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P8 - Active Speech Modifications

Yannis Stylianou, Valerie Hazan, Vincent Aubanel, Elizabeth Godoy, Sonia Granlund,
Mark Huckvale, Emma Jokinen, Maria Koutsogiannaki, Pejman Mowlaee, Mauro Nicolao,
Tuomo Raitio, Anna Sfakianaki, Yan Tang

1 Introduction

In many intelligibility studies, it was demonstrated that the speaking style referred to as clear speech is
significantly more intelligible than conversational (or casual) speech. This intelligibility gain exists for
both normal-hearing and hearing-impaired listeners (e.g. elderly persons and linguistically inexperienced
listeners like non-native (L2) speakers and children). Also, in a two-way conversation in which one person
is affected by an adverse listening condition and one is not (e.g. between one person speaking to another
via telephone where the other is in a noisy club, or in a cafeteria, in the street etc.), the person who
is not affected still manages to make adaptations (on acoustic-phonetic and linguistic levels) that are
quite specifically tailored to counteract the specific communication barrier that the other person is
experiencing. These adaptations show that clear speech is not defined in a uniform way, but that there
are different styles of clear speech depending on the adverse condition that the speech is heard in. In
this context, Active Speech Modifications refer to the speaking-style adaptations or strategies a speaker
applies in order to maximize communication effectiveness.

Identification and effective manipulations of the most prominent acoustic-phonetic characteristics of
different styles of clear speech can allow for the development of new, signal based, active speech modifica-
tion algorithms to increase intelligibility. The algorithms can consequently improve speech intelligibility
in many situations, such as in the design of hearing aids, telephony, and other speech signal processing
technologies and applications (i.e., speech synthesis, recognition, enhancement, etc).

The purpose of this project was to use modern speech analysis and reconstruction algorithms to:

e identify which acoustic-phonetic characteristics are prominent in different styles of clear speech (e.g.
babble-countering clear speech, vocoder-countering clear speech, L2-“countering” clear speech) and
when they are realized in time.

e model a selection of these aspects so that they can be applied automatically on speech, to enact
prosodic changes, changes in amplitude spectrum, modulation frequencies, etc..

e run a series of “proof of concept” perception experiments to see if the “specifically-enhanced”
speech is better perceived in the “matched” adverse condition than other types of clear speech
(there is evidence that this is the case with the naturally-enhanced speech).

The outcome of the project can be summarized as follows:

e a new speech corpus (P8-Harvard corpus) was linguistically and meta-linguistically annotated and
acoustically analyzed with the goal of identifying which acoustic-phonetic characteristics differ
between clear and casual speech and also between different styles of clear speech. Moreover,
acoustic analyses on specific features were also performed on a different corpus, namely the LUCID
database (specifically on read clear and read casual speech signals).

e among the different styles of clear speech, prosodic changes were most apparent. Therefore, sig-
nal modification algorithms were developed to mimic human adaptations on prosody in adverse
conditions with the aim of increasing intelligibility.

e a user-friendly interface, XPlic8, for a large range of acoustic analyses was developed.

a set of evaluation experiments was prepared to evaluate the different modifications.

61



This report is organized as follows. Section 2 describes the P8-Harvard corpus that contains the
different speaking styles for analysis. In section 3 the linguistic analysis of the corpus is presented.
Section 4 focuses on the analysis of the voice source characteristics between different styles of speech on
the P8-Harvard corpus (and on the LUCID corpus to a less extent). In section 5 prosodic differences
between the different speaking styles are examined with focus on the number of pauses and the mean word
duration. Section 6 introduces two novel time-scaling techniques that try to modify casual speech signals
to achieve higher intelligibility scores, mimicking the properties of the elicited clear speech. Section 7
presents a novel tool for a large range of acoustic analyses. Section 8 summarizes the work of this project.

2 P8-Harvard Corpus design and recording

A corpus of materials was recorded and analyzed to provide information about the acoustic phonetic
enhancements typically seen in clear speaking styles produced in speech with communicative intent. The
aim was to record materials which were controlled and standardized (Harvard sentence lists) but where
clear speaking styles were elicited naturally, due to communicative need, rather than via instructions to
read materials clearly (LUCID corpus[1]). For that purpose, the first 15 lists of the Harvard sentences
(1969) were recorded. These sentences, which are phonetically-balanced and each include 5 keywords,
were developed for speech quality evaluations.

2.1 Recording procedure

Two British English speakers, one female and one male were each recorded (as “Speaker A”) with a
confederate (“Speaker B”). Speaker A had to read a sentence to Speaker B who had to repeat it back to
Speaker A. So as to induce Speaker A to make an effort to speak clearly when Speaker B was experiencing
a communication barrier, speakers were told that the speaker pair that achieved best “intelligibility
scores” would win a prize. Speaker A was told to only say the sentence once even if errors were made
by speaker B in repeating it. Two types of communication barrier, following Hazan and Baker (2011),
were used in order to elicit clear speaking styles that may differ somewhat in their acoustic-phonetic
characteristics. In the “babble” (BAB) condition, Speaker B heard speaker A’s voice mixed with 8-
speaker babble noise at an approximate level of 0 dB SNR; in the “vocoder” (VOC) condition, Speaker
B heard speaker A’s voice passed through a three-channel noise-excited vocoder which spectrally degraded
the signal. 150 sentences in each of the three conditions ("no barrier” NB, BAB, VOC) were recorded
for the two speakers.

