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Network	
  Packet	
  Processing	
  

•  Computa5onally	
  and	
  memory-­‐intensive	
  	
  

•  High	
  levels	
  of	
  data	
  parallelism	
  
– Each	
  packet	
  can	
  be	
  processed	
  in	
  parallel	
  

•  Poor	
  temporal	
  locality	
  for	
  data	
  
– Typically,	
  each	
  packet	
  is	
  processed	
  only	
  once	
  



GPU	
  =	
  Graphics	
  Processing	
  Units	
  

•  Highly	
  parallel	
  manycore	
  devices	
  
•  Hundreds	
  of	
  cores	
  
•  High	
  memory	
  bandwidth	
  
•  Up	
  to	
  6GB	
  of	
  memory	
  



GPUs	
  for	
  Network	
  Packet	
  Processing	
  

•  Gnort	
  [RAID’08]	
  
•  PacketShader	
  [SIGCOMM’10]	
  
•  SSLShader	
  [NSDI’11]	
  	
  
•  MIDeA	
  [CCS’11],	
  Kargus	
  [CCS’12]	
  
•  …	
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Independent/Monolithic	
  Designs	
  
	
  

1.   A	
  lot	
  of	
  CPU-­‐side	
  code	
  even	
  for	
  simple	
  apps	
  
2.   Explicit	
  batching	
  
3.   Explicit	
  data	
  copies	
  and	
  PCIe	
  transfers	
  



Need	
  a	
  framework	
  for	
  developing	
  GPU	
  
accelerated	
  packet	
  processing	
  applica5ons	
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GASPP	
  Framework	
  

•  Fast	
  user-­‐space	
  packet	
  capturing	
  

•  Modular	
  and	
  flexible	
  

•  Efficient	
  packet	
  scheduling	
  mechanisms	
  

•  TCP	
  processing	
  and	
  flow	
  management	
  support	
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Fast	
  user-­‐space	
  packet	
  capturing	
  

Use	
  a	
  single	
  user-­‐space	
  buffer	
  
between	
  the	
  NIC	
  and	
  the	
  GPU	
  

Stage	
  packets	
  back-­‐to-­‐back	
  to	
  
a	
  separate	
  buffer	
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Figure 4: Subsequent packets (dashed line) may arrive
in-sequence ((a)–(d)) or out of order, creating holes in
the reconstructed TCP stream ((e)–(f)).

ets would be actively dropped until the missing packet ar-
rives. Although this approach would ensure an in-order
packet flow, it has several disadvantages. First, in sit-
uations where the percentage of out-of-order packets is
high, performance will degrade. Second, if the endpoints
are using selective retransmission and there is a high rate
of data loss in the network, connections would be ren-
dered unusable due to excessive packet drops.

To deal with TCP sequence hole scenarios, GASPP
only processes packets with sequence numbers less than
or equal to the connection’s current sequence number
(Figure 4(a)–(d)). Received packets with no preceding
packets in the current batch and with sequence numbers
larger than the ones stored in the connection table im-
ply sequence holes (Figure 4(e)–(f)), and are copied in a
separate buffer in global device memory. If a thread en-
counters an out-of-order packet (i.e., a packet with a se-
quence number larger than the sequence number stored
in the connection table, with no preceding packet in the
current batch after the hashing calculations of §4.2), it
traverses the next packet array and marks as out-of-
order all subsequent packets of the same flow contained
in the current batch (if any). This allows the system to
identify sequences of out-of-order packets, as the ones
shown in the examples of Figure 4(e)–(f). The buffer size
is configurable and can be up to several hundred MBs,
depending on the network needs. If the buffer contains
any out-of-order packets, these are processed right after
a new batch of incoming packets is processed.

Although packets are copied using the very fast
device-to-device copy mechanism, with a memory band-
width of about 145 GB/s, an increased number of out-of-
order packets can have a major effect on overall perfor-
mance. For this reason, by default we limit the num-
ber of out-of-order packets that can be buffered to be
equal to the available slots in a batch of packets. This
size is enough under normal conditions, where out-of-
order packets are quite rare [9], and it can be configured
as needed for other environments. If the percentage of
out-of-order packets exceeds this limit, our system starts
to drop out-of-order packets, causing the corresponding
host to retransmit them.
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Figure 5: Normal (a) and zero-copy (b) data transfer be-
tween the NIC and the GPU.

5 Optimizing Performance

5.1 Inter-Device Data Transfer

The problem of data transfers between the CPU and the
GPU is well-known in the GPGPU community, as it re-
sults in redundant cross-device communication. The tra-
ditional approach is to exchange data using DMA be-
tween the memory regions assigned by the OS to each
device. As shown in Figure 5(a), network packets are
transferred to the page-locked memory of the NIC, then
copied to the page-locked memory of the GPU, and from
there, they are finally transferred to the GPU.

To avoid costly packet copies and context switches,
GASPP uses a single buffer for efficient data sharing be-
tween the NIC and the GPU, as shown in Figure 5(b), by
adjusting the netmap module [20]. The shared buffer is
added to the internal tracking mechanism of the CUDA
driver to automatically accelerate calls to functions, as
it can be accessed directly by the GPU. The buffer is
managed by GASPP through the specification of a pol-
icy based on time and size constraints. This enables real-
time applications to process incoming packets whenever
a timeout is triggered, instead of waiting for buffers to
fill up over a specified threshold. Per-packet buffer al-
location overheads are reduced by transferring several
packets at a time. Buffers consist of fixed-size slots, with
each slot corresponding to one packet in the hardware
queue. Slots are reused whenever the circular hardware
queue wraps around. The size of each slot is 1,536 bytes,
which is consistent with the NIC’s alignment require-
ments, and enough for the typical 1,518-byte maximum
Ethernet frame size.

