
Efficient Software Packet Processing
on Heterogeneous and Asymmetric Hardware

Architectures

Lazaros Koromilas
FORTH

koromil@ics.forth.gr

Giorgos Vasiliadis
FORTH

gvasil@ics.forth.gr

Ioannis Manousakis
Rutgers University

ioannis.manousakis
@cs.rutgers.edu

Sotiris Ioannidis
FORTH

sotiris@ics.forth.gr

ABSTRACT
Heterogeneous and asymmetric computing systems are com-
posed by a set of different processing units, each with its own
unique performance and energy characteristics. Still, the
majority of current network packet processing frameworks
targets only a single device (the CPU or some accelerator),
leaving other processing resources idle. In this paper, we
propose an adaptive scheduling approach that supports het-
erogeneous and asymmetric hardware, tailored for network
packet processing applications. Our scheduler is able to re-
spond quickly to dynamic performance fluctuations that oc-
cur at real-time, such as traffic bursts, application overloads
and system changes. The experimental results show that our
system is able to match the peak throughput of a diverse set
of packet processing workloads, while consuming up to 3.5x
less energy.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations; C.1.3 [Processor Architectures]: Other Ar-
chitecture Styles—heterogeneous (hybrid) systems

Keywords
Packet processing; packet scheduling; OpenCL; heteroge-
neous processing

1. INTRODUCTION
The advent of commodity heterogeneous systems (i.e. sys-

tems that utilize multiple processor types, typically CPUs
and GPUs) has motivated network developers and researchers
to exploit alternative architectures, and utilize them in or-
der to build high-performance and scalable network packet

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ANCS’14, October 20–21, 2014, Los Angeles, CA, USA.
Copyright 2014 ACM 978-1-4503-2839-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2658260.2658265.

processing systems [19, 22, 23, 32, 40], as well as systems op-
timized for lower power envelop [29]. Unfortunately, the
majority of these approaches often target a single compu-
tational device 1, such as the multicore CPU or a powerful
GPU, leaving other devices idle. Developing an application
that can utilize each and every available device effectively
and consistently, across a wide range of diverse applications,
is highly challenging.

Heterogeneous, multi-device systems typically offer sys-
tem designers different optimization opportunities that offer
inherent trade-offs between energy consumption and various
performance metrics — in our case, forwarding rate and la-
tency. The challenge to fully tap a heterogeneous system, is
to effectively map computations to processing devices, and
do so as automated as possible. Previous work attempted
to solve this problem by developing load-balancing frame-
works that automatically partition the workload across the
devices [13,24,27]. These approaches either assume that all
devices provide equal performance [24] or require a series
of small execution trials to determine their relative perfor-
mance [13,27]. The disadvantage of such approaches is that
they have been designed for applications that take as in-
put constant streaming data, and as a consequence, they
are slow to adapt when the input data stream varies. This
makes them extremely difficult to apply to network infras-
tructure, where traffic variability [12, 28] and overloads [14]
significantly affect the utilization and performance of net-
work applications.

In this paper, we propose an adaptive scheduling approach
that exploits highly heterogeneous systems and is tailored
for network packet processing applications. Our proposed
scheduler is designed to explicitly account for the hetero-
geneity of (i) the hardware, (ii) the applications and (iii) the
incoming traffic. Moreover, the scheduler is able to quickly
respond to dynamic performance fluctuations that occur at
run-time, such as traffic bursts, application overloads and
system changes.

The contributions of our work are:

• We characterize the performance and power consump-
tion of several representative network applications on

1Hereafter, we use the term device to refer to computational
devices, such as CPUs and GPUs, unless explicitly stated
otherwise.

Shared L3 cache

Shared L3 cache

I/O hubProcessor cores

Processor cores

Discrete GPU

Network adapter Network adapter

Integrated GPU
D

R
A

M

D
R

A
M

(a) (b)

CPU

CPU

Figure 1: Architectural comparison of packet pro-
cessing on an (a) integrated and (b) discrete GPU.

heterogeneous, commodity multi-device systems. We
show how to combine different devices (i.e. CPUs, in-
tegrated GPUs and discrete GPUs) and quantify the
problems that arise by their concurrent utilization.

• We show that the performance ranking of different
devices has wide variations when executing different
classes of network applications. In some cases, a de-
vice can be the best fit for one application, and, at the
same time, the worst for another.

• Motivated by the previous deficiency, we propose a
scheduling algorithm that, given a single application,
effectively utilizes the most efficient device (or group
of devices) based on the current conditions. Our pro-
posed scheduler is able to respond to dynamic perfor-
mance fluctuations —such as traffic bursts, application
overloads and system changes— and provide consis-
tently good performance.

2. BACKGROUND
Typical commodity hardware architectures offer hetero-

geneity at three levels: (i) at the traditional x86 CPU ar-
chitecture, (ii) at an integrated GPU packed on the same
processor die, and (iii) at a discrete high-end GPU. All
three devices have unique performance and energy char-
acteristics. Overall, the CPU cores are good at handling
branch-intensive packet processing workloads, while discrete
GPUs tend to operate efficiently in data-parallel workloads.
Between those two is the integrated GPU which features
high energy efficiency without significantly compromising
the processing rate or latency. Typically, the discrete GPU
and the CPU communicate over the PCIe bus and they do
not share the same physical address space (although this
might change in the near future). The integrated GPU on
the other hand, shares the LLC cache and the memory con-
troller of the CPU.

2.1 Architectural Comparison
In Figure 1 (right side), we illustrate the packet process-

ing scheme that has been used by approaches that utilize a
discrete GPU [22,37–40]. The majority of these approaches
perform a total of seven steps (assuming that a packet batch
is already in the NICs internal queue): the DMA transac-
tion between the network interface and the main memory,
the transfer of the packets to the I/O region which corre-
sponds to the discrete GPU (this operation traditionally

invokes CPU caches, but the cache pollution can be min-
imized by using non-temporal data move instructions) the
DMA transaction towards the memory space of the GPU,
the actual computational GPU kernel itself and the transfer
of the results back to the host memory. All data trans-
fers must operate on fairly large chunks of data, due to the
PCIe interconnect inability to handle small data transfers
efficiently. The equivalent architecture, using an integrated
GPU that is packed on the CPU die, is illustrated on the left
side of Figure 1. The advantage of this approach is that the
integrated GPU and CPU share the same physical memory
address space, which allows in-place data processing. This
results to fewer data transfers and hence lower processing
latency. This scheme also has lower power consumption, as
the absence of the I/O Hub alone saves 20W of energy, when
compared to the discrete GPU setup of Figure 1(b).

2.2 Quantitative Comparison
The integrated GPU (such as the HD Graphics 4000 we

used in this work) has higher energy efficiency as a compu-
tational device, compared to modern processors and GPUs.
The reason is threefold. First, integrated GPUs are typically
implemented with low-power, 3D transistor manufacturing
process. Second, they have a simple internal architecture
and no dedicated main memory. Third, they match the com-
putational requirements of applications, in which the main
bottleneck is the I/O interface and thus, a discrete GPU
would be under-utilized. In Section 3.3.2 we show, in more
detail, the energy efficiency of these devices when executing
typical network packet processing workloads.

