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Abstract. Defeasible reasoning is a rule-based approach for efficient reasoning 
with incomplete and inconsistent information. Such reasoning is, among others, 
useful for ontology integration, where conflicting information arises naturally; 
and for the modeling of business rules and policies, where rules with exceptions 
are often used. This paper describes these scenarios in more detail, and reports 
on the implementation of a system for defeasible reasoning on the Web. The 
system (a) is syntactically compatible with RuleML; (b) features strict and 
defeasible rules and priorities; (c) is based on a translation to logic 
programming with declarative semantics; and (d) is flexible and adaptable to 
different intuitions within defeasible reasoning.  

1 Introduction 

The development of the Semantic Web [�9] proceeds in layers, each layer being on top 
of other layers. At present, the highest layer that has reached sufficient maturity is the 
ontology layer in the form of the description logic based languages of DAML+OIL 
[�11] and OWL [�13].  

The next step in the development of the Semantic Web will be the logic and proof 
layers, and rule systems appear to lie in the mainstream of such activities. Moreover, 
rule systems can also be utilized in ontology languages. So, in general rule systems 
can play a twofold role in the Semantic Web initiative: (a) they can serve as 
extensions of, or alternatives to, description logic based ontology languages; and (b) 
they can be used to develop declarative systems on top (using) ontologies. Reasons 
why rule systems are expected to play a key role in the further development of the 
Semantic Web include the following: 

� Seen as subsets of predicate logic, monotonic rule systems (Horn logic) and 
description logics are orthogonal; thus they provide additional expressive power 
to ontology languages.  

� Efficient reasoning support exists to support rule languages.  
� Rules are well known in practice, and are reasonably well integrated in 

mainstream information technology. 

Possible interactions between description logics and monotonic rule systems were 
studied in [�18]. Based on that work and on previous work on hybrid reasoning [�20] it 
appears that the best one can do at present is to take the intersection of the expressive 



power of Horn logic and description logics; one way to view this intersection is the 
Horn-definable subset of OWL. 

This paper is devoted to a different problem, namely conflicts among rules. Here 
we just mention the main sources of such conflicts, which are further expanded in 
section 2. At the ontology layer: 

� Default inheritance within ontologies 
� Ontology merging 

And at the logic and reasoning layers: 

� Rules with exceptions as a natural representation of business rules 
� Reasoning with incomplete information 

Defeasible reasoning is a simple rule-based approach to reasoning with incomplete 
and inconsistent information. It can represent facts, rules, and priorities among rules. 
This reasoning family comprises defeasible logics [�24, �5] and Courteous Logic 
Programs [�16]. The main advantage of this approach is the combination of two 
desirable features: enhanced representational capabilities allowing one to reason with 
incomplete and contradictory information, coupled with low computational 
complexity compared to mainstream nonmonotonic reasoning.  

In this paper we report on the implementation of a defeasible reasoning system for 
reasoning on the Web. Its main characteristics are the following: 

� Its user interface is compatible with RuleML [�25], the main standardization 
effort for rules on the Semantic Web.  

� It is based on Prolog. The core of the system consists of a translation of 
defeasible knowledge into Prolog. However, the implementation is declarative 
because it interprets the not operator using Well-Founded Semantics [�14].  

� The main focus was flexibility. Strict and defeasible rules and priorities are part 
of the interface and the implementation. Also, a number of variants were 
implemented (ambiguity blocking, ambiguity propagating, conflicting literals; 
see below for further details).  

The paper is organized as follows. Section 2 describes the main motivations for 
conflicting rules on the Semantic Web. Section 3 describes the basic ideas of default 
reasoning, and sections 4 and 5 its translations into logic programs and XML files, 
respectively. Section 6 reports on the implemented system. Section 7 discusses related 
work, and section 8 concludes with a summary and some ideas for future work.  

2 Motivation for Conflicting Rules on the Semantic Web 

Reasoning with Incomplete Information: [�3] describes a scenario where business 
rules have to deal with incomplete information: in the absence of certain information 
some assumptions have to be made which lead to conclusions not supported by 
classical predicate logic. In many applications on the Web such assumptions must be 
made because other players may not be able (e.g. due to communication problems) or 
willing (e.g. because of privacy or security concerns) to provide information. This is 



the classical case for the use of nonmonotonic knowledge representation and 
reasoning [�23]. 