Although making the NIC’s packet queue directly ac-
cessible to the GPU eliminates redundant copies, this
does not always lead to better performance. As previ-
ous studies have shown [12, 26] (we verify their results
in §7.1), contrary to NICs, current GPU implementations
suffer from poor performance for small data transfers. To
improve PCIe throughput, we batch several packets and
transfer them at once. However, the fixed-size partition-
ing of the NIC’s queue leads to redundant data transfers
for traffic with many small packets. For example, a 64-
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ets would be actively dropped until the missing packet ar-
rives. Although this approach would ensure an in-order
packet flow, it has several disadvantages. First, in sit-
uations where the percentage of out-of-order packets is
high, performance will degrade. Second, if the endpoints
are using selective retransmission and there is a high rate
of data loss in the network, connections would be ren-
dered unusable due to excessive packet drops.
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(Figure 4(a)–(d)). Received packets with no preceding
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ply sequence holes (Figure 4(e)–(f)), and are copied in a
separate buffer in global device memory. If a thread en-
counters an out-of-order packet (i.e., a packet with a se-
quence number larger than the sequence number stored
in the connection table, with no preceding packet in the
current batch after the hashing calculations of §4.2), it
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order all subsequent packets of the same flow contained
in the current batch (if any). This allows the system to
identify sequences of out-of-order packets, as the ones
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ets would be actively dropped until the missing packet ar-
rives. Although this approach would ensure an in-order
packet flow, it has several disadvantages. First, in sit-
uations where the percentage of out-of-order packets is
high, performance will degrade. Second, if the endpoints
are using selective retransmission and there is a high rate
of data loss in the network, connections would be ren-
dered unusable due to excessive packet drops.

To deal with TCP sequence hole scenarios, GASPP
only processes packets with sequence numbers less than
or equal to the connection’s current sequence number
(Figure 4(a)–(d)). Received packets with no preceding
packets in the current batch and with sequence numbers
larger than the ones stored in the connection table im-
ply sequence holes (Figure 4(e)–(f)), and are copied in a
separate buffer in global device memory. If a thread en-
counters an out-of-order packet (i.e., a packet with a se-
quence number larger than the sequence number stored
in the connection table, with no preceding packet in the
current batch after the hashing calculations of §4.2), it
traverses the next packet array and marks as out-of-
order all subsequent packets of the same flow contained
in the current batch (if any). This allows the system to
identify sequences of out-of-order packets, as the ones
shown in the examples of Figure 4(e)–(f). The buffer size
is configurable and can be up to several hundred MBs,
depending on the network needs. If the buffer contains
any out-of-order packets, these are processed right after
a new batch of incoming packets is processed.

Although packets are copied using the very fast
device-to-device copy mechanism, with a memory band-
width of about 145 GB/s, an increased number of out-of-
order packets can have a major effect on overall perfor-
mance. For this reason, by default we limit the num-
ber of out-of-order packets that can be buffered to be
equal to the available slots in a batch of packets. This
size is enough under normal conditions, where out-of-
order packets are quite rare [9], and it can be configured
as needed for other environments. If the percentage of
out-of-order packets exceeds this limit, our system starts
to drop out-of-order packets, causing the corresponding
host to retransmit them.
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device. As shown in Figure 5(a), network packets are
transferred to the page-locked memory of the NIC, then
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GASPP uses a single buffer for efficient data sharing be-
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adjusting the netmap module [20]. The shared buffer is
added to the internal tracking mechanism of the CUDA
driver to automatically accelerate calls to functions, as
it can be accessed directly by the GPU. The buffer is
managed by GASPP through the specification of a pol-
icy based on time and size constraints. This enables real-
time applications to process incoming packets whenever
a timeout is triggered, instead of waiting for buffers to
fill up over a specified threshold. Per-packet buffer al-
location overheads are reduced by transferring several
packets at a time. Buffers consist of fixed-size slots, with
each slot corresponding to one packet in the hardware
queue. Slots are reused whenever the circular hardware
queue wraps around. The size of each slot is 1,536 bytes,
which is consistent with the NIC’s alignment require-
ments, and enough for the typical 1,518-byte maximum
Ethernet frame size.

Although making the NIC’s packet queue directly ac-
cessible to the GPU eliminates redundant copies, this
does not always lead to better performance. As previ-
ous studies have shown [12, 26] (we verify their results
in §7.1), contrary to NICs, current GPU implementations
suffer from poor performance for small data transfers. To
improve PCIe throughput, we batch several packets and
transfer them at once. However, the fixed-size partition-
ing of the NIC’s queue leads to redundant data transfers
for traffic with many small packets. For example, a 64-
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ets would be actively dropped until the missing packet ar-
rives. Although this approach would ensure an in-order
packet flow, it has several disadvantages. First, in sit-
uations where the percentage of out-of-order packets is
high, performance will degrade. Second, if the endpoints
are using selective retransmission and there is a high rate
of data loss in the network, connections would be ren-
dered unusable due to excessive packet drops.

To deal with TCP sequence hole scenarios, GASPP
only processes packets with sequence numbers less than
or equal to the connection’s current sequence number
(Figure 4(a)–(d)). Received packets with no preceding
packets in the current batch and with sequence numbers
larger than the ones stored in the connection table im-
ply sequence holes (Figure 4(e)–(f)), and are copied in a
separate buffer in global device memory. If a thread en-
counters an out-of-order packet (i.e., a packet with a se-
quence number larger than the sequence number stored
in the connection table, with no preceding packet in the
current batch after the hashing calculations of §4.2), it
traverses the next packet array and marks as out-of-
order all subsequent packets of the same flow contained
in the current batch (if any). This allows the system to
identify sequences of out-of-order packets, as the ones
shown in the examples of Figure 4(e)–(f). The buffer size
is configurable and can be up to several hundred MBs,
depending on the network needs. If the buffer contains
any out-of-order packets, these are processed right after
a new batch of incoming packets is processed.

Although packets are copied using the very fast
device-to-device copy mechanism, with a memory band-
width of about 145 GB/s, an increased number of out-of-
order packets can have a major effect on overall perfor-
mance. For this reason, by default we limit the num-
ber of out-of-order packets that can be buffered to be
equal to the available slots in a batch of packets. This
size is enough under normal conditions, where out-of-
order packets are quite rare [9], and it can be configured
as needed for other environments. If the percentage of
out-of-order packets exceeds this limit, our system starts
to drop out-of-order packets, causing the corresponding
host to retransmit them.
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5 Optimizing Performance

5.1 Inter-Device Data Transfer

The problem of data transfers between the CPU and the
GPU is well-known in the GPGPU community, as it re-
sults in redundant cross-device communication. The tra-
ditional approach is to exchange data using DMA be-
tween the memory regions assigned by the OS to each
device. As shown in Figure 5(a), network packets are
transferred to the page-locked memory of the NIC, then
copied to the page-locked memory of the GPU, and from
there, they are finally transferred to the GPU.