3. SYSTEM SETUP
We will now describe the hardware setup, and our power

instrumentation and measurement scheme. Our scheme is
capable of accurately measuring the power consumption of
various hardware components, such as the CPU and GPU,
in real time. We also describe the packet processing appli-
cations that we used for this work and show how we paral-
lelized them using OpenCL, to efficiently execute in each of
the three processing devices.

3.1 Hardware Platform
Our base system is equipped with one Intel Core i7-3770

Ivy Bridge processor and one NVIDIA GeForce GTX 480
graphics card. The processor contains four CPU cores op-
erating at 3.4GHz, with hyper-threading support, resulting
in eight hardware threads, and an integrated HD Graph-
ics 4000 GPU. Overall, our system contains three different,
heterogeneous, computational devices: one CPU, one inte-
grated GPU and one discrete GPU. The system is equipped
with 8GB of dual-channel DDR3-1333 DRAM with 25.6 GB/s
throughput. The L3 cache (8MB) and the memory con-
troller are shared across the CPU cores and the integrated
GPU. Each CPU core is equipped with 32KB of L1 cache
and 256KB of L2 cache. The GTX 480 has 480 cores in 15
multiprocessors and 1280 MB of GDDR5 memory. The HD
Graphics 4000 has 16 execution units, a 64-hardware thread
dispatcher and a 100 KB texture cache. The maximum esti-
mated performance of this GPU is rated at 294 GFlop/s on
the maximum operating frequency of 1150 Mhz [7]. While
Intel does not provide it’s Thermal Design Power (TDP)
limit, we estimate that it is close to 17 Watt. For the whole
processor die the TDP is 77 Watt.

Processor cores

Discrete GPU

Network adapter

Miscelaneous

Integrated GPU

DRAM

CPU

5V

12V

12V

3.3VPo
w

e
r

su
p

p
ly

USB interface40 Ksamples ADC Running average

Dedicated data conversion board

Current sensor

(Hall effect)

Figure 2: Our power instrumentation scheme. We
use four current sensors to monitor (real-time) the
consumption of the CPU, GPU, DRAM and miscel-
laneous motherboard peripherals.

We notice that our hardware platform exposes an inter-
esting design trade-off: even though the on-chip GPU has
fewer resources (i.e. hardware threads, execution units, reg-
ister file) than a high-end discrete graphics card, it is directly
connected to the CPU and the main memory via a fast on-
chip ring bus, and has much lower power consumption. As
we will see in Section 3.3.2, this design is well suited for ap-
plications in which the overall performance is limited by the
I/O subsystem, and not by the computational capacity.

3.1.1 Power Instrumentation
To accurately measure the power consumption of our hard-

ware system, we have designed the hardware instrumenta-
tion scheme shown in Figure 2. Our scheme is capable of
high-rate, 1 KHz measurement, and also provides a break-
down of system consumption into four distinct components:
Processor, Memory, Network and Discrete GPU.

Specifically, we utilize four high-precision Hall effect cur-
rent sensors to constantly monitor the three ATX power-
supply power lines (+12.0a, +12.0b +5.0, +3.3 Volts). The
sensors [2], coupled with the interface kit [1], costs less than
110$. The analog sensor values are converted into digital
values, and transmitted over a USB interface to a dedicated
data logger board. The data logger includes a high-speed
analog-to-digital converter (ADC) operating at a frequency
of 40 KHz. The output data produced by the ADC are con-
tinuously read by a custom firmware running on the board,
which also applies a running-average filter and periodically
interrupts the processor with a rate of 1 KHz to report the
values. A daemon, running in our base server, periodically
collects the measurements from the data logger, and makes
them available for monitoring and control. We take advan-
tage of the physical layout to achieve a breakdown of the to-
tal power consumption: the 12Va line powers the processor,
the 12Vb powers the GPU, the 5V line powers the memory,
and the 3.3V line powers the rest of the peripherals on the
motherboard. The 12Va line also feeds the 10GbE NICs.
To calculate their power consumption, we use a utilization-
based model.

3.2 Workloads
We implemented four typical packet processing applica-

tions, using OpenCL [3], that are typically deployed in net-
work appliances and involve both computational and memory-
intensive behavior.

3.2.1 IPv4 Packet Forwarding
An IP packet forwarder is one of the simplest packet pro-

cessing applications. Its main function is the reception and
transmission of network packets from one network interface
to another. Before packet transmission, the forwarder checks
the integrity of the IP header, drops corrupted packets and
rewrites the destination IP address according to the spec-
ified configuration. Other functions include decrementing
the Time To Live (TTL) field. If the TTL field of an incom-
ing packet is zero, the packet is dropped and an ICMP Time
Exceeded message is transmitted to the sender. We imple-
mented the RadixTrie lookup algorithm and used a routing
table of 17,000 entries.

3.2.2 Deep Packet Inspection
Deep packet inspection (DPI) is a common operation in

network traffic processing applications. It is typically used
in traffic classification and shaping tools, as well as in net-
work intrusion detection and prevention systems. We ported
a DFA implementation of the Aho-Corasick algorithm [10]
for string searching, and used the content patterns (about
10,000 fixed strings) of the latest Snort [5] distribution, which
we compiled into the same state machine.

3.2.3 Packet Hashing
Packet hashing is used in redundancy elimination and in-

network caching systems [9, 11]. Redundancy elimination
systems typically maintain a “packet store” and a “finger-
print table” (that maps content fingerprints to packet-store
entries). On reception of a new packet, the packet store is
updated, and the fingerprint table is checked to determine
whether the packet includes a significant fraction of content
cached in the packet store; if yes, an encoded version that
eliminates this (recently observed) content is transmitted.
We have implemented the MD5 algorithm [31], since it has
low probability of collisions and is also commonly used for
checking data integrity [4] and deduplication [25].

3.2.4 Encryption
Encryption is used by protocols and services, such as SSL,

VPN and IPsec, for securing communications by authenti-
cating and encrypting the IP packets of a communication
session. We implemented AES-CBC encryption using a dif-
ferent 128-bit key for each connection. This is a representa-
tive form of computational-intensive packet processing.

3.3 Packet-processing Parallelization
To execute the packet processing applications uniformly

across the different devices of our base system, we imple-
mented them on top of OpenCL 1.1. Our aim was to de-
velop a portable implementation of each application, that
can also run efficiently on each device. We used the In-
tel OpenCL runtime 2.0 for the Core processor family, Intel
HD Graphics driver 9.17, as well as the OpenCL implemen-
tation that comes with NVIDIA CUDA Toolkit 5.0. Due to
space constraints we omit the full details of our implemen-
tation, and we only list the most important design aspects
and optimizations that we addressed.

