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Why	  GPU?	  
•  General-‐purpose	  compu.ng	  

–  Flexible	  and	  programmable	  
–  Portability	  

•  Powerful	  and	  ubiquitous	  
– Dominant	  co-‐processor	  
–  Constant	  innova.on	  
–  Inexpensive	  and	  always-‐present	  

•  Data-‐parallel	  model	  

4	  Giorgos	  Vasiliadis	  



CPU	  vs.	  GPU	  

CPU	   GPU	  

Xeon X5550:   

4 cores 

731M transistors 

GTX480:   

480 cores 

3,200M transistors 
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Single	  Instruc.on,	  Mul.ple	  Threads	  

•  Example:	  Vector	  addi.on	  

6	  

void vecadd(
int *A, int *B, int *C, int N)
{
    int i;
    //iterate over N elements
    for (i=0; i<N; ++i)
        C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

CPU	  code	  
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void vecadd(
int *A, int *B, int *C, int N)
{
    int i;
    //iterate over N elements
    for (i=0; i<N; ++i)
        C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

CPU	  code	  
__global__ void vecadd(
int *A, int *B, int *C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}

//Launch N threads
vecadd<<<1, N>>>(A, B, C);

GPU	  code	  
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CPU	  code	   GPU	  code	  
void vecadd(
int *A, int *B, int *C, int N)
{
    int i;
    //iterate over N elements
    for (i=0; i<N; ++i)
        C[i] = A[i] + B[i];
}

vecadd(A, B, C, N);

__global__ void vecadd(
int *A, int *B, int *C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}

//Launch N threads
vecadd<<<1, N>>>(A, B, C);
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Single	  Instruc.on,	  Mul.ple	  Threads	  

•  Threads	  within	  the	  same	  warp	  have	  to	  execute	  
the	  same	  instruc.ons	  

•  Great	  for	  regular	  computa/ons!	  

SIMT	  group	  
(warp)	  

The College of William and Mary eddy@cs.wm.edu
3

a SIMD group
(warp)

Graphic Processing Unit (GPU)

• Massive parallelism

• Favorable 

• computing power

• cost effectiveness

• energy efficiency
9	  Giorgos	  Vasiliadis	  



Outline	  

•  Background	  and	  mo.va.on	  
•  GPU-‐based	  Signature	  Detec-on	  

– Network	  intrusion	  detec-on/preven-on	  
–  Virus	  matching	  

•  GPU-‐assisted	  Malware	  
–  Code-‐armoring	  techniques	  
–  Keylogger	  

•  GPU	  as	  a	  Secure	  Crypto-‐Processor	  
•  Conclusions	  

10	  Giorgos	  Vasiliadis	  



Network	  Intrusion	  Detec.on	  Systems	  

•  Typically	  deployed	  at	  ingress/egress	  points	  
–  Inspect	  all	  network	  traffic	  
– Look	  for	  suspicious	  ac.vi.es	  
– Alert	  on	  malicious	  ac.ons	  

10	  GbE	  

Internet	   Internal	  
Network	  
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Challenges	  (1)	  

•  Traffic	  rates	  are	  increasing	  
– 10	  Gbit/s	  Ethernet	  speeds	  are	  common	  in	  metro/
enterprise	  networks	  

– Up	  to	  40-‐100	  Gbit/s	  at	  the	  core	  
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Challenges	  (2)	  

•  Ever-‐increasing	  need	  to	  perform	  more	  
complex	  analysis	  at	  higher	  traffic	  rates	  
– Deep	  packet	  inspec.on	  
– Stateful	  analysis	  
– 1000s	  of	  adack	  signatures	  
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Designing	  NIDS	  and	  AVs	  

•  Fast	  
– Need	  to	  handle	  many	  Gbit/s	  
– Scalable	  

•  The	  future	  is	  many-‐core	  

•  Commodity	  hardware	  
– Cheap	  
– Easily	  programmable	  
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Today:	  fast	  or	  commodity	  
•  Fast	  “hardware”	  IDS/IPS	  

–  FPGA/TCAM/ASIC	  based	  
– Usually,	  .ed	  to	  a	  specific	  
implementa.on	  

–  Throughput:	  High	  

•  Commodity	  “sohware”	  
NIDS/NIPS	  and	  AVs	  
–  Processing	  by	  general-‐
purpose	  processors	  

–  Throughput:	  Low	  

IDS/IPS	  Sensors	  	  
(10s	  of	  Gbps)	  

	  

IDS/IPS	  M8000	  
(10s	  of	  Gbps)	  

	  

Open-‐source	  S/W	  

	  

~	  US$	  20,000	  -‐	  60,000	  

~	  US$	  10,000	  -‐	  24,000	  

≤	  ~1	  Gbps	  
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Single-‐threaded	  NIDS	  performance	  