Speakers were seated in separate sound-treated rooms. Beyerdynamic DT297PV headsets fitted with
a condenser cardioid microphone were used and the speech was recorded on two separate channels at a
sampling rate of 44100 Hz (16 bit) using an EMU 0404 USB audio interface and Adobe AUDITION.
Only Speaker A’s output was analysed here, since speaker A was talking in a non-barrier environment.

3 Linguistic analysis of the P8-Harvard Corpus

For the linguistic analysis of the P8Harvard corpus, Praat [2] along with several analysis algorithms was
used.

3.1 Initial processing

For all sentences, a Praat textgrid was produced with three tiers: tier 1 contains speech (SP) and silent
(SILP) regions markers, tier 2 had word aligned markers and tier 3 phoneme-level aligned markers.
Sentences (five sentences for Speaker Al and 12 for Speaker A2) were excluded from the corpus since
they contained mispronunciations or hesitations on one or more of the keywords.

3.2 Linguistic Annotation of corpus

The Harvard database [3] is a set of 72 phonetically balanced lists of 10 sentences, each containing
5 keywords. Three lists were recorded for the current project, and in addition to existing keyword
coding, the database was enriched with broad/narrow grammatical annotation, lexical frequency and
neighborhood density. A summary of the added information to the Harvard database is given in Table 1.
Word- and phone-level annotation were semi-automatically carried out and merged with the Harvard
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database. The resulting corpus comprises of 2293 manually check words and 6902 segments for the two
speakers in the three recording conditions.

Information Description

word Orthographic form of the word (punctuation re-
moved)

lemma Lemma of the word

keyword Keyword coding of the word (keyword vs. non-
keyword)

PoS Part of speech. Categories are: Adj, Adv, Conj,
Det, DetP, Ex, NoC, Num, Prep, Pron, Verb,
VMod

freqBNC BNC! frequency of occurrence of the word (in-

flected form). Occurrence per million in a 100 mil-
lion spoken and written word corpus

neighPhon  Number of all phonological neighbours that dif-
fer from the word by a 1l-phoneme substitution,
deletion, or addition. Extracted from the de-Cara
database?.

freqCxS Celex spoken frequency of corresponding lemma.
Occurrence per million in a 17.9 million spoken
word corpus

freqCxW Celex written frequency of corresponding lemma.
Occurrence per million in a 17.9 million written
word corpus

Table 1: Harvard database annotation tagging. 3 lists were annotated for a total of 1066 words.

3.3 Analysis of communication effectiveness

The number of correctly-transmitted keywords was calculated per condition. The percentage of keywords
correct in the BAB condition was 88% for Al and 73 % for A2, while in the VOC condition it was about
40% for both speakers. The VOC condition was therefore harder for both speaker pairs.

Communication breakdowns were defined as sentences in which 3 or more keywords were not correctly
repeated by speaker B. Fig. 1 highlights these breakdowns and the sentences immediately following them
(see also Section 4.6).

nb wrong keyword >= 3

\./NJN/ LA At Al M/NJMMNM
Q?ﬁ?M SRR i o S R VP e
TN -l i A A

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150
sent

—e— wrong keyword proportion —e— |last breakdown

breakdown —e— following breakdown

Figure 1: Identification of communication breakdowns for speaker A1 and A2 in BAB and VOC con-
ditions, defined as sentences in which more than 8 keywords were missed in the interlocutor repetition.
A distinction is made between “breakdowns” (orange lines) and “last breakdowns” (red lines), the lat-
ter depicting breakdowns immediately followed by sentences in which 2 or less keywords were missed
(“following breakdowns”, green lines).

I British National Corpus. Available online at http://ucrel.lancs.ac.uk/bncfreq
2de-Cara database. Available online at http://portail.unice.fr/jahia/page12414.html
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4 Analysis of the voice source and spectral characteristics be-
tween different styles of speech

The analysis of voice source characteristics of the P8 corpus included three types of speech: NB, BAB and
VOC speech. The idea was, that if there would exist differences between the voice source characteristics
of these two voice types, this information could used to convert normal speech into the more intelligible
speech in the barrier cases.

The main analysis tools for this task were glottal inverse filtering, pitch detection, glottal closure
instant detection, voice source feature extraction and formant detection using Praat. These tools were
developed as Matlab scripts for the purpose of the project and details regarding the analysis tools are
provided in section 7, since all these analysis algorithms were incorporated in a new proposed analysis
tool.

4.1 Glottal flow waveforms and Harmonic analysis

Main findings were that the different voice types did not differ significantly in terms of the use of the
voice source. Figure 2 shows the glottal source waveform for the speech signals on the three different
conditions, BAB, VOC and NB for the male and female speaker. In Figure 3 the corresponding spectra
of the glottal source are depicted. Figure 4 shows a slight decrease of the harmonic-to-noise ratio in the
barrier cases for both speakers Al and A2.