Each of our representative applications, is implemented
as a different compute kernel. In OpenCL, an instance of a
compute kernel is called a work-item; multiple work-items
are grouped together and form work-groups. We followed a
thread-per-packet approach, similar to [17, 19, 40], and as-

signed each work-item to handle (at least) one packet; each
work-item reads the packet from the device memory and
performs the processing. As different work-groups can be
scheduled to run concurrently on different hardware cores,
the choice of work-groups number provides an interesting
trade-off: a large number of work-groups provides more flex-
ibility in scheduling, but also increases the switching over-
head. GPUs contain a significantly faster thread scheduler,
thus it is better to spawn a large number of work-groups
to hide memory latencies: while a group of threads waits
for data fetching, another group can be scheduled for exe-
cution. CPUs, on the other hand, perform better when the
number of different work-groups is equal to the number of
the underlying hardware cores.

When executing compute kernels on the discrete GPU,
the first thing to consider is how to transfer the packets to
and from the device. Discrete GPUs have a memory space
that is physically independent from the host. To execute a
task, explicit data transfers between the host and the de-
vice are required. The transfers are performed via DMA,
hence the host memory region should be page-locked to pre-
vent page swapping during the transfers. Additionally, a
data buffer required for the execution of a computing ker-
nel has to be created and associated to a specific context ;
devices from different platforms (i.e. heterogeneous) cannot
belong to the same context in the general case, and thus,
cannot share data directly.2 To overcome this, we explicitly
copied received packets to a separate, page-locked, buffer
that has been allocated from the discrete GPU’s context
and can be transferred safely via DMA. The data transfers
and the GPU execution are performed asynchronously, to
allow overlap of computation and communication and fur-
ther improve parallelism. Whenever a batch of packets is
transferred and/or processed by the GPU, newly arriving
packets are copied to another batch in a pipeline fashion.
We notice that different applications require different data
transfers across the discrete GPU. For instance, DPI and
MD5 do not alter the contents of the packets, hence it is not
needed to transfer them back; they are already stored in the
host memory. Packets have to be transferred back, when
processed by the AES and the IP Forwarder applications, as
both applications alter their contents. Still, the IP Packet
Forwarder processes and modifies only the packet headers.
In order to prevent redundant data transfers, we only trans-
fer the headers of each packet to and from the GTX 480,
for the IP Packet Forwarder case; the packet headers are
stored separately in sequential header descriptors (128 bytes
each), a technique already supported by modern NICs [6].
Nevertheless, these data transfers are unnecessary when the
processing is performed by the CPU or the integrated GPU,
as both devices have direct access to the host memory. To
avoid the extra copies, we explicitly mapped —using the
clEnqueueMapBuffer() function— the corresponding mem-
ory buffers directly to the CPU and the integrated GPU.

Accessing data in the global memory is critical to the per-
formance of all of our representative applications. GPUs
require column-major order to enable memory loads to be
more effective, the so-called memory coalescing [30]. CPUs
require row-major order to preserve the cache locality within
each thread. As the impacts of the two patterns are con-
tradictory, we first tried to transpose the whole packets in

2Context sharing is available in the Intel OpenCL imple-
mentation [8], but this does not include our discrete GPU.

GPU memory only, and benefit from memory coalescing.
The overall costs, however, pay off only when accessing the
memory with small vector types (i.e. char4); when using
the int4 type though, the overhead was not amortized by
the resulting memory coalescing gains, in none of our rep-
resentative applications. Besides the GPU gains, the CPU
enables the use of SIMD units when using the int4 type,
because the vectorized code is translated to SIMD instruc-
tions [33]. To that end, we redesigned the input process and
access the packets using int4 vector types in a row-major
order, for both the CPU and the GPU.

Finally, OpenCL provides a memory region, called local
memory, that is shared by all work-items of a work-group.
The local memory is implemented as an on-chip memory on
GPUs, which is much faster than the off-chip global mem-
ory. As such, GPUs take advantage of local memory to
improve performance. By contrast, CPUs do not have a
special physical memory designed as local memory. As a
result, all memory objects in local memory are mapped into
sections of global memory, and will have a negative impact
on performance. To overcome this, we explicitly stage data
to local memory only when performing computations on the
discrete GPU.

3.3.1 Batch Processing
Network packets are placed into batches in the same or-

der they are received. In case two (or more) devices are
used simultaneously though, it is possible to be reordered.
One solution to prevent packet reordering is to synchronize
the devices using a barrier. By doing so, we enforce all the
involved devices to execute in a lockstep fashion. Unfor-
tunately, this would reduce the overall performance, as the
fast devices will always wait for the slow ones. This can
be a major disadvantage in setups where the devices have
large computational capacity discrepancies. To overcome
this limitation, we first classify incoming packets to flows
before creating the batches (by hashing the 5-tuple of each
packet), and ensure that packets that belong to the same
flow will never be placed in batches that will execute simul-
taneously to different devices.

Batches are delivered to the corresponding devices, by the
CPU core that is responsible to handle the traffic of each net-
work interface. Each device has a different queue —that is
allocated within the device’s context— where newly arrived
batches of packets are inserted.

3.3.2 Performance Characterization
In this section we present the performance achieved by

our applications. Specifically, we measure the sustained
throughput, latency and power consumption for each of the
devices that are available in our base system. We use a
synthetic packet trace and a different packet batch size each
time. To accurately measure the power spent for each device
to process the corresponding batch, we measure the power
consumption of all the components that are required for the
execution. For instance, when we use the GPU for packet
processing, the CPU has to collect the necessary packets,
transfer them to the device (via DMA), spawn a GPU kernel
execution, and transfer the results back to the main memory.
Instead, when we use the CPU (or the integrated GPU), we
power-off the discrete GPU, as it is not needed. By mea-
suring the power consumption of the right components each
time, we can accurately compare different devices.

0

50

100

150

200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

1

10

100

1000
T
h
ro

u
g
h
p
u
t

(G
b
it

/s
)

i7 core
i7 CPU

HD Graphics
GTX 480

16 64 256 1k 4k 16k 64k
0.01

0.1

1

10

La
te

n
cy

 (
m

s)

Number of packets

(a) IPv4 Packet Forwarding

0

50

100

150

200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

0

5

10

15

20

25

30

35

40

T
h
ro

u
g
h
p
u
t

(G
b
it

/s
)

i7 core
i7 CPU

HD Graphics
GTX 480

16 64 256 1k 4k 16k 64k
0.01

0.1

1

10

100

1000

La
te

n
cy

 (
m

s)

Number of packets

(b) MD5

0

50

100

150

200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

0

5

10

15

20

25

30

T
h
ro

u
g
h
p
u
t

(G
b
it

/s
) i7 core

i7 CPU
HD Graphics

GTX 480

16 64 256 1k 4k 16k 64k
0.01

0.1

1

10

100

1000

La
te

n
cy

 (
m

s)

Number of packets

full / no matches

(c) DPI

0

50

100

150

200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t

(G
b
it

/s
)

i7 core
i7 CPU

HD Graphics
GTX 480

16 64 256 1k 4k 16k 64k
0.01

0.1

1

10

100

1000
La

te
n
cy

 (
m

s)

Number of packets

(d) AES-CBC

Figure 3: Throughput, latency and power consumption for (a) IPv4 packet forwarding, (b) MD5 hashing,
(c) Deep Packet Inspection, and (d) AES-CBC 128-bit encryption.