NIC	   Preprocess	   Padern	  
matching	   Output	  
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alert	  tcp	  $EXTERNAL_NET	  any	  -‐>	  $HTTP_SERVERS	  80	  	  
(msg:“WEB-‐PHP	  horde	  help	  module	  arbitrary	  command	  execu.on	  adempt”;	  
flow:established,to_server;	  uricontent:”	  /services/help/";	  pcre:”	  /[\?\x20\x3b\x26]module=[a-‐zA-‐
Z0-‐9]*[^\x3b\x26]/U");	  metadata:service	  hdp;	  

*	  PCRE:	  Perl	  Compa.ble	  Regular	  Expression	  	   
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alert	  tcp	  $EXTERNAL_NET	  any	  -‐>	  $HTTP_SERVERS	  80	  	  
(msg:“WEB-‐PHP	  horde	  help	  module	  arbitrary	  command	  execu.on	  adempt”;	  
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alert	  tcp	  $EXTERNAL_NET	  any	  -‐>	  $HTTP_SERVERS	  80	  	  
(msg:“WEB-‐PHP	  horde	  help	  module	  arbitrary	  command	  execu.on	  adempt”;	  
flow:established,to_server;	  uricontent:”	  /services/help/";	  pcre:”	  /[\?\x20\x3b\x26]module=[a-‐zA-‐
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alert	  tcp	  $EXTERNAL_NET	  any	  -‐>	  $HTTP_SERVERS	  80	  	  
(msg:“WEB-‐PHP	  horde	  help	  module	  arbitrary	  command	  execu.on	  adempt”;	  
flow:established,to_server;	  uricontent:”	  /services/help/";	  pcre:”	  /[\?\x20\x3b\x26]module=[a-‐zA-‐
Z0-‐9]*[^\x3b\x26]/U");	  metadata:service	  hdp;	  
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Single-‐threaded	  NIDS	  performance	  

•  Vanilla	  Snort:	  0.2	  Gbit/s	  

NIC	   Preprocess	   Padern	  
matching	   Output	  
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Single-‐threaded	  NIDS	  performance	  

•  Vanilla	  Snort:	  0.2	  Gbit/s	  

NIC	   Preprocess	   Padern	  
matching	   Output	  
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Problem	  #3:	  Padern	  matching	  is	  the	  
bodleneck	  

•  On	  a	  Intel	  Xeon	  X5520,	  2.27	  GHz,	  8	  MB	  L3	  Cache	  
–  String	  matching	  analyzing	  bandwidth	  per	  core:	  1.1	  Gbps	  
–  PCRE	  	  analyzing	  bandwidth	  per	  core:	  0.52	  Gbps	  

	  

NIC	   Padern	  
matching	   Output	  Preprocess	  

>	  75%	  

23	  

strings	   pcre	  
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Offload	  padern	  matching	  on	  the	  GPU	  

NIC	   Preprocess	   Padern	  
matching	   Output	  

24	  

strings	   pcre	  
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Padern	  matching	  on	  the	  GPU	  

•  Data	  level	  parallelism	  ==	  Packet	  level	  parallelism	  
–  Uniformly	  one	  core	  for	  each	  reassembled	  packet	  stream	  

GPU	  
core	  

Matches	  

GPU	  
core	  

GPU	  
core	  

GPU	  
core	  

Packet	  Buffer	  

GPU	  
core	  

GPU	  
core	  
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Padern	  matching	  on	  the	  GPU	  

	  Both	  string	  searching	  and	  regular	  expression	  
matching	  can	  be	  matched	  efficiently	  by	  combining	  
the	  paderns	  into	  Determinis/c	  Finite	  Automata	  
(DFA)	  
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NIC	  

match0	  

Output	  Preprocess	  
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NVIDIA	  GTX	  480	  GPU	  

Giorgos	  Vasiliadis	  

match1	  

matchN	  

Padern	  matching	  on	  the	  GPU	  

On	  an	  Intel	  Xeon	  X5520,	  2.27	  GHz,	  8	  MB	  L3	  Cache	  
String	  matching	  analyzing	  bandwidth:	  1.1	  Gbps	  
PCRE	  analyzing	  bandwidth:	  0.52	  Gbps	  

30	  Gbps	  
8	  Gbps	  



Pipelining	  CPU	  and	  GPU	  

•  Double-‐buffering	  
– Each	  CPU	  core	  collects	  new	  reassembled	  packets,	  
while	  the	  GPUs	  process	  the	  previous	  batch	  

– Effec.vely	  hides	  GPU	  communica.on	  costs	  

CPU	  

Packet	  buffers	  
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Mul.-‐Parallel	  Network	  Intrusion	  Detec.on	  

•  Vanilla	  Snort: 	   	   	   	  0.2	  Gbit/s	  
•  With	  mul.ple	  CPU-‐cores:	  0.9	  Gbit/s	  
•  With	  GPU:	   	   	   	   	  5.2	  Gbit/s	  