Waveform Waveform
T T

-0.05

=011

Amplitude
Amplitude

-0.15F

-0.2r

-0.251

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Time (samples) Time (samples)

Figure 2: Glottal source waveform for the speech signals on the three different conditions, BAB, VOC
and NB for the male(a) and female speaker(b)
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Figure 3: Glottal source waveform for the speech signals on the three different conditions, BAB, VOC
and NB for the male(a) and female speaker(b)
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Figure 4: Harmonic-to-noise ratio for the three different conditions NB, BAB, VOC for the male speaker
A2 (left) and the female speaker A1 (right).

4.2 FO0 analysis

The FO detection is based on glottal inverse filtering and autocorrelation peak detection. The algorithm
implemented to extract the FO and the FO range from the speech signals is described on section7. These
estimated values for the the whole P8-Harvard corpus where statistically analyzed with ANOVA. As
expected FO median was higher for the female speaker [F(1,137) = 16343.6,p < 0.001]; it was also
higher in the VOC condition than in the NB [t = 19.3;p < 0.001;df = 132] and BAB conditions[t =
—10.7;p < 0.001; df = 132], and higher in the BAB than NB conditions [t = —7.6;p < 0.001;df = 132].
FO range also varied across conditions [F'(2,274) = 9.5;p < 0.001]: it was broader in BAB than in both
NB [t = —2.4;p = 0.018;df = 132] and VOC [t = 4.8;p < 0.001;df = 132]. However, FO range did not
differ between the NB and VOC conditions [t = 1.8;p = 0.067; n.s.; df = 132]. The interaction between
speaker and condition was also significant [F'(2,274) = 3.9;p = 0.02].

4.3 LTAS

The Long Term Amplitude Spectra (LTAS) were also estimated for the P8Harvard and the LUCID
corpus (the algorithm for the estimation of LTAS is described in Section 7. Previous studies correlate
the increase of intelligibility of clear speech with the higher energy in the frequency band 1-3kHz relative
to casual speech. Figure 5 depicts the LTAS for speakers A2 (left) and Al (right) correspondingly for
the barrier and no barrier conditions of the P8-Harvard corpus. The male speaker increases his energy
above 1000Hz especially for the VOC condition and less on the BAB. For the female speaker there is a
slight increase between 2000-4000Hz for the BAB condition and a significant increase above 5000Hz.

LTAS LTAS
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Figure 5: LTAS of the male (left) and female speaker (right) for three different conditions NB, BAB and
voc
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For the 21 speakers in the LUCID database, averages over all voiced frames of the speaker were
computed. The obtained results indicated that for most speakers, the spectral tilt decreases from CV to
CL speech. In addition, some energy reallocation to the 1-7 kHz frequency region took place for most
speakers. An example of a computed LTAS is shown in Fig. 6 for speaker F38 where the previously

mentioned effects can clearly be seen.
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Figure 6: The long-term average spectra (LTAS) of conversational (CV) and clear (CL) speech and their
difference for female speaker F38 in the LUCID database. The LTAS are computed over four sentences

for each condition.

However, the results also varied significantly across speakers. For instance, the energy reallocation
patterns were in most cases very different and furthermore, for some speakers the spectral tilt was further
increased. This indicates that the speakers used very different strategies to produce clear speech.

A repeated measures ANOVA was done on the measure of intensity (LTAS 1 — 3kHz) for the P8-
Harvard corpus. LTAS was calculated separately for each sentence. There was a main effect of speaker
[F(1,131) = 22.0;p < 0.001], and of condition [F'(2,262) = 547.8;p < 0.001]; post-hoc paired t-tests
show that the BAB condition was greater in intensity (mean = —3.1) than the VOC (mean= -3.6)
(t =4.8;df =131;p < 0.001) and NB conditions (mean = —6.9) (t = —26.8;df = 131;p < 0.001). There
was also a significant interaction of speaker and condition [(F(2,262) = 124.7;p < 0.001]; post-hoc
analyses show that there are significant speaker-specific strategies in terms of intensity (¢t = —15.4;df =
131,p < 0.001): for A1, the BAB condition has a greater intensity than the VOC condition (mean
difference between VOC and BAB = —2.3), while for A2, the VOC condition has a greater intensity
than the BAB condition (mean difference between VOC and BAB = 1.2).