To avoid costly packet copies and context switches,
GASPP uses a single buffer for efficient data sharing be-
tween the NIC and the GPU, as shown in Figure 5(b), by
adjusting the netmap module [20]. The shared buffer is
added to the internal tracking mechanism of the CUDA
driver to automatically accelerate calls to functions, as
it can be accessed directly by the GPU. The buffer is
managed by GASPP through the specification of a pol-
icy based on time and size constraints. This enables real-
time applications to process incoming packets whenever
a timeout is triggered, instead of waiting for buffers to
fill up over a specified threshold. Per-packet buffer al-
location overheads are reduced by transferring several
packets at a time. Buffers consist of fixed-size slots, with
each slot corresponding to one packet in the hardware
queue. Slots are reused whenever the circular hardware
queue wraps around. The size of each slot is 1,536 bytes,
which is consistent with the NIC’s alignment require-
ments, and enough for the typical 1,518-byte maximum
Ethernet frame size.

Although making the NIC’s packet queue directly ac-
cessible to the GPU eliminates redundant copies, this
does not always lead to better performance. As previ-
ous studies have shown [12, 26] (we verify their results
in §7.1), contrary to NICs, current GPU implementations
suffer from poor performance for small data transfers. To
improve PCIe throughput, we batch several packets and
transfer them at once. However, the fixed-size partition-
ing of the NIC’s queue leads to redundant data transfers
for traffic with many small packets. For example, a 64-
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ets would be actively dropped until the missing packet ar-
rives. Although this approach would ensure an in-order
packet flow, it has several disadvantages. First, in sit-
uations where the percentage of out-of-order packets is
high, performance will degrade. Second, if the endpoints
are using selective retransmission and there is a high rate
of data loss in the network, connections would be ren-
dered unusable due to excessive packet drops.

To deal with TCP sequence hole scenarios, GASPP
only processes packets with sequence numbers less than
or equal to the connection’s current sequence number
(Figure 4(a)–(d)). Received packets with no preceding
packets in the current batch and with sequence numbers
larger than the ones stored in the connection table im-
ply sequence holes (Figure 4(e)–(f)), and are copied in a
separate buffer in global device memory. If a thread en-
counters an out-of-order packet (i.e., a packet with a se-
quence number larger than the sequence number stored
in the connection table, with no preceding packet in the
current batch after the hashing calculations of §4.2), it
traverses the next packet array and marks as out-of-
order all subsequent packets of the same flow contained
in the current batch (if any). This allows the system to
identify sequences of out-of-order packets, as the ones
shown in the examples of Figure 4(e)–(f). The buffer size
is configurable and can be up to several hundred MBs,
depending on the network needs. If the buffer contains
any out-of-order packets, these are processed right after
a new batch of incoming packets is processed.

Although packets are copied using the very fast
device-to-device copy mechanism, with a memory band-
width of about 145 GB/s, an increased number of out-of-
order packets can have a major effect on overall perfor-
mance. For this reason, by default we limit the num-
ber of out-of-order packets that can be buffered to be
equal to the available slots in a batch of packets. This
size is enough under normal conditions, where out-of-
order packets are quite rare [9], and it can be configured
as needed for other environments. If the percentage of
out-of-order packets exceeds this limit, our system starts
to drop out-of-order packets, causing the corresponding
host to retransmit them.
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time applications to process incoming packets whenever
a timeout is triggered, instead of waiting for buffers to
fill up over a specified threshold. Per-packet buffer al-
location overheads are reduced by transferring several
packets at a time. Buffers consist of fixed-size slots, with
each slot corresponding to one packet in the hardware
queue. Slots are reused whenever the circular hardware
queue wraps around. The size of each slot is 1,536 bytes,
which is consistent with the NIC’s alignment require-
ments, and enough for the typical 1,518-byte maximum
Ethernet frame size.

Although making the NIC’s packet queue directly ac-
cessible to the GPU eliminates redundant copies, this
does not always lead to better performance. As previ-
ous studies have shown [12, 26] (we verify their results
in §7.1), contrary to NICs, current GPU implementations
suffer from poor performance for small data transfers. To
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ets would be actively dropped until the missing packet ar-
rives. Although this approach would ensure an in-order
packet flow, it has several disadvantages. First, in sit-
uations where the percentage of out-of-order packets is
high, performance will degrade. Second, if the endpoints
are using selective retransmission and there is a high rate
of data loss in the network, connections would be ren-
dered unusable due to excessive packet drops.

To deal with TCP sequence hole scenarios, GASPP
only processes packets with sequence numbers less than
or equal to the connection’s current sequence number
(Figure 4(a)–(d)). Received packets with no preceding
packets in the current batch and with sequence numbers
larger than the ones stored in the connection table im-
ply sequence holes (Figure 4(e)–(f)), and are copied in a
separate buffer in global device memory. If a thread en-
counters an out-of-order packet (i.e., a packet with a se-
quence number larger than the sequence number stored
in the connection table, with no preceding packet in the
current batch after the hashing calculations of §4.2), it
traverses the next packet array and marks as out-of-
order all subsequent packets of the same flow contained
in the current batch (if any). This allows the system to
identify sequences of out-of-order packets, as the ones
shown in the examples of Figure 4(e)–(f). The buffer size
is configurable and can be up to several hundred MBs,
depending on the network needs. If the buffer contains
any out-of-order packets, these are processed right after
a new batch of incoming packets is processed.

Although packets are copied using the very fast
device-to-device copy mechanism, with a memory band-
width of about 145 GB/s, an increased number of out-of-
order packets can have a major effect on overall perfor-
mance. For this reason, by default we limit the num-
ber of out-of-order packets that can be buffered to be
equal to the available slots in a batch of packets. This
size is enough under normal conditions, where out-of-
order packets are quite rare [9], and it can be configured
as needed for other environments. If the percentage of
out-of-order packets exceeds this limit, our system starts
to drop out-of-order packets, causing the corresponding
host to retransmit them.
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5 Optimizing Performance

5.1 Inter-Device Data Transfer

The problem of data transfers between the CPU and the
GPU is well-known in the GPGPU community, as it re-
sults in redundant cross-device communication. The tra-
ditional approach is to exchange data using DMA be-
tween the memory regions assigned by the OS to each
device. As shown in Figure 5(a), network packets are
transferred to the page-locked memory of the NIC, then
copied to the page-locked memory of the GPU, and from
there, they are finally transferred to the GPU.