RSS	  
NIC	  

Output	  

Preprocess	   Output	  

match0	  

Output	  Preprocess	  

Preprocess	  
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match1	  

matchN	  

match0	  
match1	  

matchN	  

match0	  
match1	  

matchN	  
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An.-‐Virus	  Databases	  

•  Contain	  thousands	  of	  signatures	  
– ClamAV	  contains	  more	  than	  60K	  signatures	  
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An.-‐Virus	  Databases	  

•  ClamAV	  signatures	  are	  significant	  longer	  than	  
NIDS	  
–  length	  varying	  from	  4	  to	  392	  bytes	  

>	  80%	  

>	  90%	  
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An.-‐Virus	  Databases	  

•  Memory	  requirements	  

~14	  GB	  

~0.8	  GB	  
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Opportunity:	  Prefix	  Filtering	  

•  Take	  the	  first	  n	  bytes	  from	  each	  signature	  
– e.g.	  

  Worm.SQL.Slammer.A:0:*:	  

  4e65742d576f726d2e57696e33322e536c616d6d65725554 

•  Compile	  all	  n-‐bytes	  sub-‐signatures	  into	  a	  
single	  Scanning	  Trie	  

•  The	  Scanning	  Trie	  can	  quickly	  filter	  clean	  data	  
segments	  in	  linear	  .me.	  
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Scanning	  Trie	  

•  Variable	  trie	  height	  
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Longer	  prefix	  =	  Fewer	  matches	  

36	  
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Longer	  prefix	  =	  More	  memory	  

Prefix length
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Fig. 6. Memory requirements for the storage of the DFA as a function of the signature
prefix length.
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Fig. 7. Performance of GrAVity and ClamAV. We also include the performance num-
ber for ClamAV running on 8 cores. The CPU-only performance is still an order of
magnitude less that the GPU-assisted. The numbers demonstrate that additional CPU
cores offer less benefit than that of utilizing the GPU.

experiments. We have verified the absence of I/O latencies using the iostat(1)
tool.

Throughput In this experiment we evaluate the performance of GrAVity com-
pared to vanilla ClamAV. Figure 7 shows the throughput achieved for different
prefix lengths. The overall throughput increases rapidly, raising at a maximum
of 20 Gbits/s. A plateau is reached for a prefix length of around 10.

As the prefix length increases, the number of potential matches decreases, as
shown in Figure 9. This results to lower CPU post-processing, hence the overall
application throughput increases. In the next section, we investigate in more
detail the breakdown of the execution time.
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Virus	  Scanning	  on	  the	  GPU	  

•  Each	  thread	  operate	  on	  different	  data	  
– May	  overlap	  for	  spanning	  paderns,	  but	  …	  
– …	  no	  communica.on/synchroniza.on	  costs.	  
– Highly	  scalable	  (million	  threads	  can	  run	  in	  parallel)	  
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Execu.on	  Time	  Breakdown	  

•  CPU	  .me	  results	  in	  20%	  of	  the	  total	  execu.on	  .me,	  
with	  a	  	  prefix	  length	  equal	  to	  14	  
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GPU	  vs	  CPU	  

Ø Up	  to	  20	  Gbps	  end-‐to-‐end	  performance	  

100x	  

12x	  

GPU	  
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Summary	  

•  Both	  Network	  Intrusion	  Detec/on	  and	  Virus	  
Scanning	  on	  the	  GPU	  are	  prac-cal	  and	  fast!	  

•  More	  technical	  details	  
– See	  our	  RAID’08,	  RAID’09,	  RAID’10,	  CCS’2011,	  
and	  	  	  USENIX	  ATC’14	  papers	  

41	  Giorgos	  Vasiliadis	  



Outline	  

•  Background	  and	  mo.va.on	  
•  GPU-‐based	  Malware	  Signature	  Detec.on	  

– Network	  intrusion	  detec.on/preven.on	  
–  Virus	  scanning	  

•  GPU-‐assisted	  Malware	  
–  Code-‐armoring	  techniques	  
–  Keylogger	  

•  GPU	  as	  a	  Secure	  Crypto-‐Processor	  
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Mo.va.on	  

•  Malware	  con.nually	  seek	  new	  methods	  for	  
hiding	  their	  malicious	  ac.vity,	  …	  
–  Packing/Polymorphism	  
–  Polymorphism	  

•  …	  as	  well	  as,	  hinder	  reverse	  engineering	  and	  code	  
analysis	  
–  Code	  obfusca.on	  
– An.-‐debugging	  tricks	  

•  Is	  it	  possible	  for	  a	  malware	  to	  exploit	  the	  rich	  
func.onality	  of	  modern	  GPUs?	  
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Proof-‐of-‐Concept	  GPU-‐based	  Malware	  

•  Design	  and	  implementa.on	  of	  code	  armoring	  
techniques	  based	  on	  GPU	  code	  
– Self-‐unpacking	  
– Run-‐.me	  polymorphism	  