0

50

100

150

200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

1

10

100

1000
T
h
ro

u
g
h
p
u
t

(G
b
it

/s
)

i7 CPU + HD Graphics
i7 CPU + GTX 480

HD Graphics + GTX 480
All

16 64 256 1k 4k 16k 64k
0.01

0.1

1

10

La
te

n
cy

 (
m

s)

Number of packets

(a) IPv4 Packet Forwarding

0

50

100

150

200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

0

10

20

30

40

50

60

70

T
h
ro

u
g
h
p
u
t

(G
b
it

/s
)

i7 CPU + HD Graphics
i7 CPU + GTX 480

HD Graphics + GTX 480
All

16 64 256 1k 4k 16k 64k
0.01

0.1

1

10

100

1000

La
te

n
cy

 (
m

s)

Number of packets

(b) MD5

0

50

100

150

200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t

(G
b
it

/s
) i7 CPU + HD Graphics

i7 CPU + GTX 480
HD Graphics + GTX 480

All

16 64 256 1k 4k 16k 64k
0.01

0.1

1

10

100

1000

La
te

n
cy

 (
m

s)

Number of packets

full / no matches

(c) DPI

0

50

100

150

200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(G
b
it

/s
)

i7 CPU + HD Graphics
i7 CPU + GTX 480

HD Graphics + GTX 480
All

16 64 256 1k 4k 16k 64k
0.01

0.1

1

10

100

1000
La

te
n
cy

 (
m

s)

Number of packets

(d) AES-CBC

Figure 4: Throughput, latency and power consumption for (a) IPv4 packet forwarding, (b) MD5 hashing,
(c) Deep Packet Inspection, and (d) AES-CBC 128-bit encryption, for combinations of devices.

Figures 3 and 4 summarize the characteristics of each of
these types of packet processing during a “solo” run (one de-
vice runs the packet-processing workload, while all the other
devices are idle) and a“combo”run (more devices contribute
to the packet-processing) respectively. In the combo run, the
batch of packets needs to be further split into sub-batches,
of different size, that will be offloaded to the correspond-
ing devices. We have exhaustively benchmarked all possible
combinations of sub-batches for each packet batch and pair
of devices. Due to space constraints though, we plot only
the best achieved performance for each case. In the case of
the i7 processor, we include the results when using a single
core only (“i7 core”), as well as all four cores in parallel (“i7
CPU”). Note that in the IPv4 forwarding application, the
reported throughput corresponds to the size of full packet
data, even though only their headers are processed in sepa-
rate header buffers, as we described in Section 3.3.

We observe that the throughput always improves when
we increase the batch size. However, different applications
(as well as the same application on different devices) require
a different batch size to reach their maximum throughput.
Memory intensive applications (such as the IPv4 router)
benefit more from large batch sizes, while computationally
intensive applications (i.e. AES) require smaller batch sizes
to reach the peak throughput. This is mainly the effect
of cache sizes in the memory hierarchy of the specific de-
vice. For example, for the DPI in Figure 3(c) we see that a
working set larger than 512 packets results in lower overall
throughput for the CPU. Increasing the batch size, after the
maximum throughput has been reached, results to linear in-
creases in latency (as expected). Furthermore, we can see
that the sustained throughput is not consistent across dif-
ferent devices. For example, the discrete GPU seems to be a
good choice when performing DPI and AES on large batch
of packets. The integrated GPU provides the most energy-
efficient solution for all applications (even when using a sin-
gle CPU-core only), however it cannot surpass the through-
put of other devices (except in the case of DPI where it
exceeds the discrete GPU’s throughput for match-free traf-
fic). The CPU is the best option for latency-aware setups,
as it can sustain processing times below 0.1 ms for all ap-
plications. In general though, there is not a clear ranking
between the devices, not even a single winner. As a matter
of fact, some devices can be the best fit for some applica-
tions, and at the same time the worst option for another
(as observed in the case of AES and IPv4 forwarding when
executing on the GTX 480). Besides, we can see that the
traffic characteristics can affect the performance of an ap-
plication significantly. As we can see in Figure 3(c), the
performance of DPI has large fluctuations; when there is no
match in the input traffic the throughput achieved by all
devices is much higher (even four to five times for the CPU)
over the case where the matches overwhelm the traffic. The
reason behind this is that as the number of pattern matches
decreases, the DFA algorithm needs to access only a few dif-
ferent states. These states are stored in the cache memory,
hence the overall throughput increases due to the increased
cache hit ratio.

When pairing different compute devices, the resulting per-
formance does not yield the aggregate throughput of the
individual devices. For example, when executing MD5, the
CPU yields 36 Gbit/s and the integrated GPU yields 28 Gbit/s,
while when paired together they achieve only 54 Gbit/s. The

reason behind this deviation is two-fold. First, when using
devices that are packed in the same processor (i.e. the CPU
and the integrated GPU), their computational capacity is
capped by the internal power control unit, as they exceed
the thermal constraints (TDP) of the processor. Second,
they encounter resource interference, as they share the same
last level cache. Actually, this is the case for all pair of
devices, except in the IP Forwarding case, where the CPU
alone reaches the physical limits of the memory bandwidth,
hence any extra device does not help to increase the overall
throughput. When using all three devices, we can see that
the overall throughput is always lesser (between 17% and
22%) than the throughput of the individual devices, as a
result of high memory congestion.

3.3.3 Energy efficiency
Figure 5 shows the energy efficiency of each packet pro-

cessing application, on each computational device. The lines
show the Joules that are needed to process one Mbit of data
(the lower the better), under different batch size configura-
tions (x-axis). We observe that IPv4 forwarding ends up (for
the larger batch sizes) to be the most efficient application
when using the i7 CPU or the integrated HD Graphics GPU,
and at the same time the worst when utilizing the GTX 480
discrete GPU. We also show the efficiency of forcing the sys-
tem to use only one of the four i7 cores for comparison pur-
poses. MD5 follows the same pattern, with the gap between
the integrated and discrete GPU closing in. For the case of
DPI (Deep Packet Inspection) and AES encryption in CBC
mode, we can see that all devices converge to about the same
efficiency; such large batch sizes, however, negatively affect
latency and may be impractical to use for certain scenarios.
Smaller batch sizes almost always have a clear winner.

In Figure 6 we see how different combinations of devices
perform with respect to energy efficiency. Compared to
single-device configurations, the combinations always per-
form worse, even though they deliver higher aggregate through-
put. Among all, the least efficient device combination is the
pair of the two GPUs (HD Graphics and GTX 480), espe-
cially for small batch sizes where they remain under-utilized.
On the other hand, the most efficient combination is the i7
CPU paired with its integrated HD Graphics, which deliver
both low consumption and acceptable throughput.