4.4 Energy distribution in critical bands

A sinusoidal signal analysis/synthesis mode was used to check the differences between the clear and
causal speech on the LUCID corpus. The idea was to investigate the differences between the two speaking
styles, clear and casual speech, according to their sinusoidal features (including amplitude and frequency)
extracted at the designed critical bands. For this, a pitch-independent sinusoidal model is designed which
extracts one sinusoid per critical bands, hence with a fixed dimension equal to the number of critical
bands. To design the critical frequency bands we used the 24 center frequencies and bandwidth derived at
16 kHz of sampling frequency. In order to reflect more accurately the subjective loudness of speech signal
for the masker noise, the ITU — R468 noise weighting filter was taken into consideration. The highest
spectral amplitude per frequency band was selected to avoid sidelobe peak problem. This modified the
center frequency and bandwidth of some of the critical bands. The sinusoidal model designed as such
showed a hardly distinguishable difference between the re-synthesized and the original signal.
Experiments were conducted on voiced frames of length 16 ms with a frame shift of 4 ms for two
speakers, M8 (male) and F22 (female), of the LUCID database. Figure 7 shows the histogram of the
amplitude (top) and frequency (bottom) of clear (blue) and casual speech (red) at a specific critical
sub-band characterized with its center frequency and bandwidth for the male speaker M8. Figure 8
shows the histogram of the the amplitude (top) and frequency (bottom) of clear (blue) and casual speech
(red) at a specific critical sub-band characterized with its center frequency and bandwidth for the female
speaker F22. The center frequency and bandwidth for each critical band is shown at top of each subplot.
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Figure 7: Histograms of the amplitude (top) and frequency (bottom) of clear (blue) and casual speech
(red) at a specific critical sub-band characterized with its center frequency and bandwidth for the male

speaker M8
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The x-axis of each subplot is the range for amplitude or frequency. For frequency case, the x-axis is the
frequency deviation from the center frequency (f.) normalized by the bandwidth (BW) to make it a
standard random variable called (fstandard):

fstandard = (f - fc)/BW (1)

The amplitude histogram figures, indicate the amount of energy difference per critical band between
clear speech and casual speech. It is observed that for clear speech we have significantly more energy
contribution than that for casual speech. This is well pronounced for frequency bands lying higher than
450 Hz. Looking at the changes in the frequency of clear and casual speech at critical bands, it is observed
that the two speech styles have differences at frequency bands between 2000 and 4000 Hz (critical bands
13 to 18).

Future analysis can be performed in this domain. The idea is to find a way to model these differences
between the barrier and no-barrier speech. Using the learned statistics, the final goal is to modify the
barrier speech (causal speech), in terms of its sinusoidal parameters at critical bands, in order to improve
the speech intelligibility. One possible idea is to increase the energy distribution of the causal speech at
certain critical bands.

4.5 Vowel space

In order to visualize and quantize the vowel pronunciation of different speakers and styles, vowel spaces
are useful. The vowel space is a plot of the mean of vowel instances in a 2D plane defined by the first
and second formant frequencies. The area that the observed vowels span in this space then reflects
the discriminability of the vowels. Previous studies report the expansion of vowel space in the case of
clear elicited speech versus casual speech. The vowel spaces have been generated as follows. First, in
order to isolate the vowel instances in the corpora, all of the speech was segmented using an HTK-based
audio-to-text aligner. No manual corrections were performed. For each vowel instance, formant analysis
is performed using the Praat algorithm [2]. The representative pair of F1 and F2 values for each vowel
instance is then taken as the values at the center of the speech segment. For each vowel, the mean
over all of the vowel instances is trimmed, with 95% of the data kept, in order to limit the influence of
potential outliers. Then, the convex hull (i.e., a polygon fit that encompasses all of the data points) is
calculated in order to represent the vowel space area. The convex hull is selected to represent the vowel
space area in this work because it effectively captures the maximum area that the points in the vowel
space span. Figure 9 depicts the vowel space in the three conditions for speakers Al and A2 as defined
by the largest-area polygon fit (convex hull) for the 4 tense and 6 lax vowels (95% trimmed means).
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Figure 9: Vowel space in the three conditions for speakers A1 and A2 as defined by the largest-area
polygon fit (convex hull) for the 4 tense and 6 lax vowels (95% trimmed means).

A per-vowel analysis was run on the measures using a mixed-model ANOVA, with vowel as a between-
subjects factor, and condition (NB, BAB, VOC) as a within-subjects factor. The analysis showed a
significant condition effect on all three vowels /i/, /p/ and /o/ for Speaker A1l (p = 0.0398) but no effect
for Speaker B. So, for Speaker A, vowel space expands as follows: NB < BAB < VOC'. Additionally,
no significant interaction was found between vowel type and condition for either speaker.
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4.6 Analysis of speech produced post communication breakdown

Sentences with more than two keywords incorrectly perceived were classified as having caused “com-
munication breakdown”. To find out whether there are significant differences between the pre- and
post-breakdown sentences in terms of acoustic characteristics, for Speaker Al, acoustic analyses (i.e.,
sentence duration, LTAS at 1-3 kHz and 5-8 kHz, FO median and range) were compared for breakdown
sentences and post-breakdown sentences where all keywords were correct. In the BAB condition, there is
a trend for longer sentence duration (p = 0.163) and significantly higher LTAS (5-8 kHz) post breakdown
(p < 0.05). In VOC condition, effects were not significant but a trend for lower FO median and higher
FO range post breakdown can be discerned. Although no correlation between sentence duration and
communication effectiveness was found, a gradual increase in sentence duration was observed as time
progressed in BAB condition for Speaker Al.