To avoid costly packet copies and context switches,
GASPP uses a single buffer for efficient data sharing be-
tween the NIC and the GPU, as shown in Figure 5(b), by
adjusting the netmap module [20]. The shared buffer is
added to the internal tracking mechanism of the CUDA
driver to automatically accelerate calls to functions, as
it can be accessed directly by the GPU. The buffer is
managed by GASPP through the specification of a pol-
icy based on time and size constraints. This enables real-
time applications to process incoming packets whenever
a timeout is triggered, instead of waiting for buffers to
fill up over a specified threshold. Per-packet buffer al-
location overheads are reduced by transferring several
packets at a time. Buffers consist of fixed-size slots, with
each slot corresponding to one packet in the hardware
queue. Slots are reused whenever the circular hardware
queue wraps around. The size of each slot is 1,536 bytes,
which is consistent with the NIC’s alignment require-
ments, and enough for the typical 1,518-byte maximum
Ethernet frame size.

Although making the NIC’s packet queue directly ac-
cessible to the GPU eliminates redundant copies, this
does not always lead to better performance. As previ-
ous studies have shown [12, 26] (we verify their results
in §7.1), contrary to NICs, current GPU implementations
suffer from poor performance for small data transfers. To
improve PCIe throughput, we batch several packets and
transfer them at once. However, the fixed-size partition-
ing of the NIC’s queue leads to redundant data transfers
for traffic with many small packets. For example, a 64-
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are using selective retransmission and there is a high rate
of data loss in the network, connections would be ren-
dered unusable due to excessive packet drops.

To deal with TCP sequence hole scenarios, GASPP
only processes packets with sequence numbers less than
or equal to the connection’s current sequence number
(Figure 4(a)–(d)). Received packets with no preceding
packets in the current batch and with sequence numbers
larger than the ones stored in the connection table im-
ply sequence holes (Figure 4(e)–(f)), and are copied in a
separate buffer in global device memory. If a thread en-
counters an out-of-order packet (i.e., a packet with a se-
quence number larger than the sequence number stored
in the connection table, with no preceding packet in the
current batch after the hashing calculations of §4.2), it
traverses the next packet array and marks as out-of-
order all subsequent packets of the same flow contained
in the current batch (if any). This allows the system to
identify sequences of out-of-order packets, as the ones
shown in the examples of Figure 4(e)–(f). The buffer size
is configurable and can be up to several hundred MBs,
depending on the network needs. If the buffer contains
any out-of-order packets, these are processed right after
a new batch of incoming packets is processed.

Although packets are copied using the very fast
device-to-device copy mechanism, with a memory band-
width of about 145 GB/s, an increased number of out-of-
order packets can have a major effect on overall perfor-
mance. For this reason, by default we limit the num-
ber of out-of-order packets that can be buffered to be
equal to the available slots in a batch of packets. This
size is enough under normal conditions, where out-of-
order packets are quite rare [9], and it can be configured
as needed for other environments. If the percentage of
out-of-order packets exceeds this limit, our system starts
to drop out-of-order packets, causing the corresponding
host to retransmit them.
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5.1 Inter-Device Data Transfer

The problem of data transfers between the CPU and the
GPU is well-known in the GPGPU community, as it re-
sults in redundant cross-device communication. The tra-
ditional approach is to exchange data using DMA be-
tween the memory regions assigned by the OS to each
device. As shown in Figure 5(a), network packets are
transferred to the page-locked memory of the NIC, then
copied to the page-locked memory of the GPU, and from
there, they are finally transferred to the GPU.

To avoid costly packet copies and context switches,
GASPP uses a single buffer for efficient data sharing be-
tween the NIC and the GPU, as shown in Figure 5(b), by
adjusting the netmap module [20]. The shared buffer is
added to the internal tracking mechanism of the CUDA
driver to automatically accelerate calls to functions, as
it can be accessed directly by the GPU. The buffer is
managed by GASPP through the specification of a pol-
icy based on time and size constraints. This enables real-
time applications to process incoming packets whenever
a timeout is triggered, instead of waiting for buffers to
fill up over a specified threshold. Per-packet buffer al-
location overheads are reduced by transferring several
packets at a time. Buffers consist of fixed-size slots, with
each slot corresponding to one packet in the hardware
queue. Slots are reused whenever the circular hardware
queue wraps around. The size of each slot is 1,536 bytes,
which is consistent with the NIC’s alignment require-
ments, and enough for the typical 1,518-byte maximum
Ethernet frame size.

Although making the NIC’s packet queue directly ac-
cessible to the GPU eliminates redundant copies, this
does not always lead to better performance. As previ-
ous studies have shown [12, 26] (we verify their results
in §7.1), contrary to NICs, current GPU implementations
suffer from poor performance for small data transfers. To
improve PCIe throughput, we batch several packets and
transfer them at once. However, the fixed-size partition-
ing of the NIC’s queue leads to redundant data transfers
for traffic with many small packets. For example, a 64-
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are using selective retransmission and there is a high rate
of data loss in the network, connections would be ren-
dered unusable due to excessive packet drops.
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only processes packets with sequence numbers less than
or equal to the connection’s current sequence number
(Figure 4(a)–(d)). Received packets with no preceding
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larger than the ones stored in the connection table im-
ply sequence holes (Figure 4(e)–(f)), and are copied in a
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quence number larger than the sequence number stored
in the connection table, with no preceding packet in the
current batch after the hashing calculations of §4.2), it
traverses the next packet array and marks as out-of-
order all subsequent packets of the same flow contained
in the current batch (if any). This allows the system to
identify sequences of out-of-order packets, as the ones
shown in the examples of Figure 4(e)–(f). The buffer size
is configurable and can be up to several hundred MBs,
depending on the network needs. If the buffer contains
any out-of-order packets, these are processed right after
a new batch of incoming packets is processed.