4. EFFICIENCY VIA SCHEDULING
The performance characterization in Figures 3 and 4 in-

dicates that there is not a clear ranking between the bench-
marked computational devices. As a consequence of their
architectural characteristics, some devices perform better
under different metrics, while these metrics may also deviate
significantly among different applications. As an example,
the GTX 480 achieves the best performance for the AES en-
cryption but the worst performance for the IP forwarding.
Additionally, the traffic characteristics can affect the per-
formance achieved by a device. For example, DPI achieves
the best performance (28 Gbit/s) on the i7 CPU while there
are no matches on the input traffic. On the contrary, the
rate falls significantly (at 6 Gbit/s), when the matches over-
whelm the traffic (which is half of the performance sustained
by a GTX 480).

With these observations in mind, we propose an online
scheduler that increases the efficiency of packet processing
on such highly heterogeneous systems. Our scheduler ex-

plores the parameter space and selects a subset of the avail-
able computational devices to handle the incoming traffic for
a given kernel. The goal of our method is to minimize: (i) en-
ergy consumption, and (ii) latency, or maximize throughput.
Our scheduler consists of two phases. The first phase per-
forms an initial, coarse profiling of each new application.
In this phase, the scheduler learns the performance, latency
and energy response of each device, in respect to the packet

0.001

0.01

0.1

1

16 64 256 1k 4k 16k 64k

E
ffi

ci
e
n
cy

 (
Jo

u
le

/M
b
it

)

Number of packets

DPI

i7 core
i7 CPU

HD Graphics
GTX 480

16 64 256 1k 4k 16k 64k

0.001

0.01

0.1

1

Number of packets

AES-CBC

0.001

0.01

0.1

1

16 64 256 1k 4k 16k 64k

E
ffi

ci
e
n
cy

 (
Jo

u
le

/M
b
it

)

IPv4 forwarding

16 64 256 1k 4k 16k 64k

0.001

0.01

0.1

1

MD5

no matches

Figure 5: Energy efficiency of different computa-
tional devices.

0.001

0.01

0.1

1

16 64 256 1k 4k 16k 64k

E
ffi

ci
e
n
cy

 (
Jo

u
le

/M
b
it

)

Number of packets

DPI

i7 CPU + HD Graphics
i7 CPU + GTX 480

HD Graphics + GTX480
All

16 64 256 1k 4k 16k 64k

0.001

0.01

0.1

1

Number of packets

AES-CBC

0.001

0.01

0.1

1

16 64 256 1k 4k 16k 64k

E
ffi

ci
e
n
cy

 (
Jo

u
le

/M
b
it

)

IPv4 forwarding

16 64 256 1k 4k 16k 64k

0.001

0.01

0.1

1

MD5

no matches

Figure 6: Energy efficiency of different combinations
of computational devices.

batching as well as the partitioning of each batch on every
device. In the second phase, the scheduler decides the best
combination of available devices that meet the desired tar-
get (e.g. maximize processing throughput) and keeps track
of the incoming traffic in order to adapt the batching and
the batch partitioning.

4.1 Initializing the Scheduler
We first discover the best-performing configuration for

each device; we then use these per-device configurations to
also benchmark the remaining configurations comprised by
combinations of devices. For each combination of our pa-
rameter space, we measure the sustained throughput, la-
tency and power, and store them to a dictionary; the dic-
tionary will be used at runtime in order to acquire the most
suitable configuration. The time needed to compute the
whole table requires 90–360 seconds, using a time quantum
of 40 ms or a minimum of two samples, whichever comes
last, for each configuration.

We use a different binary tree to store each achieved out-
come (i.e. throughput, latency, and power) for each configu-
ration. The motivation behind this is to allow throughput-,
latency- and energy-aware applications, to find quickly the
most appropriate configuration accordingly. At runtime, the
corresponding metric (i.e. throughput, latency, and power) is
used to acquire the most suitable configuration. The reason
we use a binary tree is to allow fast insertions/updates and
(more importantly) support both exact and nearest neighbor
searches.

Each node in the binary tree holds all the configurations
that correspond to the requested result. In order to acquire
quickly the most efficient configuration, the configurations,
within each node, are further ordered using two additional
index structures. Specifically we use one index structure for
each of the two remaining requirements. We also reverse
the value of power and latency, before normalizing them,
as they represent less-is-better metrics. The motivation of
using three indices is to allow an application to select (i) ei-
ther the configuration that is best for a single requirement,
or (ii) the configuration that achieves the best outcome for
both requirements. As indices we use priority queues as they
can return the element with the maximum weight in O(1).

However, requirements (i.e. throughput, latency, and power)
are measured with float precision. As such, exact matches
will be very rare, at runtime. To overcome this, we can ei-
ther round to the smallest integral value (e.g. to the nearest
multiple of 100 Mbit/s), or implement support for nearest
neighbor search queries. By rounding to the smallest inte-
gral value we do not guarantee that a given value should be
present in the binary tree; we have to explicitly fulfill the
values for all missing neighbors. As the updating of the val-
ues of all missing neighbors can be quite costly —especially
in sparsely populated cases— we implemented the latter so-
lution. Therefore, if we do not have an exact match, we
select the immediately nearest (either smaller or greater)
match. Since we utilize a binary tree, the selection of the
immediately nearest value can be obtained at the same cost.
Moreover, in order to prevent from overloading the binary
tree, before inserting a new node in the binary tree, we check
if it differs with its parent by a threshold δ. If not, we merge
them in order to save space. The threshold δ is also used as
a parameter of our adaptation algorithm that is described
in the next section.

4.2 Online Adaptation Algorithm
The goal of the online adaptation algorithm is to deter-

mine quickly and accurately which device (or devices) is
more suitable to sustain the current input traffic rate, and
to be able to adapt to changes in the traffic characteristics,
with as little overhead as possible. Moreover, it allows an
application to get the most suitable configuration based on
its own needs (i.e. throughput-, latency-, or energy-critical).
For example, it would be better for a latency critical ap-
plication to submit the incoming traffic to more than one
devices, while in an energy-critical setup it would be better
to use only the most energy efficient device.

Our scheduling algorithm is laid out as follows. We create
a queue for each device, and place packet batches in those
queues, according to the following iterative algorithm:

1. Measure the current traffic rate. Get the best con-
figuration from the lookup table, using as search key
the desired requirement (i.e. latency-, throughput-, or
energy-aware). Change to this configuration only if it
was measured better than the current one by a factor
of λ. Initialize variables α and β.

2. Start creating batches of the specified size. If more
than one devices are required, create batches for each
device accordingly. The batches are inserted into the
queue of the corresponding device(s).

3. Measure the performance achieved by each of the de-
vices for the submitted batch(es). If the sustained
performance is similar to the one requested from the
lookup table (up to a threshold δ), return to Step 1;
otherwise, update the lookup table accordingly, and:

• If the performance achieved by each device is lower,
increase the batch size by a factor of α; set β =
α/2, and go to Step 3.