5 Examining prosodic differences between speech styles

The P8-Harvard corpus was also analyzed on time-domain, focusing on the number of pauses, mean word
duration and the “rhythm” between the different speech styles.

5.1 Number and duration of pauses

In order to detect the number of pauses in the sentences of the whole P8-Harvard corpus, an algorithm
was implemented to detect parts of speech signal with no proper speech content(NS, Not-Speech) such
as pause between words, or even closure within stop consonants, etc. The silence detector relies on
a low-loudness detection function based on the Perceptual Speech Quality measure. First the total
loudness of the speech signal is computed by PSQ (ITU Standard REC-BS.1387-1-2001) and then the
normalized loudness is computed dividing by the maximum loudness of the signal. A frame of the signal
is considered NS if its normalized loudness is less than 15%. After cross-validation using a subset of
files with manually-detected pauses (50 files from the P8-Harvard corpus) and it was found consistent.
According to the linguistic context where the low-loudness part was located, the function could address
the following type of Not-Speech:

e S: part of signal with loudness above threshold

e NS: generic low-loudness part of signal

e NSg: low-loudness part of signal at the beginning-end of the sentence

e NS,.: low-loudness part of signal, which is part of a stop consonant inside a word
e NS;,: low-loudness part of signal between two separate words (Inter-Word pause)

® NSiusc : NSi, in which the second word begins with stop consonant and therefore it is not possible
to say if it is a pause or the closure of the consonant.

Applying the automatic detector to the P8-Harvard database, it was possible to compare the number
of Not-Speech in different conditions. Table 2 contains the number of Not-Speech for each category,
speaker and condition and Figure 10 has the average number of the total number of inter-word pauses
per each utterance.

Al A2
Typeof NS NB BAB VOC NB BAB VOC
sc 437 492 529 433 470 520
iw 32 65 155 17 24 75
iwsc 176 209 220 130 162 182
sil 295 293 298 277 276 276
nc 1161 1386 1615 947 1059 1247

Table 2: Number of instances of different type of NS
The first results showed an increasing number of NS parts in the speech along with the difficulties in

the communication. #NSyoc > #NSpap > #NSnp for both speakers, even though the male speaker
tends to compensate less to the adverse conditions, as confirmed by other analysis.
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A significant increase is worth to mention in the number of intra-words NS (N S;,,) between the VOC
barrier and the other two conditions in both speakers as Figure 10 explicitly shows. This confirms that
when the communication channel is really destructive and there is no direct feedback of it, the speaker
focus the main part of his/her effort to greatly decrease the speaking rate.

12 7 W A1 (female)
1 - H A2 (male)
0.8 -
06
0.4 -
0 T T
NB BAB VOC

Figure 10: Average number of inter-word pauses (NS, ) for each utterance in different conditions.

Further insight can be gained by looking at the durations of the different silence categories: Fig. 11
shows that, apart from leading/trailing silences (IN.Ss;;), all types of silences undergo durational increase
from NB to BAB to VOC, particularly the interword pauses (NS;,). In contrast, speech part durations
remain stable, highlighting a possible speaker strategy of reducing speech rate by detaching the words.

speech and silence durations
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Figure 11: Mean speech and silence durations for speakers A1 and A2 across NB, BAB and VOC.
Errorbars are 95% confidence interval.

5.2 Mean Word Duration analysis

The Mean Word Duration (MWD) for each type of condition was measured accurately using the silent
detector, since the inter-word durations within utterances could be identified and subtracted to the word
durations.

The results plotted in Figure 12 and Figure 13 display the change of duration in the VOC and BAB
condition with respect to the No-Barrier condition during the experiments sessions. First observation
is that all speakers elongate their speech production, especially in the worst condition (VOC barrier).
This evolves along the sessions. However, this is not consistent between the two speakers for the BAB
condition. Speaker A2 maintains mean word duration and mean content word duration stable. Speaker
A2 was found to be less effective in the compensation, he slightly elongated the speech (~ 20%), only in
the VOC barrier case but he didn’t adjusted his speech any further. This lack of efficiency was confirmed
by the amount of the errors the listener made which were much more compared to the errors he made
during the session of speaker Al.
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Figure 12: FElongation strategy of female speaker Al in the experiment sessions. On the left-hand side
the mean word duration related to all words is shown, whereas on the right-hand side there is the mean
content-word duration only.
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Figure 13: FElongation strateqy of male speaker A2 in the experiment sessions. On the left-hand side
the mean word duration related to all words is shown, whereas on the right-hand side there is the mean
content-word duration only.
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In Figure 12 and Figure 13 the red line is a 3rd-order polynomial curve that fits the data. Based
on the shape of the line, three different stages emerge in all sessions, particularly for speaker Al and
the most stressful condition, i.e. the VOC barrier. At the beginning, the speaker starts with almost the
same mean word duration as the NB condition, but as soon as he/she received intelligibility feedbacks
from the listener, he/she increased the effort (i.e word duration) and hence a steep slope is seen at the
beginning of the session. In the central part, the curve is flatter and the hypothesis is made that the
current elongation is effective for the condition and the listener and no further adaptation is needed.
In the final part, speaker A1l increased mean word duration further and it is hypothesised that she was
trying to compensate the listener’s tiredness, whereas, in the same conditions, speaker A2 seemed to
cease making the effort to elongate, maybe due to a lack of motivation towards the end of the session.