Although packets are copied using the very fast
device-to-device copy mechanism, with a memory band-
width of about 145 GB/s, an increased number of out-of-
order packets can have a major effect on overall perfor-
mance. For this reason, by default we limit the num-
ber of out-of-order packets that can be buffered to be
equal to the available slots in a batch of packets. This
size is enough under normal conditions, where out-of-
order packets are quite rare [9], and it can be configured
as needed for other environments. If the percentage of
out-of-order packets exceeds this limit, our system starts
to drop out-of-order packets, causing the corresponding
host to retransmit them.
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The problem of data transfers between the CPU and the
GPU is well-known in the GPGPU community, as it re-
sults in redundant cross-device communication. The tra-
ditional approach is to exchange data using DMA be-
tween the memory regions assigned by the OS to each
device. As shown in Figure 5(a), network packets are
transferred to the page-locked memory of the NIC, then
copied to the page-locked memory of the GPU, and from
there, they are finally transferred to the GPU.

To avoid costly packet copies and context switches,
GASPP uses a single buffer for efficient data sharing be-
tween the NIC and the GPU, as shown in Figure 5(b), by
adjusting the netmap module [20]. The shared buffer is
added to the internal tracking mechanism of the CUDA
driver to automatically accelerate calls to functions, as
it can be accessed directly by the GPU. The buffer is
managed by GASPP through the specification of a pol-
icy based on time and size constraints. This enables real-
time applications to process incoming packets whenever
a timeout is triggered, instead of waiting for buffers to
fill up over a specified threshold. Per-packet buffer al-
location overheads are reduced by transferring several
packets at a time. Buffers consist of fixed-size slots, with
each slot corresponding to one packet in the hardware
queue. Slots are reused whenever the circular hardware
queue wraps around. The size of each slot is 1,536 bytes,
which is consistent with the NIC’s alignment require-
ments, and enough for the typical 1,518-byte maximum
Ethernet frame size.

Although making the NIC’s packet queue directly ac-
cessible to the GPU eliminates redundant copies, this
does not always lead to better performance. As previ-
ous studies have shown [12, 26] (we verify their results
in §7.1), contrary to NICs, current GPU implementations
suffer from poor performance for small data transfers. To
improve PCIe throughput, we batch several packets and
transfer them at once. However, the fixed-size partition-
ing of the NIC’s queue leads to redundant data transfers
for traffic with many small packets. For example, a 64-
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Figure 3: The I/O and processing pipeline.

by transferring several packets at a time to and from
the NIC. The buffers consist of fixed-size slots, with
each slot corresponding to one packet in the hardware
queue. The slots are reused whenever the circular hard-
ware queue wraps-up. Each slot of the packet buffer
is manually configured to be 1,536-byte long, which is
consistent with the NIC’s alignment requirements, and
is enough for the typical 1,518-byte maximum Ethernet
frame size.

Although making the NIC’s packet queue directly ac-
cessible to the GPU eliminates redundant copy opera-
tions, this does not always lead to better performance. As
previous studies have shown [15, 45], contrary to NICs,
current GPU implementations suffer from poor perfor-
mance for small data transfers (we verify their results in
§5). To improve PCIe throughput, we batch several pack-
ets and transfer them at once. However, the fixed-size
partitioning of the NIC’s queue leads to redundant data
transfers for traffic with many small packets. For exam-
ple, a 64b packet consumes only the 1/24 of the available
space in its slot. This introduces an interesting trade-off,
and as we show in §5, there are cases where it is better to
use a second buffer and store the packets back-to-back.
GASPP dynamically switches to the optimal approach by
monitoring the actual utilization of the slots.

The forwarding path requires the transmission of net-
work packets after processing is completed, and this is
achieved using a triple-pipeline solution, as shown in
Figure 3. Both packet reception and transmission, as
well as GPU data transfers and execution, are executed
asynchronously in a multiplexed manner.

3.2 Packet Decoding

Memory alignment is a major factor that affects the
packet decoding process. GPU execution constrains
memory accesses to be memory aligned for certain data
types. For instance, int variables should be stored to
addresses that are multiple of sizeof(int). However,
due to the layered nature of network protocols, it is not
feasible to align the fields of all encapsulated protocol
headers in a packet. Instead, GASPP reads them from the
global memory and stores them in GPU registers. Mod-
ern GPU architectures contain a large number of 32-bit
registers—the GTX480 we used for this work contains
about 480K such registers. Moreover, to utilize the mem-
ory more efficiently, we redesigned the input reading pro-

Hash key : 4 bytes

Connection Table

State : 1 byte

Seq CLIENT : 4 bytes

Seq SERVER : 4 bytes

Next : 4 bytes

Connection Record

Connection Records

Figure 4: Each connection record holds the minimum in-
formation for each connection, and is stored in a locking
chained hash table.

cess to fetch multiple bytes at time. The minimum size
of device memory translations is 32 bytes, but the largest
data type available is 16 bytes, i.e., an int4 variable.
As such, input data are accessed in units of 16 bytes,
decoded to their original data types, and stored to the ap-
propriate registers.

3.3 Stateful Protocol Analysis

The stateful protocol analysis component of GASPP is
designed with minimal complexity so as to maximize
processing speed. This component is responsible for
maintaining the state of TCP connections, and recon-
structing the application-level byte stream by merging
packet payloads and reordering out-of-order packets.

3.3.1 Keeping Connection Records

GASPP uses an array stored in the global device mem-
ory of the GPU for keeping the state of TCP connections.
Each record is 17-bytes long, as shown in Figure 4. A 4-
byte hash of the source and destination IP addresses and
TCP ports is used to handle collisions in the flow classi-
fier. Connection state is stored in a 1-byte variable. The
sequence numbers of the most recently received client
and server segments are stored in two 4-byte fields, and
are updated every time the next in-order segment arrives.
Hash table collisions are handled using a locking chained
hash table with linked lists (described in detail in §3.5).