• If the performance achieved by each device is higher,
decrease the batch size by a factor of β; set α =
β/2, and go to Step 3.

The scheduler gets continually cross-trained and improves
as more network traffic is processed across different devices.
Moreover, the scheduler can easily adapt to traffic-, system-
, or application-changes. Traffic changes (such as traffic
bursts) can easily tolerated by our scheduler by quickly switch-
ing to the appropriate configuration (Step 1), without re-
quiring to update the scheduler. In contrast, system- and
application-changes should update the scheduler: The loop,
that starts at the Step 3 of the adaptation algorithm above,
finds the best configuration of the given device for the cur-
rent conditions. After that, the scheduler returns to Step
1, as more appropriate devices might exist to handle the
current conditions. The purpose of the λ factor is to avoid
alternating among competing configurations and just main-
tain a “good enough” state.

Therefore, our scheduler can tackle system changes, such
as throttling and contention, that may occur more frequently
in the i7 Ivy Bridge processor, where multiple computational
devices are integrated into a single package and sharing a sin-
gle memory system and power budget. Application changes,
such as in the case of the DPI which has large performance
fluctuations according to the current traffic characteristics

are also confronted. To prevent temporal packet loss, in
the inter-time that our scheduler needs to adapt to the new
conditions, we maintain queues of sufficient size for each
device. In Section 5 we show that a few hundred MBs are
sufficient to guarantee that no packet loss will occur, during
any traffic-, system-, or application-changes.

For the experiments presented in this paper, we set the
difference threshold, δ, between the expected and the mea-
sured performance to 10%, and the growth and decrease
rate, α, β, to 2x; we found that these values provide the
best average performance across the set of applications we
studied.

4.2.1 Analysis
The complexity of the algorithm, when searching for the

configuration of a specific requirement, is O(logN), where
N is the total number of configurations. Indeed, the con-
figurations are stored in a binary tree, hence the searching
cost is O(logN). As long as the configurations are found,
the cost to acquire the most efficient is O(1), because they
are stored in a priority queue. Hence, the overall cost to
acquire the most efficient configuration for a given require-
ment, is O(logN). However, our adaptive algorithm requires
that the given configuration should be updated, in case the
sustained performance differs by a threshold δ. The up-
date cost is equal to the cost required to find the node in
the binary tree (O(logN)) and the cost to insert it into the
priority queue (O(logN)), totalling a 2 × O(logN). After
the update, the algorithm converges to the batch size that
achieves the requested performance, if any (Step 3). This
can take up to logαM steps (or logβM equivalently), where
M is the maximum batch size.

5. EVALUATION
We now evaluate the performance of our scheduling al-

gorithm, using the packet processing applications described
in Section 3.2. We use an energy-critical policy, i.e. han-
dle all input traffic at the maximum energy efficiency. In
Figure 7(a)–(d) we present the applied and achieved through-
put, the power consumption and the device selection made
by the scheduler, for the four applications under study. For
comparison, we illustrate with a dashed line the power con-
sumption when all three devices are used simultaneously.
Additionally, we provide the experienced latency with a solid
line. Latency variability is a result of the dynamic scheduler
decisions for the batching and computational device selec-
tion. The input traffic has the same profile for all applica-
tions and is comprised of 25% 60-byte TCP packets and 75%
1514-byte TCP packets.

Overall, our scheduler adapts to the highly diverse com-
putational demand among the selected applications, produc-
ing dynamic decisions that maintain the maximum energy
efficiency during all times. Additionally, it sustains high
throughput and avoids excessive latency when possible. Fur-
thermore, our scheduler is able to respond to application spe-
cific performance characteristics. For example during DPI
(Figure 7(c)), our algorithm detects the requirement for a
different configuration at times H and L. H and L intro-
duce packets with a high match rate (in contrast to the low
previous match rate), where the target cannot be satisfied
without the use of the energy-hungry GTX 480.

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160
0.1

1

10

100

P
o
w

e
r

(W
a
tt

s
)

L
a
te

n
c
y
 (

m
s
)

Time (seconds)

Latency

0

10

20

30

40
R

a
te

 (
G

b
it

/s
)

Max power

Achieved
Full matches

Input

i7 die
Misc

GTX 480

A B

(a) IPv4 Forwarder.

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160
0.1

1

10

100

P
o
w

e
r

(W
a
tt

s
)

L
a
te

n
c
y
 (

m
s
)

Time (seconds)

0

10

20

30

40

R
a
te

 (
G

b
it

/s
)

C
D

D

E

E

F

(b) MD5.

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160
0.1

1

10

100

P
o
w

e
r

(W
a
tt

s)

La
te

n
cy

 (
m

s)

Time (seconds)

0

10

20

30

40

R
a
te

 (
G

b
it

/s
)

I

H

J

L M

N

H J

L M

K

K O
PG

(c) DPI.

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160
0.1

1

10

100

P
o
w

e
r

(W
a
tt

s
)

L
a
te

n
c
y
 (

m
s
)

Time (seconds)

0

10

20

30

40

R
a
te

 (
G

b
it

/s
)

Q
R

U

S T

T

(d) AES-CBC.

Figure 7: Automatic device configuration selection
under different conditions. Optimized for maximum
energy efficiency.

5.1 Throughput
We observe that our proposed scheduler is able to switch

to the configuration that keeps the selected target, under
the required computational capacity which is required to
process the incoming traffic for each application. However,
there are two cases which our architecture does not sustain
the input traffic rate: (i) in the DPI application, between
I–J as well as L–M, and (ii) in the AES application, between
S–T. The reason is that there is not a device, or combination
of devices, to handle these cases, as we have already seen in
Figures 3 and 4. More specifically, the DFA used by the
Aho-Corasick algorithm exhibits strong locality of reference
when the traffic does not contain any pattern matches; how-
ever when the traffic is overwhelmed by, different, pattern
matches that locality of reference no longer holds, degrading
the overall throughput. The HD Graphics does not handle
more than 5 Gbit/s in any case and the GTX 480 perfor-
mance is restricted by the data transfer bottleneck.

5.2 Energy Efficiency
Our proposed scheduler consistently switches to the most

energy efficient configuration at all rates for each applica-
tion. The advantage of our approach is more noticeable
when the load is fairly low (1–4 Gbit/s) as it switches to the
energy-efficient integrated GPU. Especially for the IP for-
warding, the integrated GPU is able to cope with the input
traffic at all rates, providing a constant 50 W consumption,
which is two times better over the CPU-only and more than
three times over the discrete GPU only. Packet hashing
switches to the CPU when the rate reaches 30 Gbit/s (at C)
and then switches to the CPU-HD Graphics pair (at D) in
order to handle the 40 Gbit/s input traffic rate. DPI follows
a more composite behavior, as it is affected by both the traf-
fic rate and characteristics (i.e. number of matches). Overall,
DPI ends up utilizing the two GPU devices when process-
ing full-matches traffic at rates of 15 Gbit/s or higher (H–J
and L–M). Nevertheless, when the matches drop to zero,
the CPU is able to cope the input traffic (between J–K and
O–P); at rates of 30 Gbit/s or higher the system employs
the i7 CPU together with the HD Graphics (K–L and M–N).
For all other input rates the CPU or HD Graphics alone can
sustain the traffic. At L, we synthetically raise the number
of matches that results to a temporal fall to 18.7 Gbit/s,
before our scheduler considers to also utilize GTX 480 too.
With increased rate, while keeping the number of matches
at full ratio, we observe that there is no increase in the sus-
tained rate because there is no better configuration available.
AES, which is the most computationally intensive applica-
tion in our set, ends up using all three devices when the
traffic rate exceeds 15 Gbit/s (R–T), and are able to handle
up to 15.5 Gbit/s rate.