•  Design	  and	  implementa.on	  of	  stealthy	  host	  
memory	  scanning	  techniques	  
– Keylogger	  
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Self-‐unpacking	  GPU-‐malware	  
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Self-‐unpacking:	  Strengths	  

•  Current	  analysis	  and	  unpacking	  systems	  
cannot	  handle	  GPU	  code	  

•  Exposes	  minimal	  x86	  code	  footprint	  
•  GPU	  can	  use	  extremely	  complex	  encryp.on	  
schemes	  
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Self-‐unpacking:	  Weaknesses	  

•  Malware	  code	  lies	  unencrypted	  in	  main	  
memory	  aher	  unpacking	  

•  Can	  be	  detected	  by	  dumping	  the	  memory	  

•  Can	  we	  do	  beder?	  
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Run.me-‐polymorphic	  GPU-‐malware	  
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Run-‐.me	  polymorphism:	  Strengths	  

•  Only	  the	  necessary	  code	  blocks	  are	  decrypted	  
each	  .me	  

•  GPU	  can	  use	  different	  encryp.on	  keys	  
occasionally	  
– Random-‐generated	  

•  Newly	  generated	  encryp.on	  keys	  are	  stored	  in	  
device	  memory	  
– Not	  accessible	  from	  CPU	  
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Outline	  

•  Background	  and	  mo.va.on	  
•  GPU-‐based	  Malware	  Signature	  Detec.on	  

– Network	  intrusion	  detec.on/preven.on	  
–  Virus	  scanning	  

•  GPU-‐assisted	  Malware	  
–  Code-‐armoring	  techniques	  
–  Keylogger	  

•  GPU	  as	  a	  Secure	  Crypto-‐Processor	  
•  Conclusions	  
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Overall	  approach	  

•  Scan	  kernel’s	  memory	  to	  locate	  the	  keyboard	  
buffer	  

•  Remap	  the	  memory	  page	  of	  the	  buffer	  to	  user	  
space	  

•  Set	  the	  GPU	  to	  periodically	  read	  and	  scan	  them	  
for	  sensi.ve	  informa.on	  (e.g.,	  credit	  card	  
numbers)	  	  

•  Unmap	  the	  memory	  in	  order	  to	  leave	  no	  traces	  
•  GPU	  periodically	  collects	  newly-‐typed	  keystrokes	  
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How	  the	  GPU	  access	  host	  memory	  
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How	  the	  GPU	  access	  host	  memory	  
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How	  the	  GPU	  access	  host	  memory	  
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Opportunity:	  Remap	  process’	  virtual	  
memory	  to	  sensi.ve	  physical	  pages	  
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Opportunity:	  Remap	  process’	  virtual	  
memory	  to	  sensi.ve	  physical	  pages	  
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Implementa.on	  

•  Use	  polling	  to	  catch	  keystrokes	  
– “wake	  up”	  GPU	  process	  periodically	  through	  the	  
CPU	  controller	  process	  	  

•  Simple	  state	  machine	  translates	  keystrokes	  
into	  ASCII	  characters	  	  

•  Store	  keystrokes	  into	  Video	  RAM	  
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GPU	  U.liza.on	  
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Current	  Prototype	  Limita.ons	  

•  Requires	  a	  CPU	  process	  to	  control	  its	  
execu.on	  
– Future	  GPGPU	  SDKs	  might	  allow	  us	  to	  drop	  the	  
CPU	  controller	  process	  

•  Requires	  administra.ve	  privileges	  
– For	  installing	  and	  using	  the	  module	  
– However	  the	  control	  process	  runs	  in	  user-‐space	  

•  No	  OS	  modifica.on	  needed	  or	  data	  structure	  
manipula.on,	  in	  order	  to	  hide	  
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Summary 
•  GPUs	  offer	  new	  ways	  for	  robust	  and	  stealthy	  
malware	  
– We	  demonstrated	  how	  a	  malware	  can	  increase	  its	  
robustness	  against	  detec.on	  using	  the	  GPU	  

•  Unpacking	  /	  Run.me	  polymorphism	  
–  Presented	  a	  fully	  func.onal	  and	  stealthy	  GPU-‐based	  
keylogger	  

•  Low	  CPU	  and	  GPU	  usage	  
•  No	  device	  hooking	  

•  Graphics	  cards	  may	  be	  a	  promising	  new	  
environment	  for	  future	  malware 
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Outline	  

•  Background	  and	  mo.va.on	  
•  GPU-‐based	  Malware	  Signature	  Detec.on	  

– Network	  intrusion	  detec.on/preven.on	  
–  Virus	  scanning	  

•  GPU-‐assisted	  Malware	  
–  Code-‐armoring	  techniques	  
–  Keylogger	  

•  GPU	  as	  a	  Secure	  Crypto-‐Processor	  
•  Conclusions	  
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Mo.va.on	  