Note that the connection table can easily fill up
with adversarial partially-established connections, be-
nign connections that stay idle for a long time, or connec-
tions that failed to terminate properly. For this reason, we
periodically remove connection records that have been
idle for more than a certain timeout, set to 60 seconds
by default (configurable). Unfortunately, current GPU
devices do not provide support for measuring real-world
time, so we use a separate GPU kernel that is initiated by
the host periodically according to the timeout value. Its
task is to simply mark each connection record by setting
the first bit of the state variable. If a connection record is
already marked, it is removed from the table. A marked

4
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Figure 8: Data transfer throughput for different packet
sizes when using two dual-port 10GbE NICs.

packet buffer. However, small data transfers to the GPU
incur significant penalties. Table 1 shows that for trans-
fers of less than 4KB, the PCIe throughput falls below
7 Gbit/s. With a large buffer though, the transfer rate to
the GPU exceeds 45 Gbit/s, while the transfer rate from
the GPU to the host decreases to about 25 Gbit/s.1

To overcome the low PCIe throughput, GASPP trans-
fers batches of network packets to the GPU, instead of
one at a time. However, as packets are placed in fixed-
sized slots, transferring many slots at once results in re-
dundant data transfers when the slots are not fully oc-
cupied. As we can see in Table 2, when traffic consists
of small packets, the actual PCIe throughput drops dras-
tically. Thus, it is better to copy small network pack-
ets sequentially into another buffer, rather than transfer
the corresponding slots directly. Direct transfer pays off
only for packet sizes over 512 bytes (when buffer occu-
pancy is over 512/1536 = 33.3%), achieving 47.8 Gbit/s
for 1518-byte packets (a 2.3× speedup).

Consequently, we adopted a simple selective offload-

ing scheme, whereby packets in the shared buffer are
copied to another buffer sequentially (in 16-byte aligned
boundaries) if the overall occupancy of the shared buffer
is sparse. Otherwise, the shared buffer is transferred di-
rectly to the GPU. Occupancy is computed—without any
additional overhead—by simply counting the number of
bytes of the newly arrived packets every time a new in-
terrupt is generated by the NIC.

Figure 8 shows the throughput for forwarding pack-
ets with all data transfers included, but without any GPU
computations. We observe that the forwarding perfor-
mance for 64-byte packets reaches 21 Gbit/s, out of the
maximum 29.09 Gbit/s, while for large packets it reaches
the maximum full line rate. We also observe that the
GPU transfers of large packets are completely hidden on
the Rx+GPU+Tx path, as they are performed in parallel
using the pipeline shown in Figure 6, and thus they do
not affect overall performance. Unfortunately, this is not
the case for small packets (less than 128-bytes), which
suffer an additional 2–9% hit due to memory contention.

1The PCIe asymmetry in the data transfer throughput is related to
the interconnection between the motherboard and the GPUs [12].

7.2 Raw GPU Processing Throughput

Having examined data transfer costs, we now evalu-
ate the computational performance of a single GPU—
exluding all network I/O transfers—for packet decoding,
connection state management, TCP stream reassembly,
and some representative traffic processing applications.

Packet Decoding. Decoding a packet according to its
protocols is one of the most basic packet processing oper-
ations, and thus we use it as a base cost of our framework.
Figure 9(a) shows the GPU performance for fully de-
coding incoming UDP packets into appropriately aligned
structures, as described in §5.2 (throughput is very sim-
ilar for TCP). As expected, the throughput increases as
the number of packets processed in parallel increases.
When decoding 64-byte packets, the GPU performance
with PCIe transfers included, reaches 48 Mpps, which is
about 4.5 times faster than the computational through-
put of the tcpdump decoding process sustained by a sin-
gle CPU core, when packets are read from memory. For
1518-byte packets, the GPU sustains about 3.8 Mpps and
matches the performance of 1.92 CPU cores.

Connection State Management and TCP Stream Re-

assembly. In this experiment we measure the perfor-
mance of maintaining connection state on the GPU, and
the performance of reassembling the packets of TCP
flows into application-level streams. Figure 9(b) shows
the packets processed per second for both operations.
Test traffic consists of real HTTP connections with ran-
dom IP addresses and TCP ports. Each connection
fetches about 800KB from a server, and comprises about
870 packets (320 minimum-size ACKs, and 550 full-
size data packets). We also use a trace-driven work-
load (“Equinix”) based on a trace captured by CAIDA’s
equinix-sanjose monitor [3], in which the average and me-
dian packet length is 606.2 and 81 bytes respectively.

Keeping state and reassembling streams requires sev-
eral hashtable lookups and updates, which result to
marginal overhead for a sufficient number of simultane-
ous TCP connections and the Equinix trace; about 20–
25% on the raw GPU performance sustained for packet
decoding, that increases to 45–50% when the number of
concurrent connections is low. The reason is that smaller
numbers of concurrent connections result to lower par-
allelism. To compare with a CPU implementation, we
measure the equivalent functionality of the Libnids TCP
reassembly library [6], when packets are read from mem-
ory. Although Libnids implements more specific cases of
the TCP stack processing, compared to GASPP, the net-
work traces that we used for the evaluation enforce ex-
actly the same functionality to be exercised. We can see
that the throughput of a single CPU core is 0.55 Mpps,
about 10× lower than the GPU version with all PCIe data
transfers included.
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Figure 8: Data transfer throughput for different packet
sizes when using two dual-port 10GbE NICs.

packet buffer. However, small data transfers to the GPU
incur significant penalties. Table 1 shows that for trans-
fers of less than 4KB, the PCIe throughput falls below
7 Gbit/s. With a large buffer though, the transfer rate to
the GPU exceeds 45 Gbit/s, while the transfer rate from
the GPU to the host decreases to about 25 Gbit/s.1

To overcome the low PCIe throughput, GASPP trans-
fers batches of network packets to the GPU, instead of
one at a time. However, as packets are placed in fixed-
sized slots, transferring many slots at once results in re-
dundant data transfers when the slots are not fully oc-
cupied. As we can see in Table 2, when traffic consists
of small packets, the actual PCIe throughput drops dras-
tically. Thus, it is better to copy small network pack-
ets sequentially into another buffer, rather than transfer
the corresponding slots directly. Direct transfer pays off
only for packet sizes over 512 bytes (when buffer occu-
pancy is over 512/1536 = 33.3%), achieving 47.8 Gbit/s
for 1518-byte packets (a 2.3× speedup).