Overall, our scheduler reaches the maximum consumption
in the following cases only: (i) when the traffic rate exceeds
15 Gbit/s for AES, and (ii) when the rate exceeds 15 Gbit/s
for DPI, and is overwhelmed with matches. In DPI, inter-
estingly enough, the HD Graphics plus GTX 480 pair is the
winner. Overall, our architecture yields an overall energy
saving between 3.5 times (IPv4 forwarding) and 30% (AES-
CBC) compared to the energy spent when using all three
devices.

5.3 Latency
Increasing the batch size results in better sustainable rate

at the cost of increased latency, especially for the GTX 480.
IPv4 forwarding —executed solely on the HD Graphics—
provides a latency that increases linearly with the batch
size. However, this is not always the case. For example,
in the case of MD5 workload, latency drops significantly in
two different time ranges: C–D and E–F. The reason behind
this is that the scheduler switches from the HD Graphics to
the i7 CPU, in order to handle the increasing traffic rate.
Given that the CPU is able handle the requested traffic us-
ing a much smaller batch size, results to an extensive latency
drop. When the input rate grows further (D–E) though, the
HD Graphics is utilized again, together with the CPU. This
results to a 3.6 times increase of the measured latency. Simi-
lar transitions occur in other workloads as well, e.g. at G and
O for DPI, and at Q and U for AES-CBC. We note though
that in our experiments we focused primarily on providing a
minimum power utilization setup. By using a latency-aware
policy, we can obtain much better latency, at the cost of
increased power consumption.

5.4 Traditional Performance Metrics
In addition to the previous studied metrics, we measure

other significant metrics which are present in the software
packet processing domain, namely: packet loss, and reorder-
ing. Our algorithm may introduce packet loss by switching
to a device too slowly in the face of varying traffic demands.
Reordering may be introduced when packets belonging to
the same flow are redirected to a different device. Regard-
ing packet loss, our experiments show that our algorithm
can react quickly enough to avoid packet drops. We ob-
serve that in all cases our proposed scheduler can adapt to
changes in less than 300 ms —which is the case where we
use the GTX 480 with a batch size of 64K. This roughly re-
sults to 1.46 GB of received data (in a 40 GbE network, for
a MTU of 1500 bytes), hence a buffer of this size is sufficient
to guarantee that no packet loss will occur in the inter-time
that our scheduler needs to adapt to the new conditions.
We notice however that this is the worst case, in which the
input rate goes from zero to 40 Gbit/s and at the same time
the algorithm pushes the system to a configuration with the
worst latency (300 ms). In our experiments, using a 500 MB
buffer was enough.

Finally, we measure packet reordering. In our system,
reordering can only occur when traffic is diverted to a new
queue. However, as we have described in Section 3.3.1 we en-
sure that packets with the same 5-tuple will never be placed
in batches that will execute simultaneously to different de-
vices. This guarantees that, when using more than one de-
vices, packets of the same flow will always processed by the
same device. Indeed, in all our experiments we did not ob-
serve any packet reorders.

6. RELATED WORK
Recently, GPUs have provided a substantial performance

boost to many individual network-related workloads, includ-
ing intrusion detection [22, 34, 37, 39, 40], cryptography [20,
23], and IP routing [19]. In addition, several programmable
network traffic processing frameworks have been proposed—
such as Snap [36] and GASPP [38]—that manage to simplify
the development of GPU-accelerated network traffic process-
ing applications. The main difference with these works is

that we focus on building a software network packet pro-
cessing framework that combines different, heterogeneous,
processing devices and quantify the problems that arise with
their concurrent utilization. By effectively mapping compu-
tations to heterogeneous devices, in an automated way, we
provide more efficient execution in terms of throughput, la-
tency and power consumption.

A number of recently proposed load-balancing systems
support applications with multiple concurrent kernels [15,
35]. Other approaches rely heavily on manual intervention
by the programmer [26]. Approaches to load-balance a sin-
gle computationanl kernel include [13, 24, 27]. The simplest
approach target homogeneous GPUs and, thus, require no
training as they use a fixed work partition [24]. Wang and
Ren propose a distribution method on a CPU-GPU hetero-
geneous system that tries a large number of different work
distributions in order to find the most efficient [41]. Other
approaches require a series of small execution trials to de-
termine the relative performance [13,27]. The disadvantage
of these approaches is that they have been designed for ap-
plications that take as input constant streaming data and
as a consequence, they adapt very slowly when the input
data stream varies. That makes them extremely difficult to
be applied to network processing applications in which the
heterogeneity of (i) the hardware, (ii) the applications, and
(iii) the traffic vastly affect the overall efficiency in terms
of performance, latency and power consumption. To that
end, our proposed scheduling algorithm has been designed
to explicitly account for this.

Furthermore, there is ongoing work on providing perfor-
mance predictability [16] and fair queueing [18] when run-
ning a diverse set of applications that contend for shared
hardware resources. There is also work on packet rout-
ing [29] that draws power proportional to the traffic load.
The main difference with our work, is that they focus solely
on homogeneous processing cores; instead we present a sys-
tem that utilizes efficiently a diverse set of devices.

7. LIMITATIONS
Our scheduler requires live power consumption feedback

for each of the available computational devices in the sys-
tem. Even though such schemes have now become common
in commodity, off-the-self, processors (e.g. the Running Av-
erage Power Limit interface present on latest Intel proces-
sor series), they are still in a preliminary stage in current
graphics hardware architectures (although we expect this to
change in the near future). To overcome the lack of such
power estimation in current GPU models, we propose the
use of a power model as a substance of real instrumenta-
tion [21].

Another notable limitation of our proposed architecture is
the lack of optimization capabilities for concurrent running
applications. The optimal parallel scheduling of an arbi-
trary application mixture is a highly challenging problem,
mainly due to the unknown interference effects. These ef-
fects include but are not limited to: (i) contention for hard-
ware recourses (e.g. shared caches, I/O interconnects, mem-
ory controller, etc.), (ii) software resources and (iii) false
sharing of cache blocks. To make matters worse, the sched-
uler complexity grows exponentially with the introduction
of multiple applications, as the parameter space should be
explored for all possible application combinations. As such,
in this work we solely focus on optimizing the performance

of a single application that executes on a set of computing
devices. As part of our future work we plan to experiment
with application multiplexing and investigate the feasibility
of a more generic energy-aware scheduler.