•  Modern	  cryptography	  is	  based	  on	  keys	  

•  Problem:	  Secret	  keys	  may	  remain	  unencrypted	  in	  
CPU	  Registers,	  RAM,	  etc.	  
– Memory	  disclosure	  adacks	  

•  Heartbleed	  
– DMA/Firewire	  adacks	  
–  Physical	  adacks	  

•  Cold-‐boot	  adacks	  
– …	  
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PixelVault	  Overview	  

•  Runs	  encryp.on	  
securely	  outside	  CPU/
RAM	  

•  Only	  on-‐chip	  memory	  
of	  GPU	  is	  used	  as	  
storage	  

•  Secret	  keys	  are	  never	  
observed	  from	  host	  

Host	  

Host	  CPU	  

PLAINTEXT CIPHERTEXT 

Graphics	  Card	  
CIPHER 
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Cryptographic	  Processing	  with	  GPUs	  

•  GPU-‐accelerated	  SSL	  
–  [CryptoGraphics,	  CT-‐RSA’05]	  
–  [Harrison	  et	  al.,	  Sec’08]	  
–  [SSLShader,	  NSDI’11]	  
–  …	  

•  High-‐performance	  
•  Cost-‐effec.ve	  

OpenSSL	  stub	  

SSH	  
Server	  

Web	  
Server	  

IMAP	  
Server	  

GPU	  
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Cryptographic	  Processing	  with	  GPUs	  

•  GPU-‐accelerated	  SSL	  
–  [CryptoGraphics,	  CT-‐RSA’05]	  
–  [Harrison	  et	  al.,	  Sec’08]	  
–  [SSLShader,	  NSDI’11]	  
–  …	  

•  High-‐performance	  
•  Cost-‐effec.ve	  

Can	  we	  also	  make	  it	  secure?	  

OpenSSL	  stub	  

SSH	  
Server	  

Web	  
Server	  

IMAP	  
Server	  

GPU	  
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Implementa.on	  Challenges	  

•  How	  to	  isolate	  GPU	  execu.on?	  

•  Who	  holds	  the	  keys?	  

•  Where	  is	  the	  code?	  
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Autonomous	  GPU	  execu.on	  

•  Force	  GPU	  program	  to	  run	  indefinitely	  
–  i.e.,	  using	  an	  infinite	  while	  loop	  

•  GPUs	  are	  non-‐preemp.ve	  
– No	  other	  program	  can	  run	  at	  the	  same	  .me	  

•  We	  use	  a	  shared	  memory	  segment	  for	  
communica.on	  between	  the	  CPU	  and	  the	  
GPU	  
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Shared	  Memory	  between	  CPU/GPU	  

•  Page-‐locked	  memory	  
–  Accessed	  by	  the	  GPU	  
directly,	  via	  DMA	  

–  Cannot	  be	  swapped	  to	  
disk	  

•  Processing	  requests	  are	  
issued	  through	  this	  
shared	  memory	  space	  

OpenSSL	  stub	  

SSH	  
Server	  

Web	  
Server	  

IMAP	  
Server	  

Shared	  Memory	  Segment	  

GPU	  
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Shared	  Memory	  between	  CPU/GPU	  

•  GPU	  con.nuously	  
monitors	  the	  shared	  
space	  for	  new	  requests	  
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Shared	  Memory	  between	  CPU/GPU	  

•  When	  a	  new	  request	  is	  
available,	  it	  is	  
transferred	  to	  the	  
memory	  space	  of	  the	  
GPU	  
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Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.
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memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.
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completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.
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Figure 3: The architecture of PixelVault. Private and secret
keys are kept encrypted in a KeyStore residing in global device
memory. To obtain a key, the GPU kernel fetches the encrypted
key from the KeyStore to the register space and decrypts it.

completion. This execution model is ideal for our purpose. Assum-
ing a trusted bootstrap process (described in Section 4.5), we can
enforce that any external interaction with PixelVault will immedi-
ately terminate its operation, preventing access to sensitive infor-
mation. Execution can be resumed only by re-launching PixelVault
with the same trusted bootstrap process.

Essentially, this means that PixelVault, once it has safely been
initialized with all secrets loaded, will run uninterrupted indefi-
nitely. Current GPU frameworks (such as CUDA and OpenCL),
however, have not been designed for building applications that act
autonomously. When forcing a kernel to run indefinitely (e.g., us-
ing an infinite while loop), the host process cannot transfer any
data to (or from) the GPU. The reason is that, by default, only one
stream1 is utilized, forcing the host process to block, (busy-)waiting
for the GPU kernel to finish its execution. To isolate completely

1A stream in CUDA is a sequence of operations executed on the
device in the order in which they were issued by the host code.

the kernel execution from the host process, we explicitly create a
second stream, which is used exclusively by the GPU kernel. In ad-
dition, we disable the GPU kernel execution timeout, used by most
operating systems to kill any operations executed on the GPU for
more than a few seconds [4].2 As a result, the kernel runs indef-
initely, while data transfers (to and from the device) can be per-
formed from the first stream.