Consequently, we adopted a simple selective offload-

ing scheme, whereby packets in the shared buffer are
copied to another buffer sequentially (in 16-byte aligned
boundaries) if the overall occupancy of the shared buffer
is sparse. Otherwise, the shared buffer is transferred di-
rectly to the GPU. Occupancy is computed—without any
additional overhead—by simply counting the number of
bytes of the newly arrived packets every time a new in-
terrupt is generated by the NIC.

Figure 8 shows the throughput for forwarding pack-
ets with all data transfers included, but without any GPU
computations. We observe that the forwarding perfor-
mance for 64-byte packets reaches 21 Gbit/s, out of the
maximum 29.09 Gbit/s, while for large packets it reaches
the maximum full line rate. We also observe that the
GPU transfers of large packets are completely hidden on
the Rx+GPU+Tx path, as they are performed in parallel
using the pipeline shown in Figure 6, and thus they do
not affect overall performance. Unfortunately, this is not
the case for small packets (less than 128-bytes), which
suffer an additional 2–9% hit due to memory contention.

1The PCIe asymmetry in the data transfer throughput is related to
the interconnection between the motherboard and the GPUs [12].

7.2 Raw GPU Processing Throughput

Having examined data transfer costs, we now evalu-
ate the computational performance of a single GPU—
exluding all network I/O transfers—for packet decoding,
connection state management, TCP stream reassembly,
and some representative traffic processing applications.

Packet Decoding. Decoding a packet according to its
protocols is one of the most basic packet processing oper-
ations, and thus we use it as a base cost of our framework.
Figure 9(a) shows the GPU performance for fully de-
coding incoming UDP packets into appropriately aligned
structures, as described in §5.2 (throughput is very sim-
ilar for TCP). As expected, the throughput increases as
the number of packets processed in parallel increases.
When decoding 64-byte packets, the GPU performance
with PCIe transfers included, reaches 48 Mpps, which is
about 4.5 times faster than the computational through-
put of the tcpdump decoding process sustained by a sin-
gle CPU core, when packets are read from memory. For
1518-byte packets, the GPU sustains about 3.8 Mpps and
matches the performance of 1.92 CPU cores.

Connection State Management and TCP Stream Re-

assembly. In this experiment we measure the perfor-
mance of maintaining connection state on the GPU, and
the performance of reassembling the packets of TCP
flows into application-level streams. Figure 9(b) shows
the packets processed per second for both operations.
Test traffic consists of real HTTP connections with ran-
dom IP addresses and TCP ports. Each connection
fetches about 800KB from a server, and comprises about
870 packets (320 minimum-size ACKs, and 550 full-
size data packets). We also use a trace-driven work-
load (“Equinix”) based on a trace captured by CAIDA’s
equinix-sanjose monitor [3], in which the average and me-
dian packet length is 606.2 and 81 bytes respectively.

Keeping state and reassembling streams requires sev-
eral hashtable lookups and updates, which result to
marginal overhead for a sufficient number of simultane-
ous TCP connections and the Equinix trace; about 20–
25% on the raw GPU performance sustained for packet
decoding, that increases to 45–50% when the number of
concurrent connections is low. The reason is that smaller
numbers of concurrent connections result to lower par-
allelism. To compare with a CPU implementation, we
measure the equivalent functionality of the Libnids TCP
reassembly library [6], when packets are read from mem-
ory. Although Libnids implements more specific cases of
the TCP stack processing, compared to GASPP, the net-
work traces that we used for the evaluation enforce ex-
actly the same functionality to be exercised. We can see
that the throughput of a single CPU core is 0.55 Mpps,
about 10× lower than the GPU version with all PCIe data
transfers included.
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Figure 8: Data transfer throughput for different packet
sizes when using two dual-port 10GbE NICs.

packet buffer. However, small data transfers to the GPU
incur significant penalties. Table 1 shows that for trans-
fers of less than 4KB, the PCIe throughput falls below
7 Gbit/s. With a large buffer though, the transfer rate to
the GPU exceeds 45 Gbit/s, while the transfer rate from
the GPU to the host decreases to about 25 Gbit/s.1

To overcome the low PCIe throughput, GASPP trans-
fers batches of network packets to the GPU, instead of
one at a time. However, as packets are placed in fixed-
sized slots, transferring many slots at once results in re-
dundant data transfers when the slots are not fully oc-
cupied. As we can see in Table 2, when traffic consists
of small packets, the actual PCIe throughput drops dras-
tically. Thus, it is better to copy small network pack-
ets sequentially into another buffer, rather than transfer
the corresponding slots directly. Direct transfer pays off
only for packet sizes over 512 bytes (when buffer occu-
pancy is over 512/1536 = 33.3%), achieving 47.8 Gbit/s
for 1518-byte packets (a 2.3× speedup).

Consequently, we adopted a simple selective offload-

ing scheme, whereby packets in the shared buffer are
copied to another buffer sequentially (in 16-byte aligned
boundaries) if the overall occupancy of the shared buffer
is sparse. Otherwise, the shared buffer is transferred di-
rectly to the GPU. Occupancy is computed—without any
additional overhead—by simply counting the number of
bytes of the newly arrived packets every time a new in-
terrupt is generated by the NIC.

Figure 8 shows the throughput for forwarding pack-
ets with all data transfers included, but without any GPU
computations. We observe that the forwarding perfor-
mance for 64-byte packets reaches 21 Gbit/s, out of the
maximum 29.09 Gbit/s, while for large packets it reaches
the maximum full line rate. We also observe that the
GPU transfers of large packets are completely hidden on
the Rx+GPU+Tx path, as they are performed in parallel
using the pipeline shown in Figure 6, and thus they do
not affect overall performance. Unfortunately, this is not
the case for small packets (less than 128-bytes), which
suffer an additional 2–9% hit due to memory contention.

1The PCIe asymmetry in the data transfer throughput is related to
the interconnection between the motherboard and the GPUs [12].

7.2 Raw GPU Processing Throughput

Having examined data transfer costs, we now evalu-
ate the computational performance of a single GPU—
exluding all network I/O transfers—for packet decoding,
connection state management, TCP stream reassembly,
and some representative traffic processing applications.