Some correlations were investigated between the increase/decrease of mean word duration in a ut-
terance and the number of listener’s errors, but no clear relationship was found yet due to difficulties in
comparing the two completely different data domains.

5.2.1 Rhythmogram analysis

The rhythmic patterns which differentiate barrier and no barrier speech was also investigated. For this
task the rhythmogram [4] was employed. The Rhythmogram is a hierarchical representation of speech
rhythm, from which one can extract the locations of relative prominences in the speech signal. This
is achieved in a first step by computing auditory-based energy envelope with different time windows,
and, by linking the peaks at different scales in a subsequent stage, enabling the identification of global
(e.g., sentence-level) prominences (see Fig. 14). The detected prominences might undergo different
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Figure 14: Rhythmogram analysis for the sentence “The birch canoe slid on the smooth planks”. Plain
line stems identify relative prominences, dashed stems relative silences. Prominences and silences strength
1s determined by their highest value on the y-azis, and their location in the speech signal by their minimum
value (smallest filter width).

modifications by talkers in the reduction processes from clear to casual, and suggested a comparative
analysis between clear and casual speech.

Using the manually annotated temporal mapping between clear and casual speech on a different
Database (LUCID database), we assessed whether prominences and silences were treated differentially
by talkers. Results on 69 pairs of matched casual/clear speech sentences showed that speech segments
containing silences were significantly more compressed than prominences. (p<.001), Fig. 15. This shows
that the nonlinearities observed in the temporal reduction from clear to casual can be explained by the
rhythmic properties of speech: whereas silences appear to be suppressed from clear to casual, prominences
tend to be preserved.

Given this result, prominence and silence locations were further characterized in terms of what
sound class they fell in the P8-Harvard database comprising the NB and the two clear speech eliciting
communicative barrier conditions BAB and VOC. The results presented in Fig. 16 show that most of the
detected prominences fell into sonorant sound classes, i.e., vowels, nasals, and to a lesser extent, liquids.
On the other hand, silences were found in stops, fricatives and annotated silences (occurring mainly in
VOC condition, cf. Section 5.1). It should be noted here that the silences detected in the stop segments
sound classes were mainly “low-level” silences in the rhythmogram hierarchy, and are not captured by
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Figure 15: Time scale factor of speech parts containing silences and prominences in clear speech.

the global/salient silences detection. This analysis shows which segment would mainly benefit from an
intrinsic time-scale modification based on the rhythmogram (cf. Section 6.2).
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Figure 16: Prominences and silences locations in sound classes in one non-barrier condition (NB) and

two clear speech eliciting conditions (BAB and VOC). The filter width is controlled by o: the higher the
number, the more global the prominence / silence.

These analyses provided a first pass characterization of the rhythmic properties of clear speech over
casual or less clear speech styles. Future directions for assessing the specific places which differ between

the speech styles could include acoustic analyses in the vicinity of detected prominences/silences, and
global rhythmogram pattern analyses.

6 Proposed Time-scale modifications

Analysis of the P8-Harvard corpus showed a consistency of the speakers to elongate content words and add
more pauses in the barrier cases. These adaptations result to a lower speaking rate of the speech signal.
Therefore, two time-scaling modification techniques were developed in order to mimic the adaptations
that speakers Al and A2 make when they elicit clear speech in the barrier conditions. These time-scaling
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techniques elongate the non-stationary parts of speech in order not to introduce artifacts to the speech
signal and insert pauses to the signal. The first time-scaling technique is based on the Rhythmogram of
speech and the second on the Perceptual Speech Quality Measure (ITU Standard REC-BS.1387-1-2001).

6.1 Perceptual Speech Quality Measure based Time-Scale Modifications

The Perceptual-Speech-Quality measure (PSQ) is used to elongate the stationary parts of casual speech
and to define where to insert pauses to the signal. The Perceptual Speech Quality measure is based on
the basic version of ITU StandardREC — BS.1387 — 1 — 2001, a method for objective measurements of
perceived speech quality. It estimates features such as loudness and modulations in specific bands, in
order to describe the input signal with perceptual attributes.

Two metrics of the PSQ model are used to detect the stationary parts of speech, where time-scaling
can be applied: the perceived loudness of the signal in low bands and the loudness modulations in high
bands. Analytically, PSQ estimates the perceived loudness on the low frequency bands (0-300Hz) of the
signal, where unvoiced speech is less likely to be present. However, some voiced stop consonants, e.g. /d/,
have high energy in low frequency bands. Time-scaling voiced stop consonants would cause distortion.
Therefore, the loudness metric is not sufficient to decide which parts should be elongated. Then, another
metric is introduced, namely the loudness modulations of high frequency bands (around 4000Hz). The
loudness modulations in high frequency bands are strongly correlated with the non-stationarity of the
signal and are able to detect voiced stop consonants. Therefore, the combination of the two metrics is
proposed, called the Elongation Index (EI), defined as:

_ JL—-M, L-M < threshold
El= {71, L—M > threshold (2)

where L is the average perceived loudness in low bands and M the loudness modulations in high frequency
bands. EI is calculated for each frame of the signal. If EI exceeds a threshold then the frame is allowed
to be elongated. The lower the threshold, the more likely is to capture non-stationary parts. EI does
not depend on the energy of the signal and its threshold is defined between [1.3 - 1.4].