Rules with Exceptions: Rules with exceptions are a natural representation for 
policies and business rules [�4]. And priority information is often implicitly or 
explicitly available to resolve conflicts among rules. Potential applications include 
security policies [�8, �21], business rules [�3], personalization, brokering, bargaining, 
and automated agent negotiations [�15]. 

Default Inheritance in Ontologies: Default inheritance is a well-known feature of 
certain knowledge representation formalisms. Thus it may play a role in ontology 
languages, which currently do not support this feature. [�19] presents some ideas for 
possible uses of default inheritance in ontologies.   

A natural way of representing default inheritance is rules with exceptions, plus 
priority information. Thus, nonmonotonic rule systems can be utilized in ontology 
languages. 

Ontology Merging: When ontologies from different authors and/or sources are 
merged, contradictions arise naturally. Predicate logic based formalisms, including all 
current Semantic Web languages, cannot cope with inconsistencies. 

 If rule-based ontology languages are used (e.g. DLP [�18]) and if rules are 
interpreted as defeasible (that is, they may be prevented from being applied even if 
they can fire) then we arrive at nonmonotonic rule systems. A skeptical approach, as 
adopted by defeasible reasoning, is sensible because does not allow for contradictory 
conclusions to be drawn. Moreover, priorities may be used to resolve some conflicts 
among rules, based on knowledge about the reliability of sources or on user input). 
Thus, nonmonotonic rule systems can support ontology integration. 

3 Defeasible Logics 

3.1 Basic Characteristics 

� Defeasible logics are rule-based, without disjunction 
� Classical negation is used in the heads and bodies of rules, but negation-as-failure 

is not used in the object language (it can easily be simulated, if necessary [�4]) 
� Rules may support conflicting conclusions 
� The logics are skeptical in the sense that conflicting rules do not fire. Thus 

consistency is preserved 
� Priorities on rules may be used to resolve some conflicts among rules 
� The logics take a pragmatic view and have low computational complexity 

3.2 Syntax 

A defeasible theory D is a couple (R,>) where R a finite set of rules, and > a 
superiority relation on R. In expressing the proof theory we consider only 



propositional rules. Rules containing free variables are interpreted as the set of their 
variable-free instances. 

There are two kinds of rules (fuller versions of defeasible logics include also 
defeaters): Strict rules are denoted by A � p, and are interpreted in the classical 
sense: whenever the premises are indisputable then so is the conclusion. An example 
of a strict rule is “Professors are faculty members”. Written formally: professor(X) � 
faculty(X). Inference from strict rules only is called definite inference. Strict rules are 
intended to define relationships that are definitional in nature, for example ontological 
knowledge.  

Defeasible rules are denoted by A � p, and can be defeated by contrary evidence. 
An example of such a rule is faculty(X) � tenured(X) which reads as follows: 
“Professors are  typically tenured”. 
A superiority relation on R is an acyclic relation > on R (that is, the transitive closure 
of > is irreflexive). When r1 > r2, then r1 is called superior to r2, and r2 inferior to r1. 
This expresses that r1 may override r2. For example, given the defeasible rules 

r: professor(X) =>  tenured(X) 
r’: visiting(X) => ¬tenured(X) 

which contradict one another: no conclusive decision can be made about whether a 
visiting professor is tenured. But if we introduce a superiority relation > with r’ > r, 
then we can indeed conclude that a visiting professor is not tenured. 

A formal definition of the proof theory is found in [�5]. A model theoretic semantics 
is found in [�22].  

3.3 Ambiguity Blocking and Ambiguity Propagation Behavior 

A literal is ambiguous if there is a chain of reasoning that supports a conclusion that p 
is true, another that supports that ¬p is true, and the superiority relation does not 
resolve this conflict. We can illustrate the concept of ambiguity propagation through 
the following example. 

r1: quaker(X) => pacifist(X) 
r2: republican(X) => ¬pacifist(X) 
r3: pacifist(X) => ¬hasGun(X) 
r4: livesInChicago(X) => hasGun(X) 
quaker(a) 
republican(a) 
livesInChicago(a) 

 r3 > r4 

Here pacifist(a) is ambiguous. The question is whether this ambiguity should be 
propagated to the dependent literal hasGun(a). In one defeasible logic variant it is 
detected that rule r3 cannot fire, so rule r4 is unopposed and gives the defeasible 
conclusion hasGun(a). This behavior is called ambiguity blocking, since the 
ambiguity of pacifist(a) has been used to block r3 and resulted in the unambiguous 
conclusion hasGun(a). 