Using the above scheme, however, we cannot rely on the typical
parameter-passing execution of GPU kernels, as described in Sec-
tion 2, since the GPU kernel function runs continuously. Instead,
we allocate a memory segment that is shared between the CPU and
the GPU, as shown in Figure 3. This shared memory space is page-
locked, to prevent it from being swapping to disk, and is accessed
by the GPU directly, via DMA. The memory space is also declared
as volatile, to ensure that all memory reads go directly to memory
(and not through the cache). Requests for encryption and decryp-
tion are issued through this shared memory space. For example,
to perform an encryption operation, an application running on the
CPU places the data to be encrypted in the shared region, and sets
the corresponding request parameter fields accordingly.

In the GPU, we spawn a large number of threads statically at
startup, because the NVIDIA Fermi architecture that we use in
this work does not support dynamic thread creation—this feature,
called dynamic parallelism [43], was introduced in the more recent
Kepler [45] architecture. As long as there is no work to be done, all
threads remain idle, busy-waiting, except one (master thread) that
continuously monitors the shared space for new requests. When a
new request is available, the master thread is responsible for noti-
fying all other threads by setting a special shared variable. Each
thread is assigned an equal amount of work (typically to encrypt
or decrypt a separate message using a desired key). To prevent
out-of-bounds memory accesses, each thread computes the user re-
quested message offset and length and verifies that it lies inside the
page-locked memory region. Otherwise, a malicious user would
be able to force the GPU kernel to write to non-permissive mem-
ory regions. When processing completes, each thread notifies the
master thread by atomically increasing a shared variable. When all
threads have finished, the master thread notifies the host by setting
the response parameter fields accordingly.

4.2 On-chip Memory Operation Only
PixelVault avoids placing secrets in memory that can be easily

inspected once a host is compromised. The GPU system we use
offers a unified virtual address space mode (the so-called “Unified
Virtual Addressing”), in which both the CPU and the GPU have
access to the same address space. The virtual address space range
is the same for all CUDA processes, and typically starts at address
0x600300000 (in 64-bit systems). Virtual addressing provides
isolation between memory accesses from different processes. For
example, a process cannot access the global device memory allo-
cated from a different process, as it will have different virtual-to-
physical mappings.

Still, an attacker could access the contents of the global device
memory (as well as of the texture and constant memory) allocated
by a different process in two ways: (i) by injecting malicious CPU
code in PixelVault that would force it to transfer data from the
GPU’s global device memory to the host, and (ii) by killing Pix-
elVault and iteratively allocating large segments from the global
device memory; eventually, the segments used by PixelVault would
be allocated too. Even if the attacker does not know the exact loca-
2The use of the kernel execution timeout ensures proper display
rendering, in cases where a GPU kernel execution takes a pro-
hibitively long time.
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Implementa.on	  Challenges	  

•  How	  to	  isolate	  GPU	  execu.on?	  

•  Who	  holds	  the	  keys?	  

•  Where	  is	  the	  code?	  
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Who	  holds	  the	  keys?	  

•  GPUs	  contain	  different	  memory	  hierarchies	  of	  …	  
–  different	  sizes,	  and	  …	  
–  different	  characteris.cs	  
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•  GPUs	  contain	  different	  memory	  hierarchies	  of	  …	  
–  different	  sizes,	  and	  …	  
–  different	  characteris.cs	  
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Support	  for	  an	  arbitrary	  number	  of	  keys	  

•  We	  can	  use	  a	  separate	  KeyStore	  array	  that	  
holds	  an	  arbitrary	  number	  of	  secret	  keys	  
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Enc’ed	  Key	   Dec’ed	  Key	  

GPU	  Registers	  File	  

encrypted	  keys	  are	  
stored	  in	  GPU	  global	  
device	  memory:	  

each	  key	  is	  decrypted	  in	  registers	  
during	  encryp.on/decryp.on:	  

copy	  to	  registers	  

Master	  
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Implementa.on	  Challenges	  

•  How	  to	  isolate	  GPU	  execu.on?	  

•  Who	  holds	  the	  keys?	  

•  Where	  is	  the	  code?	  
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Where	  is	  the	  code?	  