An example of how EI is calculated for a speech signal is shown on Figure 17. The speech signal
depicted on Figure 17 corresponds to the phrase “made a sign.” The loudness in low frequency bands,
as calculated by PSQ, is depicted with a green curve whereas the modulations in high frequency bands
are in red. Voiced phonemes like /ey/ and /e/ have high loudness on low bands and low modulations on
high bands. In these cases, EI is above the threshold and these phonemes are allowed to be elongated
(Figure 17b). Phoneme /d/, as a voiced consonant, has high loudness in low bands as well as high
modulations in high bands, so it is not allowed to be elongated. For consonants like /s/ the loudness
metric is lower than the modulation metric. Therefore, they will not be elongated either. Notice that
the value of EI in Figure 17b is not important, rather, the sign of EI is taken into account.

Each frame that can be elongated is now the center of a window with duration 20msec. Then, for
this frame, a time-scale factor of 120% is created. The time-scale factor for the total sentence duration
consists of the time-scale factors only for the frames that will be elongated. The time scale factors for
these voiced frames are given as input to WSOLA [5], which then time-scales the signal.

6.1.1 Pause Insertion

Pause insertion is also implemented using the PSQ model. The perceived loudness of the speech signal
in the whole band is estimated. Then, loudness is normalized by the maximum loudness of the signal
and on this loudness curve, the valleys that are 30% lower than the maximum loudness of the signal are
detected. The valleys with very low values, less than 10% of the normalized loudness of the signal, can
be considered silences. On the other hand, it is observed that the valleys that fall within the loudness
interval (10%, 20%)] usually are in the middle of word boundaries and are appropriate for inserting
pauses without distorting the signal. The pauses that result from these valleys are called aggressive
pauses to distinguish them from the pauses derived from the valleys with very low values of loudness
(non-aggressive). The PSQ algorithm adds both non-aggressive and aggressive pauses to the signal.
The reason for the distinction between aggressive and non-aggressive pauses is that the algorithm uses
different techniques to do the insertion. First, the non-aggressive pauses are inserted on the signal by
adding a constant pause of 90 ms duration. Then, in order to insert the non-aggressive pauses on the
location where the signal has higher loudness, a pre-processing of the signal before and after the location
of the valley must be made. The pre-processing involves a time-scaling of the signal around the location
where the gap will be inserted, if this is allowed by the stationarity restriction. Then, after scaling, a
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Figure 17:  Detection of non-stationary parts using PSQ model on the sentence “made a s(ign)” a)
Loudness in low frequency bands and modulations in high frequency bands (top) b) Elongation index
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hamming window is applied on the center of the valley so that the transition from speech to silence will
be more smooth.

6.2 Rhythmogram-Inspired Time-Scaling and Pause Insertion

The speech rhythmogram has been proposed by Todd and Brown [6, 7] in order to model prosody
perception. In order to generate the rhythmogram, the speech signal is first pre-processed to simulate
the processing of the auditory periphery. In particular, the speech signal is first rectified and then
raised to the one-third power. This processing approximates the loudness of the speech. Then, for the
rhythmogram generation, multi-scale filtering is carried out by convolving the pre-processed speech with
Gaussian windows of varying length in time. The peaks or prominences of the levels (corresponding to
different Gaussian window lengths) are then linked in order to capture and visualize the overall rhythm
of the speech. The following describes how this rhytmogram analysis of speech is used to inspire a
time-scaling and pause insertion algorithm for speech.

Given the previously described observations on the differences between clear and casual speech, a
PSQ-based algorithm for time-scaling and pause insertion was proposed. The rhythmogram provides a
simple way to approximate the PSQ-based algorithm, in that it also elongates louder parts of speech
while largely avoiding non-stationarities. Moreover, valleys in the rhythmogram level curves are used to
detect where to insert pauses. Simplifying the processing by removing the need for calculation of the PSQ
measure then frees up the rhythmogram-based approach (in terms of complexity) to provide additional
pause enhancement using a WSOLA-based interpolation scheme. Explicitly, the rhthymogram-based
time-scaling and pause insertion can be broken down and described in the following steps.

6.2.1 Pause Detection and Insertion

First, in order to approximate loudness, step 1 is to rectify the speech signal and raise it to the one-third
power, mimicking processing in the auditory peripher. A “gross” Gaussian window (50msec length) is
then convolved with the processed signal. The valleys in the resulting envelope then represent the longest
pauses, or silences in the signal. This envelope is normalized so that its maximum value is one. The
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location of the deepest valleys, defined as those more than 40% lower than the envelope maximum, are
then used to indicate where zeros are inserted in the signal (see Figure 18). The length of the insertions
are inversely proportional to the envelope valley depth, with the lowest valley being elongated the most
(80msec).