On the other hand, in the ambiguity propagation variant, although rule r3 cannot 
lead to the conclusion ¬hasGun(a) (as pacifist(a) is not provable), it opposes rule r4 

and  the conclusion hasGun(a) cannot also be drawn. 
A preference for ambiguity blocking or ambiguity propagating behavior is one of 

the properties of nonmonotonic inheritance nets over which intuitions can clash [�26]. 
Ambiguity propagation results in fewer conclusions being drawn, which might make 
it preferable when the cost of an incorrect conclusion is high. For these reasons an 
ambiguity propagating variant of DL is of interest.  

3.4 Conflicting Literals 

So far only conflicts among rules with complementary heads were deected and used. 
We considered all rules with head L as supportive of L, and all rules with head ¬L as 
conflicting. However, in applications often literals are considered to be conflicting, 
and at most one of a certain set should be derived. For example, the risk an investor is 
willing to accept may be classified in one of the categories low, medium, and high. 
The way to solve this problem is to use constraint rules of the form 

 conflict :: low, medium 
 conflict :: low, high 
 conflict :: medium, high 

Now if we try to derive the conclusion high, the conflicting rules are not just those 
with head ¬high, but also those with head low and medium. Similarly, if we are trying 
to prove ¬high, the supportive rules include those with head low or medium. 
In general, given a conflict :: L, M, we augment the defeasible theory by: 

ri: q1,q2,…,qn �  ¬L for all rules ri: q1,q2,…,qn � M 
 ri: q1,q2,…,qn �  ¬M for all rules ri: q1,q2,…,qn �  L 
 ri: q1,q2,…,qn => ¬L for all rules ri: q1,q2,…,qn => M 
 ri: q1,q2,…,qn �  ¬L for all rules ri: q1,q2,…,qn => M 

The superiority relation among the rules of the defeasible theory is propagated to 
the “new” rules. For example, if the defeasible theory includes the following two rules 
and a superiority relation among them: 

 r1: q1,q2,…,qn �  L 
 r2: p1,p2,…,pn �  M 
 r1 > r2 

we will augment the defeasible theory by : 

 r1’: q1,q2,…,qn �  ¬M 
 r2’: p1,p2,…,pn �  ¬L 
 r1 > r2’ 
 r1’ > r2 



4 Translation into Logic Programs 

The translation of a defeasible theory D into a logic program P(D) has a certain goal: 
to show that 

 p is defeasibly provable in D � 
 p is included in all stable models of P(D) 

In order to achieve this goal, we based our translation on the translation which makes 
use of control literals, presented in [�7]. We have made some extensions to support 
superiority relations among rules, and to support both ambiguity blocking and 
ambiguity propagation behavior. The translation has two versions: the ambiguity 
blocking version and the ambiguity propagation version. 

4.1 Translation of Ambiguity Blocking Behavior 

Given a fact p we translate it into the program clause 

a(p): definitely(p). 

Given a strict rule 

 r: q1,q2,…,qn -> p 

we translate it into the program clause 

 b(r): definitely(p):- definitely(q1),definitely(q2),…,definitely(qn). 

Additionally, we introduce the clause 

 c(p): defeasibly(p):- definitely(p). 

for every literal p. This last clause corresponds to the condition of the defeasible 
theory: a literal p is defeasibly provable if it is strictly (definitely) provable. 

Given a defeasible rule 

 r: q1,q2,…,qn => p 

we translate it into the following set of clauses: 

d1(r): defeasibly(p):- defeasibly(q1),defeasibly(q2),…,defeasibly(qn), 
                                       not1 definitely(~p),ok(r,p). 

 d2(r): ok(r,x):- ok’(r,s1),…,ok’(r,sm). 

where {s1,…,sm} = {the set of defeasible rules with head: ~p} 

 d3(r,si): ok’(r,si):- blocked(si).     for all si � {s1,…,sm} 

 d4(r,si): ok’(r,si):- defeated(si).     for all si � {s1,…,sm} 

                                                           
1 For the implementation of the translation, we use tnot as the nagation operator. The use of this 

operator is described in section 6. 



 d5(r,qi): blocked(r):- not defeasibly(qi).    for all i � {1,2,…,n} 

 d6(r,si): defeated(r):- not blocked(si), sup(si,r).  for all si � {s1,…,sm} 

Given a superiority relation 

 r > s 

we translate it into the program clause 

 e(r,s): sup(r,s). 