Packet Decoding. Decoding a packet according to its
protocols is one of the most basic packet processing oper-
ations, and thus we use it as a base cost of our framework.
Figure 9(a) shows the GPU performance for fully de-
coding incoming UDP packets into appropriately aligned
structures, as described in §5.2 (throughput is very sim-
ilar for TCP). As expected, the throughput increases as
the number of packets processed in parallel increases.
When decoding 64-byte packets, the GPU performance
with PCIe transfers included, reaches 48 Mpps, which is
about 4.5 times faster than the computational through-
put of the tcpdump decoding process sustained by a sin-
gle CPU core, when packets are read from memory. For
1518-byte packets, the GPU sustains about 3.8 Mpps and
matches the performance of 1.92 CPU cores.

Connection State Management and TCP Stream Re-

assembly. In this experiment we measure the perfor-
mance of maintaining connection state on the GPU, and
the performance of reassembling the packets of TCP
flows into application-level streams. Figure 9(b) shows
the packets processed per second for both operations.
Test traffic consists of real HTTP connections with ran-
dom IP addresses and TCP ports. Each connection
fetches about 800KB from a server, and comprises about
870 packets (320 minimum-size ACKs, and 550 full-
size data packets). We also use a trace-driven work-
load (“Equinix”) based on a trace captured by CAIDA’s
equinix-sanjose monitor [3], in which the average and me-
dian packet length is 606.2 and 81 bytes respectively.

Keeping state and reassembling streams requires sev-
eral hashtable lookups and updates, which result to
marginal overhead for a sufficient number of simultane-
ous TCP connections and the Equinix trace; about 20–
25% on the raw GPU performance sustained for packet
decoding, that increases to 45–50% when the number of
concurrent connections is low. The reason is that smaller
numbers of concurrent connections result to lower par-
allelism. To compare with a CPU implementation, we
measure the equivalent functionality of the Libnids TCP
reassembly library [6], when packets are read from mem-
ory. Although Libnids implements more specific cases of
the TCP stack processing, compared to GASPP, the net-
work traces that we used for the evaluation enforce ex-
actly the same functionality to be exercised. We can see
that the throughput of a single CPU core is 0.55 Mpps,
about 10× lower than the GPU version with all PCIe data
transfers included.
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Figure 8: Data transfer throughput for different packet
sizes when using two dual-port 10GbE NICs.
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sized slots, transferring many slots at once results in re-
dundant data transfers when the slots are not fully oc-
cupied. As we can see in Table 2, when traffic consists
of small packets, the actual PCIe throughput drops dras-
tically. Thus, it is better to copy small network pack-
ets sequentially into another buffer, rather than transfer
the corresponding slots directly. Direct transfer pays off
only for packet sizes over 512 bytes (when buffer occu-
pancy is over 512/1536 = 33.3%), achieving 47.8 Gbit/s
for 1518-byte packets (a 2.3× speedup).

Consequently, we adopted a simple selective offload-

ing scheme, whereby packets in the shared buffer are
copied to another buffer sequentially (in 16-byte aligned
boundaries) if the overall occupancy of the shared buffer
is sparse. Otherwise, the shared buffer is transferred di-
rectly to the GPU. Occupancy is computed—without any
additional overhead—by simply counting the number of
bytes of the newly arrived packets every time a new in-
terrupt is generated by the NIC.

Figure 8 shows the throughput for forwarding pack-
ets with all data transfers included, but without any GPU
computations. We observe that the forwarding perfor-
mance for 64-byte packets reaches 21 Gbit/s, out of the
maximum 29.09 Gbit/s, while for large packets it reaches
the maximum full line rate. We also observe that the
GPU transfers of large packets are completely hidden on
the Rx+GPU+Tx path, as they are performed in parallel
using the pipeline shown in Figure 6, and thus they do
not affect overall performance. Unfortunately, this is not
the case for small packets (less than 128-bytes), which
suffer an additional 2–9% hit due to memory contention.

1The PCIe asymmetry in the data transfer throughput is related to
the interconnection between the motherboard and the GPUs [12].

7.2 Raw GPU Processing Throughput

Having examined data transfer costs, we now evalu-
ate the computational performance of a single GPU—
exluding all network I/O transfers—for packet decoding,
connection state management, TCP stream reassembly,
and some representative traffic processing applications.

Packet Decoding. Decoding a packet according to its
protocols is one of the most basic packet processing oper-
ations, and thus we use it as a base cost of our framework.
Figure 9(a) shows the GPU performance for fully de-
coding incoming UDP packets into appropriately aligned
structures, as described in §5.2 (throughput is very sim-
ilar for TCP). As expected, the throughput increases as
the number of packets processed in parallel increases.
When decoding 64-byte packets, the GPU performance
with PCIe transfers included, reaches 48 Mpps, which is
about 4.5 times faster than the computational through-
put of the tcpdump decoding process sustained by a sin-
gle CPU core, when packets are read from memory. For
1518-byte packets, the GPU sustains about 3.8 Mpps and
matches the performance of 1.92 CPU cores.

Connection State Management and TCP Stream Re-

assembly. In this experiment we measure the perfor-
mance of maintaining connection state on the GPU, and
the performance of reassembling the packets of TCP
flows into application-level streams. Figure 9(b) shows
the packets processed per second for both operations.
Test traffic consists of real HTTP connections with ran-
dom IP addresses and TCP ports. Each connection
fetches about 800KB from a server, and comprises about
870 packets (320 minimum-size ACKs, and 550 full-
size data packets). We also use a trace-driven work-
load (“Equinix”) based on a trace captured by CAIDA’s
equinix-sanjose monitor [3], in which the average and me-
dian packet length is 606.2 and 81 bytes respectively.

Keeping state and reassembling streams requires sev-
eral hashtable lookups and updates, which result to
marginal overhead for a sufficient number of simultane-
ous TCP connections and the Equinix trace; about 20–
25% on the raw GPU performance sustained for packet
decoding, that increases to 45–50% when the number of
concurrent connections is low. The reason is that smaller
numbers of concurrent connections result to lower par-
allelism. To compare with a CPU implementation, we
measure the equivalent functionality of the Libnids TCP
reassembly library [6], when packets are read from mem-
ory. Although Libnids implements more specific cases of
the TCP stack processing, compared to GASPP, the net-
work traces that we used for the evaluation enforce ex-
actly the same functionality to be exercised. We can see
that the throughput of a single CPU core is 0.55 Mpps,
about 10× lower than the GPU version with all PCIe data
transfers included.
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