypted	 in	 registers	
during	 encryp.on/decryp.on:	

copy	 to	 registers	

Master	
Key	

84	 Giorgos	 Vasiliadis	

Implementa.on	 Challenges	

•  How	 to	 isolate	 GPU	 execu.on?	

•  Who	 holds	 the	 keys?	

•  Where	 is	 the	 code?	

85	

Graphics Processors for Security

GPU-assisted
Malware

GPU-assisted
Malware Detection

Signature matching
Regular expression matching
Malicious code analysis
 April*2,*2013* 57*

Giorgos	 Vasiliadis	

Where	 is	 the	 code?	

•  GPU	 code	 is	 ini.ally	 stored	 in	 global	 device	
memory	 for	 the	 GPU	 to	 execute	 it	
– An	 adversary	 could	 replace	 it	 with	 a	 malicious	
version	

Graphics Processors for Security

GPU-assisted
Malware

GPU-assisted
Malware Detection

Signature matching
Regular expression matching
Malicious code analysis
 April*2,*2013* 57*

Global	 Device	
Memory	

86	

Prevent	 GPU	 code	 modifica.on	 adacks	

•  Three	 levels	 of	 instruc.on	 caching	 (icache)	
– 4KB,	 8KB,	 and	 32KB,	 respec.vely	
– Hardware-‐managed	

•  Opportunity:	 Load	 the	 code	 to	 the	 icache,	 and	
then	 erase	 it	 from	 global	 device	 memory	
– The	 code	 runs	 indefinitely	 from	 the	 icache	
– Not	 possible	 to	 be	 flushed	 or	 modified	

87	 Giorgos	 Vasiliadis	

PixelVault	 Crypto	 Suite	

•  Currently	 implemented	 algorithms	
– AES-‐128	
– RSA-‐1024	

•  Implemented	 completely	 using	 on-‐chip	
memory	 (i.e.	 registers,	 scratchpad	 memory)	
– The	 only	 data	 that	 is	 wriden	 back	 to	 global,	 off-‐
chip	 device	 memory	 is	 the	 output	 block	

88	 Giorgos	 Vasiliadis	

AES-‐128	 CBC	 Performance	

89	

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3
GPU
PixelVault
PixelVault (w/ KeyStore)

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

CPU

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Decryp.on	 Encryp.on	

Up	 to	 20%	 overhead	
on	 GPU	 execu.on	

Up	 to	 13%	 overhead	 	
on	 GPU	 execu.on	

Giorgos	 Vasiliadis	

AES-‐128	 CBC	 Performance	

90	

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3
GPU
PixelVault
PixelVault (w/ KeyStore)

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

CPU

Number of Messages
1 16 64 128 1024 4096

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Number of Messages

Th
ro

ug
hp

ut
 (G

bi
t/s

)

0

1

2

3

4

5

6

Decryp.on	 Encryp.on	

Intel	 Nehalem	
single	 core	 (2.27GHz)	 	

3x-‐4x	 faster	 than	 CPU	
for	 a	 sufficient	 number	

of	 messages	

Giorgos	 Vasiliadis	

RSA	 1024-‐bit	 Decryp.on	

91	

the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)
1 1632.7 15.5 15.3 14.3

16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-

•  PixelVault	 adds	 an	 1%-‐15%	 overhead	 over	 the	 default	 	
GPU-‐accelerated	 RSA	

Giorgos	 Vasiliadis	

RSA	 1024-‐bit	 Decryp.on	

92	

the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)
1 1632.7 15.5 15.3 14.3

16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-

•  S.ll	 faster	 than	 CPU	 when	 batch	 processing	 	 >128	 messages	 	

Giorgos	 Vasiliadis	

PixelVault	 Features	

•  Prevents	 key	 leakages	
– Even	 when	 the	 base	 system	 is	 fully	 compromised	

•  Requires	 just	 a	 commodity	 GPU	
– No	 OS	 kernel	 modifica.ons	 or	 recompila.on	

•  High-‐performance	 cryptographic	 opera.ons	

93	 Giorgos	 Vasiliadis	

Limita.ons	
•  Require	 trusted	 bootstrap	

•  Dedicated	 GPU	 execu.on	

•  Misusing	 PixelVault	 for	 encryp.ng/decryp.ng	
messages	

•  Denial-‐of-‐Service	 adacks	

•  Side-‐channel	 adacks	
94	 Giorgos	 Vasiliadis	

Summary	

•  Cryptography	 on	 the	 GPU	 is	 not	 only	 fast	 …	
•  …	 but	 also	 secure!	

– Preserves	 the	 secrecy	 of	 keys	 even	 when	 the	 base	
system	 is	 fully	 compromised	

•  More	 technical	 details	
– See	 our	 ACM	 CCS’2014	 paper	

“PixelVault:	 Using	 GPUs	 for	 Securing	 Cryptographic	
Opera-ons”	

95	 Giorgos	 Vasiliadis	

Outline	

•  Background	 and	 mo.va.on	
•  GPU-‐based	 Malware	 Signature	 Detec.on	

– Network	 intrusion	 detec.on/preven.on	
–  Virus	 scanning	

•  GPU-‐assisted	 Malware	
–  Code-‐armoring	 techniques	
–  Keylogger	

•  GPU	 as	 a	 Secure	 Crypto-‐Processor	
•  Conclusions	

96	 Giorgos	 Vasiliadis	

Conclusions	
•  GPUs	 have	 diverse	 security	 applica.ons	

–  Both	 for	 defense	 and	 offense	
–  NDIS,	 AV,	 crypto-‐devices,	 secure	 processors,	 etc.	
–  Generic	 library	 with	 func.onality	 for	 various	 applica.ons	
–  Combine	 high-‐performance	 with	 programmability	

•  Future	 work	
–  Adapt	 to	 other	 applica.on	 domains	 	
–  Apply	 to	 mobile	 and	 embedded	 devices	
–  U.lize	 integrated	 CPU-‐GPU	 designs	

•  	 Credits	 to:	
–  So.ris	 Ioannidis,	 Lazaros	 Koromilas,	 Michalis	 Polychronakis,	 Spyros	

Antonatos,	 Evangelos	 Ladakis,	 Elias	 Athanasopoulos,	 Evangelos	
Markatos	

97	 Giorgos	 Vasiliadis	

GPUs	 for	 Security	

Giorgos	 Vasiliadis	
Founda.on	 for	 Research	 and	
Technology	 –	 Hellas	 (FORTH)	

thank	 you!	

99	 Giorgos	 Vasiliadis	