� d1(r) says that to prove p defeasibly by applying r, we must prove all the 
antecedents of r, the negation of p should not be strictly (definitely) provable, 
and it must be ok to apply r. 

� d2(r) says when it is ok to apply a rule r with head p: we must check that it is ok 
to apply r w.r.t. every rule with head ~p. 

� d3(r,si) says that it is ok to apply r w.r.t. si is blocked.  
� d4(r,si) says that it is ok to apply r w.r.t. si is blocked. 
� d5(r,qi) specifies the only way a rule can be blocked: it must be impossible to 

prove one of its antecedents. 
� d6(r,si) specifies the only way a rule r can be defeated: there must be at least one 

rule s with complementary head (conflicting rule), which is not blocked and is 
superior to r. 

For a defeasible theory with ambiguity blocking behavior D we define P(D) to be the 
union of all clauses a(p), b(r), c(p), d1(r), d2(r), d3(r,si), d4(r,si), d5(r,qi), d6(r,si), e(r,s).      

4.2 Translation of Ambiguity Propagation Behavior 

We must make some changes to the procedure of the translation that we described 
above to support ambiguity propagation behavior. Our goal is to ensure that the 
ambiguity of a conclusion is propagated to its dependents. To achieve this we must 
define a new predicate: supported.  

The program clauses a(p), b(r), c(p) remain unchanged. In this version we add a 
new program clause s(p): 

 s(p): supported(p):- definitely(p). 

for every literal p. This clause says that p is supported if it is strictly (definitely) 
provable. 

The program clauses d1(r), d2(r), d4(r,si), d5(r,qi), d6(r,si), e(r,s) also remain the 
same. In order to support the ambiguity propagation behavior,  we must change 
d3(r,si) and add two more program clauses for the defeasible rules. So, given a 
defeasible rule  

 r: q1,q2,…,qn => p 

we translate it into the following set of clauses: 

 d1(r), d2(r), 



 d3’(r,si): ok’(r,si):- obstructed(si).    for all si � {s1,…,sm} 

 d4(r,si), d5(r,qi), d6(r,si), 

d7(r,qi): obstructed(r):- not supported(qi).      for all i � {1,2,…,n}, 

d8(r): supported(p):- supported(q1),…,supported(qn), not defeated(r). 

� d3’(r,si) says that it is ok to apply r w.r.t. si is obstructed.  
� d7(r,qi) specifies the only way a rule can be obstructed: at least one of its 

antecedents must not be supported. 
� d8(r) says that p is supported by applying r, if all the antecedents of r are 

supported, and r is not defeated.  

For a defeasible theory with ambiguity propagation behavior D we define P(D) to 
be the union of all clauses a(p), b(r), c(p), d1(r), d2(r), d3’(r,si), d4(r,si), d5(r,qi), 
d6(r,si), d7(r,qi), d8(r), e(r,s). 

5 Translation into XML files 

Another interesting part of our work was the creation of a DTD which would allow us 
to translate defeasible theories into XML files. This DTD is in fact an extension of the 
RuleML DTDs [�25]. It covers both strict and defeasible rules, as well as the 
superiority relations between these rules. The elements of the RuleML DTD that we 
added / modified are: 

� The “rulebase” root element which uses “imp” (strict) and “def” (defeasible) 
rules, “fact” assertions and “superiority” relations. 

� The “imp” element, which consists of a “_head” and a “_body” element, accepts 
a “name” attribute, and refers to the strict rules of a theory. 

� The “def” element which consists of a “_head” and a “_body” element, accepts 
a “name” attribute, and refers to the defeasible rules of a theory. 

� The “superiority” empty element, which accepts the name of two rules as its 
attributes (“sup” & “inf”), and refers to the superity relation of these two rules. 

Below we present the modified DTD: 

<!ELEMENT rulebase ((imp|def|fact|superiority)*)> 
<!ELEMENT imp ((_head, _body) | (_body, _head))> 
<!ATTLIST imp  
 name ID #IMPLIED>   
<!ELEMENT def((_head, _body) | (_body, _head))> 
<!ATTLIST def 
 name ID #IMPLIED>  
<!ELEMENT fact (_head) > 
<!ELEMENT superiority EMPTY> 
<!ATTLIST superiority 
 sup IDREF #REQUIRED 
 inf IDREF #REQUIRED> 