8. CONCLUSIONS
In this work we address the problem of improving the

efficiency of network packet processing applications on com-
modity, off-the-self, heterogeneous architectures. Heteroge-
neous systems can provide substantial performance improve-
ments, but only with appropriately chosen partitioning. Us-
ing a static approach can lead to suboptimal performance
when the state of traffic, system or application changes.
To avoid this, we propose an online adaptive scheduling
algorithm, tailored for network packet processing applica-
tions, that can (i) respond effectively to relative performance
changes, and (ii) significantly improve the energy efficiency
of packet processing applications. Our system is able to ef-
ficiently utilize the computational capacity of its resources
on demand, resulting in energy savings ranging from 30%
on heavy workload, up to 3.5 times for lighter loads.

Acknowledgments
This work was supported by the General Secretariat for Re-
search and Technology in Greece with a Research Excellence
grant. Lazaros Koromilas and Giorgos Vasiliadis are also
with the University of Crete.

9. REFERENCES
[1] 1018 2 - PhidgetInterfaceKit 8/8/8.

http://www.phidgets.com/.

[2] 1122 0 - 30 Amp Current Sensor AC/DC.
http://www.phidgets.com/.

[3] OpenCL. http://www.khronos.org/opencl/.
[4] OpenSSL Project. http://www.openssl.org/.

[5] The Snort IDS/IPS. http://www.snort.org/.

[6] Intel 82599 10 GbE Controller Datasheet, Revision 2.0,
2009.

[7] Intel HD Graphics DirectX Developer’s Guide, 2010.
[8] Intel SDK for OpenCL Applications 2013: Optimization

Guide, 2013.
[9] B. Aggarwal, A. Akella, A. Anand, A. Balachandran,

P. Chitnis, C. Muthukrishnan, R. Ramjee, and
G. Varghese. EndRE: an end-system redundancy
elimination service for enterprises. In NSDI, 2010.

[10] A. V. Aho and M. J. Corasick. Efficient string matching:
an aid to bibliographic search. Communications of the
ACM, 18(6):333–340, 1975.

[11] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker.
Packet caches on routers: the implications of universal
redundant traffic elimination. In SIGCOMM, 2008.

[12] T. Benson, A. Anand, A. Akella, and M. Zhang.
Understanding Data Center Traffic Characteristics.
SIGCOMM CCR, 40(1), 2010.

[13] M. Boyer, K. Skadron, S. Che, and N. Jayasena. Load
Balancing in a Changing World: Dealing with
Heterogeneity and Performance Variability. In ACM
Computing Frontiers, 2013.

[14] S. A. Crosby and D. S. Wallach. Denial of service via
algorithmic complexity attacks. In USENIX Security, 2003.

[15] G. F. Diamos and S. Yalamanchili. Harmony: An
Execution Model and Runtime for Heterogeneous Many
Core Systems. In HPDC, 2008.

[16] M. Dobrescu, K. Argyraki, and S. Ratnasamy. Toward
Predictable Performance in Software Packet-Processing
Platforms. In NSDI, 2012.

[17] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In SOSP, 2009.

[18] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica.
Multi-Resource Fair Queueing for Packet Processing. In
SIGCOMM, 2012.

[19] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a
GPU-accelerated software router. In SIGCOMM, 2010.

[20] O. Harrison and J. Waldron. Practical Symmetric Key
Cryptography on Modern Graphics Hardware. In USENIX
Security, 2008.

[21] S. Hong and H. Kim. An integrated gpu power and
performance model. In SIGARCH, 2010.

[22] M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee,
Y. Yi, and K. Park. Kargus: a Highly-scalable
Software-based Intrusion Detection System. In CCS, 2012.

[23] K. Jang, S. Han, S. Han, S. Moon, and K. Park.
SSLShader: Cheap SSL Acceleration with Commodity
Processors. In NSDI, 2011.

[24] J. Kim, H. Kim, J. H. Lee, and J. Lee. Achieving a single
compute device image in OpenCL for multiple GPUs. In
PPoPP, 2011.

[25] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey.
Redundancy elimination within large collections of files. In
USENIX ATC, 2004.

[26] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng.
Merge: A Programming Model for Heterogeneous
Multi-core Systems. In ASPLOS, 2008.

[27] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting
Parallelism on Heterogeneous Multiprocessors with
Adaptive Mapping. In MICRO, 2009.

[28] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On
dominant characteristics of residential broadband internet
traffic. In IMC, 2009.

[29] L. Niccolini, G. Iannaccone, S. Ratnasamy,
J. Chandrashekar, and L. Rizzo. Building a
Power-Proportional Software Router. In USENIX ATC,
2012.

[30] NVIDIA. CUDA C Programming Guide, Version 5.0, 2012.

[31] R. Rivest. The MD5 message-digest algorithm. 1992.
[32] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O.

In USENIX ATC, 2012.
[33] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu.

Performance Traps in OpenCL for CPUs. In PDP, 2013.
[34] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and

C. Estan. Evaluating GPUs for Network Packet Signature
Matching. In ISPASS, 2009.

[35] E. Sun, D. Schaa, R. Bagley, N. Rubin, and D. Kaeli.
Enabling Task-Level Scheduling on Heterogeneous
Platforms. In GPGPU, 2012.

[36] W. Sun and R. Ricci. Fast and Flexible: Parallel Packet
Processing with GPUs and Click. In ANCS, 2013.

[37] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P.
Markatos, and S. Ioannidis. Gnort: High Performance
Network Intrusion Detection Using Graphics Processors. In
RAID, 2008.

[38] G. Vasiliadis, L. Koromilas, M. Polychronakis, and
S. Ioannidis. GASPP: A GPU-Accelerated Stateful Packet
Processing Framework. In USENIX ATC, 2014.

[39] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P.
Markatos, and S. Ioannidis. Regular Expression Matching
on Graphics Hardware for Intrusion Detection. In RAID,
2009.

[40] G. Vasiliadis, M. Polychronakis, and S. Ioannidis. MIDeA:
a multi-parallel intrusion detection architecture. In CCS,
2011.

[41] G. Wang and X. Ren. Power-efficient work distribution
method for cpu-gpu heterogeneous system. In ISPA, 2010.

http://www.phidgets.com/
http://www.phidgets.com/
http://www.khronos.org/opencl/
http://www.openssl.org/
http://www.snort.org/

	Introduction
	Background
	Architectural Comparison
	Quantitative Comparison

	System Setup
	Hardware Platform
	Power Instrumentation

	Workloads
	IPv4 Packet Forwarding
	Deep Packet Inspection
	Packet Hashing
	Encryption

	Packet-processing Parallelization
	Batch Processing
	Performance Characterization
	Energy efficiency

	Efficiency via Scheduling
	Initializing the Scheduler
	Online Adaptation Algorithm
	Analysis

	Evaluation
	Throughput
	Energy Efficiency
	Latency
	Traditional Performance Metrics

	Related Work
	Limitations
	Conclusions
	References