•  GPU	  code	  is	  ini.ally	  stored	  in	  global	  device	  
memory	  for	  the	  GPU	  to	  execute	  it	  
– An	  adversary	  could	  replace	  it	  with	  a	  malicious	  
version	  
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Prevent	  GPU	  code	  modifica.on	  adacks	  

•  Three	  levels	  of	  instruc.on	  caching	  (icache)	  
– 4KB,	  8KB,	  and	  32KB,	  respec.vely	  
– Hardware-‐managed	  

•  Opportunity:	  Load	  the	  code	  to	  the	  icache,	  and	  
then	  erase	  it	  from	  global	  device	  memory	  
– The	  code	  runs	  indefinitely	  from	  the	  icache	  
– Not	  possible	  to	  be	  flushed	  or	  modified	  
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PixelVault	  Crypto	  Suite	  

•  Currently	  implemented	  algorithms	  
– AES-‐128	  
– RSA-‐1024	  

•  Implemented	  completely	  using	  on-‐chip	  
memory	  (i.e.	  registers,	  scratchpad	  memory)	  
– The	  only	  data	  that	  is	  wriden	  back	  to	  global,	  off-‐
chip	  device	  memory	  is	  the	  output	  block	  
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the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)
1 1632.7 15.5 15.3 14.3

16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-

•  PixelVault	  adds	  an	  1%-‐15%	  overhead	  over	  the	  default	  	  
GPU-‐accelerated	  RSA	  
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the shared memory, only a single intermediate state will be accessi-
ble, and more cannot be obtained for performing successful crypt-
analysis. To acquire further intermediate states, an attacker needs
to restart the autonomous PixelVault GPU kernel; this is not pos-
sible though, as only the administrator can re-execute PixelVault
from a clean state, after transferring the master key and native code
from an external device, as we described in Section 4.5.

6.1.3 CPU Code Injection
In a typical scenario, attackers can exploit software vulnerabili-

ties and manage to inject code of their choice to a running service.
Sensitive data, such as private keys, that are stored in the address
space of the process, can be easily acquired. In contrast, hiding
sensitive data in the on-chip memory space of the GPU using Pix-
elVault prevents access even to fully privileged processes.

To verify this, we attached cuda-gdb, the CUDA debugger, to
PixelVault using full-administrator privileges for tracing its execu-
tion. The cuda-gdb is very similar to gdb and allows tracing
of both CPU and GPU variables, as well as the execution of arbi-
trary CPU and GPU code. Running PixelVault under a debugger
allows us to transfer data from the off-chip global device mem-
ory. However, we are still not able to extract any key, as they are
kept encrypted. Furthermore, we are not able to access any on-
chip memory (i.e., shared memory and caches) even if PixelVault
is compiled with debug-able device code (using both -g and -G
flags). The reason is that the non-preemptive GPU execution does
not allow adding breakpoints inside a kernel that is already run-
ning; to trace the execution of a kernel, the breakpoints have to be
added before the kernel has been loaded on the GPU for execu-
tion. As we start the GPU kernel from a clean state, it is impossible
for an attacker to trace the autonomous, self-contained GPU code
of PixelVault.

6.1.4 GPU Code Injection
All GPU code is loaded in the global device memory before ex-

ecution. The GPU code base of PixelVault is small, which can
allows it to be formally verified, to prevent potential exploitation
due to buggy code. However, accessing the code’s memory region
is still feasible, as the global device memory does not provide any
access protection. An attacker could, for example, inject malicious
GPU code by transferring it via PCIe to the appropriate memory
region. The malicious code could contain commands for forcing
the registers’ contents to be written to the global device memory,
where they could then easily be retrieved via the PCIe bus.

We have modified the Gdev framework to explicitly rewrite the
memory region where native code is stored. Similar attacks can
also be performed using the official CUDA debugger interface [46].
As we described in Section 4.3 though, PixelVault is tamper-resi-
stant against GPU code modifications, as it forces all code to be
loaded to the instruction cache. Even after erasing all PixelVault’s
native code from the global device memory, the GPU still executes
the original, unmodified code of PixelVault from the instruction
cache. Therefore, an attacker cannot overwrite PixelVault, because
the instruction cache cannot be flushed without loading a new GPU
kernel.

6.1.5 Simultaneous GPU Kernel Execution
Starting with the Fermi architecture [44] and onwards, differ-

ent (relatively small) kernels of the same CUDA context can oc-
casionally execute concurrently, allowing maximum utilization of
GPU resources. However, all stream multiprocessors (SMs) are
first filled with threads from the first kernel, and only if the re-
maining resources are sufficient, threads from a second kernel can

#Msgs CPU GPU [25] PixelVault PixelVault (w/ KeyStore)
1 1632.7 15.5 15.3 14.3

16 1632.7 242.2 240.4 239.2
64 1632.7 954.9 949.9 939.6

112 1632.7 1659.5 1652.4 1630.3
128 1632.7 1892.3 1888.3 1861.7

1024 1632.7 10643.2 10640.8 9793.1
4096 1632.7 17623.5 17618.3 14998.8
8192 1632.7 24904.2 24896.1 21654.4

Table 3: Decryption performance of 1024-bit RSA (#Msgs/sec).

be spawned. As a result, if all SMs are filled, threads from an-
other kernel cannot execute before the initial kernel completes its
execution. During initialization, PixelVault spawns a large number
of threads that remain idle, busy-waiting, as we described in Sec-
tion 4.1, occupying all available registers and shared memory. As a
result, a malicious kernel cannot be launched simultaneously.