<!ELEMENT _head (atom)> 
<!ELEMENT _body (atom | and)> 
<!ELEMENT and (atom*)> 
<!ELEMENT atom ((_opr,(ind | var)*) | ((ind | var)+, 
_opr))> 
<!ELEMENT _opr (rel)> 
<!ELEMENT ind  (#PCDATA)> 
<!ELEMENT var  (#PCDATA)> 
<!ELEMENT rel  (#PCDATA)>   

6 Implementation 

Our goal was to develop a system that supports not only the basics of defeasible logic, 
but also the two different behaviors (ambiguity blocking and ambiguity propagation) 
of this logic, and the use of conflicting literals. The system consists of five different 
tools: the parser, the logic translator, the XML translator, the logic compiler, and the 
evaluator.  We employed lex & yacc, to create the parser and the two translators. We 
use XSB [�28] as the logic compiler. The same system is responsible for evaluating the 
user’s queries.  

The system can be used either to translate a defeasible theory into an XML file, 
according to the DTD we described in section 5, or as a query evaluator. The queries 
that the user can make are of the form: “Can you conclude that the literal p of my 
defeasible theory D is / is not proved strictly / defeasibly?”. The system can evaluate 
the answer of one query of this form at a time. It has not the ability to evaluate queries 
of the form: “Which literals of my defeasibly theory D are proved strictly / 
defeasibly?”. The overall procedure is described in Fig.1. 

In the follwing sections, we will describe the role of each of the tools that compose 
the architecture of the system. 

6.1 The parser 

The parser is responsible for parsing the user’s defeasible theory and for checking 
for the validity of this theory. The theory is considered to be valid, if it follows the 
standard syntax of defeasible logic, as described in section 3. If there are syntax errors 
in a defeasible theory, the system informs the user about these errors, and does not 
proceed to the translation of the theory. If the theory is valid, the parser creates a 
symbol table, which includes all the facts, rules and superiority relations of the user’s 
defeasible theory. The symbol table will be later used by the translator.  

Another important task of the parser is to check for the conflicting literals of the 
defeasible theory, and to augment the theory with the appropriate rules and superiority 
relations. If the user has defined two or more literals to be conflicting, the parser 
checks for the rules which have one of these literals as their head, and for the 
superiority relations among these rules, and creates new rules and superiority 
relations, following the way we described in Section 3.  



 
Fig. 1. The Interaction between the system and its users. 

 
The last task of the parser is to check for the validity of the user’s queries. We have 

defined a standard syntax for these queries: 

� +D p : is it concluded that literal p of the defeasible theory is proved strictly? 
� -D p : is it concluded that literal p of the defeasible theory is not proved strictly? 
� +d p : is it concluded that literal p of the defeasible theory is proved defeasibly? 
� -d p :is it concluded that literal p of the defeasible theory is not proved 

defeasibly? 

The syntax we use for the complementary of a literal p is ~p. 

A defeasible theory D 
is entered by the user 

The user chooses the 
behavior of the theory: 
ambiguity blocking / 
ambiguity propagation 

The defeasible theory 
is parsed by the system. 
If the theory is valid, it is 
translated into a logic 
program P(D). 

The logic program 
P(D)  is compiled by 
XSB. The system is now 
ready to evaluate the 
user’s queries. 

The user queries the 
system about a literal p 
of his theory D. The 
query is of the form 
“Can you conclude that 
the literal p of my 
defeasible theory D is / 
is not proved strictly / 
defeasibly?”. The system checks for 

the validity of the query, 
and (if valid) evaluates 
the answer 

User System 



6.2 The logic translator 

If the defeasible theory has been parsed with success, the translator creates the 
logic program which corresponds to the user’s defeasible theory. The translator has 
two inputs and one output. The first input is the user’s defeasible theory D (checked 
and possibly augmented with new rules and superiority relations by the parser). The 
second input is the user’s choice of the behavior of the defeasible theory: ambiguity 
blocking / ambiguity propagation. The output is a logic program P(D), which is in 
fact a Prolog file. The translation of each defeasible rule to the corresponding Prolog 
rule is described in section 4. The only difference is that, instead of not we use tnot, 
which is XSB’s negation operator and allows for the correct execution of programs 
with well founded semantics. The translator parses the symbol table, which is created 
by the parser, and translates the defeasible rules one by one. In the course of this 
procedure, some searches of the symbol table are required. For example, if a 
translator meets a defeasible rule with head p, it searches the symbol table for 
defeasible rules with complementary head, ~p. 
The translator is also responsible for transforming the user’s queries into valid Prolog 
queries: 

� +D p is translated into definitely(p). 
� -D p is translated into not definitely(p). 
� +d p is translated into defeasibly(p). 
� -d p is translated into not defeasibly(p). 

6.3 The XML translator 

The role of the XML translator is to translate the defeasible theory, which has 
already been checked for its validity by the parser, into a valid XML file. A valid 
defeasible theory acts as input of the translation. The output is an XML file, which is 
created according to the DTD that we described in section 5. 

6.4 The logic program compiler 

The logic program compiler employs XSB to compile the logic program P(D), 
created by the logic translator. We use XSB, as we need a powerful Prolog system for 
our needs. A defeasible theory which consists of n number of facts, rules and 
superiority relations, is translated into a logic program with r*n Prolog rules, where 
2<n<6 in the case of ambiguity blocking behavior, and 3<n<8 in the case of 
ambiguity propagation behavior. 
XSB is appropriate for building integrated real-world systems, as it is easy to 
construct the communication module between XSB and the other parts of such 
systems. In our case, it was critical for the performance of the system, to find an easy 
and efficient way to communicate the logic program compiler with the parser and the 
translator. Only a small number of code was enough to construct this communication 
module. 



6.5 The evaluator 

The role of the evaluator is to evaluate the answer to the user’s queries. The queries 
are parsed by the parser, and translated into Prolog queries by the logic translator, 
before being passed to the evaluator. The Prolog queries are applied to the compiled 
Prolog file, and a positive (“yes”) or a negative answer (“no”) is produced by the 
evaluator.  

6.   Related Work 

There exist several previous implementations of defeasible logics. [�12] gives the 
historically first implementation, D-Prolog, a Prolog-based implementation. It was 
not declarative in certain aspects (because it did not use a declarative semantic for the 
not operator), therefore it did not correspond fully to the abstract definition of the 
logic. Also, D-Prolog supported only one variation thus it lacked the flexibility of the 
implementation we report on. Finally it did not provide any means of integration with 
Semantic Web layers and concepts. 
Deimos [�22] is a flexible, query processing system based on Haskell. It implements 
several variants, but not conflicting literals. Also, it does not integrate with Semantic 
Web (for example, there is no way to treat RDF data; nor does it use an XML-based 
or RDF-based syntax). Thus it is an isolated solution. Finally, it is propositional and 
does not support variables. 
Delores [�22] is another implementation, which computes all conclusions from a 
defeasible theory (the only system of its kind known to us). It is very efficient, 
exhibiting linear computational complexity. Delores only supports ambiguity 
blocking propositional defeasible logic; so, it does support ambiguity propagation, nor 
conflicting literals and variables. Also, it does integrate with other Semantic Web 
languages and systems.  
RD-DEVICE [�27] is another effort on implementing defeasible reasoning, albeit with 
a different approach. RD-DEVICE is implemented in Jess, and integrates well with 
RuleML and RDF. It is a system for query answering. Compared to the work of this 
paper, RD-DEVICE supports only one variant, ambiguity blocking, thus it does not 
offer the flexibility of this implementation.  
SweetJess [�17] is another implementation of a defeasible reasoning system (situated 
courteous logic programs) based on Jess. It integrates well with RuleML. Also, it 
allows for procedural attachments, a feature not supported by any of the above 
implementations, not by the system of this paper. However, SweetJess is more limited 
in flexibility, in that it implements only one reasoning variant (it corresponds to 
ambiguity blocking defeasible logic). Moreover, it imposes a number of restrictions 
on the programs it can map on Jess. In comparison, our system implements the full 
version of defeasible logic.  



7.   Conclusion 

In this paper we described reasons why conflicts among rules arise naturally on the 
Semantic Web. To address this problem, we proposed to use defeasible reasoning 
which is known from the area of knowledge representation. And we reported on the 
implementation of a system for defeasible reasoning on the Web. It is Prolog-based, 
and supports RuleML syntax.  
Planned future work includes: 

� Adding arithmetic capabilities to the rule language, and using appropriate 
constraint solvers in conjunction with logic programs. 

� Implementing load/upload functionality in conjunction with an RDF repository, 
such as RDF Suite [�1] and Sesame [�10]. 

� Study in more detail integration of defeasible reasoning with description logic 
based ontologies. Starting point of this investigation will be the Horn definable 
part of OWL [�18]. 

� Applications of defeasible reasoning and the developed implementation for 
brokering, bargaining, automated agent negotiation, and personalization.  
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