6.1.6 Register Spilling In Global Device Memory
The registers that will be used by a GPU kernel are declared

once, at compile time. As we can see in Table 1, the number
of registers contained in GPUs is limited, and varies from plat-
form to platform. When the number of declared registers exceeds
the limit, the extra registers are mapped in global device memory,
hence their contents can be exposed to adversaries. To rule out this
possibility, we explicitly declare as many registers as the underly-
ing hardware device provides. The number of declared registers
serves as a heuristic for the compiler to decide when to spill reg-
isters during the compilation of the PTX code. By supplying the
--ptxas-options=’-v’ flag to the nvcc compiler, we are
explicitly notified if any spilling has occurred.

It would also be possible that registers could be spilled in global
device memory when a context switch between different warps oc-
curs. In contrast to CPUs, however, GPUs are non-preemptive pro-
cessors, and thus the contents of GPU registers are never saved (in
order to be restored later and continue running where it previously
left off). Still, thread warps can be switched, e.g., when a warp is
waiting for memory I/O another warp can be scheduled for running.
According to NVIDIA, no state is saved when context switching
between thread warps occurs, for performance reasons [36]. This
is actually the reason that a large number of registers reduces the
amount of thread parallelism.

6.2 Performance Analysis
We now assess the performance of PixelVault in comparison to

the standard CPU implementation (OpenSSL [5]). Our base sys-
tem consists of two Intel Xeon E5520 Quad-core CPUs (2.27GHz,
8192KB L3-cache), 12GB of RAM, and a GeForce GTX480.

Table 3 shows the throughput of RSA on a single CPU core, on
the GPU as reported by Harrison and Waldron [25], and using our
PixelVault implementation. We evaluate PixelVault with and with-
out the KeyStore structure. When the KeyStore structure is dis-
abled, only a single RSA key is loaded on the registers (appropriate
for simple setups that use only a single RSA key). We observe
that the GPU performance is low when the number of messages is
small, regardless of whether the KeyStore is used or not. With only
one ciphertext message per invocation, the GPU has a throughput
about two orders of magnitude worse compared to the CPU imple-
mentation. However, given enough parallelism, the GPU achieves
a much higher throughput than the CPU. PixelVault has almost the
same performance with the vanilla GPU-based RSA implementa-

•  S.ll	  faster	  than	  CPU	  when	  batch	  processing	  	  >128	  messages	  	  
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PixelVault	  Features	  

•  Prevents	  key	  leakages	  
– Even	  when	  the	  base	  system	  is	  fully	  compromised	  

•  Requires	  just	  a	  commodity	  GPU	  
– No	  OS	  kernel	  modifica.ons	  or	  recompila.on	  

•  High-‐performance	  cryptographic	  opera.ons	  

93	  Giorgos	  Vasiliadis	  



Limita.ons	  
•  Require	  trusted	  bootstrap	  

•  Dedicated	  GPU	  execu.on	  

•  Misusing	  PixelVault	  for	  encryp.ng/decryp.ng	  
messages	  

•  Denial-‐of-‐Service	  adacks	  

•  Side-‐channel	  adacks	  
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Summary	  

•  Cryptography	  on	  the	  GPU	  is	  not	  only	  fast	  …	  
•  …	  but	  also	  secure!	  

– Preserves	  the	  secrecy	  of	  keys	  even	  when	  the	  base	  
system	  is	  fully	  compromised	  

•  More	  technical	  details	  
– See	  our	  ACM	  CCS’2014	  paper	  

“PixelVault:	  Using	  GPUs	  for	  Securing	  Cryptographic	  
Opera-ons”	  
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Outline	  

•  Background	  and	  mo.va.on	  
•  GPU-‐based	  Malware	  Signature	  Detec.on	  

– Network	  intrusion	  detec.on/preven.on	  
–  Virus	  scanning	  

•  GPU-‐assisted	  Malware	  
–  Code-‐armoring	  techniques	  
–  Keylogger	  

•  GPU	  as	  a	  Secure	  Crypto-‐Processor	  
•  Conclusions	  
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Conclusions	  
•  GPUs	  have	  diverse	  security	  applica.ons	  

–  Both	  for	  defense	  and	  offense	  
–  NDIS,	  AV,	  crypto-‐devices,	  secure	  processors,	  etc.	  
–  Generic	  library	  with	  func.onality	  for	  various	  applica.ons	  
–  Combine	  high-‐performance	  with	  programmability	  

•  Future	  work	  
–  Adapt	  to	  other	  applica.on	  domains	  	  
–  Apply	  to	  mobile	  and	  embedded	  devices	  
–  U.lize	  integrated	  CPU-‐GPU	  designs	  

•  	   Credits	  to:	  
–  So.ris	  Ioannidis,	  Lazaros	  Koromilas,	  Michalis	  Polychronakis,	  Spyros	  

Antonatos,	  Evangelos	  Ladakis,	  Elias	  Athanasopoulos,	  Evangelos	  
Markatos	  
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thank	  you!	  
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