Pause insertion detection

1 T T T

0.5

— original signal
—— Rhythmogram level curve (50msec)
O valleys (-40%)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 2
time (sec)

Figure 18: Rhythmogram-based pause detection.

6.2.2 Time-Scaling

A similar process to that used for the pause detection and insertion can also be used for time-scaling.
In particular, the speech signal (with inserted pauses) is processed and the envelope (rhythmogram level
curve) extracted in the same way. However, in this case, the time-scaling seeks to elongate prominences
(peaks) and also silences (valleys) in the envelope. Like for the PSQ-based algorithm and uniform scaling
described in this work, WSOLA is used for the time-scaling. Consequently, the normalized envelope from
the rhytmogram level will determine the time-scaling factors that are input to WSOLA. In particular,
the mean of the normalized envelope is first removed. The result is then rectified, so that the valleys
become peaks. With this rectification, the parts of the envelope corresponding to transitions in speech
(e.g., non-stationarities) lie near zero, as they have energy lower than the loudest parts of speech, yet
higher than silences. The rectified envelope is then scaled by a maximum scaling factor, so that the
time-scaling will not involve a factor larger than this amount. The scaling factors input to WSOLA are
then one plus the scaled, rectified envelope. So, the non-stationary parts of speech will have a scaling
factor near one and the rest of the speech will have a scaling factor above one, to elongate the signal,
but below the specified maximum scaling factor (the maximum scaling currently limits the time-scaling
factor to 2). Figure 19 shows an example of the input to WSOLA based on the rhythmogram-inspired
time-scaling.
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Figure 19: Rhythmogram-based time-scaling.

7 The GUI: XPlic8

As one of outputs of P8, XPlic8 is a MATLAB-based graphic tool for carrying out a series of analyses on
single or batch of signals. It comprises of a set of functions for acoustic-phonetic measurement of speech,
as typically used in speech science and phonetics research.

XPlic8 is able to perform seven acoustic-phonetic analyses and two visualization methods on sentence,
word and phoneme levels. These are listed below:

e Analysis

— Duration (s)

— F0 median (Hz)

— FO range (Hz)

— LTAS energy between a specified frequency range db SIL
— Spectral tilt (dB/oct)

— Vowel space (F1 (Hz), F2 (Hz))

— Centre of gravity (Hz)

e Visualization

— Source features analysis (8], [9]
x LPC Spectrum
* Harmonic-to-noise (HNR) ratio plot
x Average glottal flow waveform
— Vowel space plots
% Plot of F1/F2 of tense vs. lax vowels
* Plot of mean F1/F2 for all vowels
% Plot of centre of gravity for /i/-/v/-/o/

Note that some analyses can only be performed on certain levels and also rely on the existence of
corresponding annotation files for the signals. The detailed results from the analyses can be exported
in plain text format that can be used as direct input for statistical applications such as SPSS or R for
further analysis.

7.1 Analysis algorithms

The analysis algorithms developed during this project and incorporated in the GUI XPlic8 are described
below.
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Figure 20: The GUI XPlic8

7.1.1 FO estimation

A rough FO0 trajectory prediction is performed prior to actual pitch detection. This is done in two stages:
The first stage is to high-pass filter the speech signal in order to remove possible low frequency noise,
followed by defining the rough FO range. This is performed by using simple inverse filtering of the speech
signal in order to remove most of the formants and then integrating the signal in order to get a signal
close to glottal flow. This is done frame-wise with a 40-ms window. The rough fundamental period is
estimated by evaluating the autocorrelation sequence of the signal and then finding the maximum peak
that corresponds FO between 50 and 500 Hz. Those frames with low energy or high zero-crossing rate
(ZCR) are classified as unvoiced. FO range is defined as:

FOpin, = mediom(fo)%2 (3)
FOppar = 2.2median(fo) (4)

The actual pitch detection takes place after the initial estimation of the FO range. The analysis
window size is adjusted to the estimated FO range so that it is twice the lowest fundamental period
(2/F0pin). The glottal inverse filtering method used in FO estimation is iterative adaptive inverse
filtering (IAIF) which estimates the glottal flow signal of the frame using linear prediction such that the
fundamental period from the vibratory glottal flow waveform can be estimated. The fundamental period
is estimated again finding the maximum peak of the autocorrelation sequence.

For post-processing, two highest peaks are saved: First, the post-processing involves forming a contin-
uous trajectory from the two trajectories. This is based on the relative jump of the trajectories compared
to a local FO median. Second, 5-point median filtering is applied to smooth out outliers. Third, the
unvoiced parts are set to zero based on the energy, ZCR, autocorrelation peak value, and gradient index.
Fourth, the FO trajectory is filtered with a 3-point medial filter. Finally, the median FO0 is defined as the
median of the non-zero values of the trajectory. The F0,,;, and F0,,,, are defined as the minimum and
maximum non-zero FO values of the trajectory.
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7.1.2 LTAS energy in specified frequency ranges

The energy is computed as the intensity in SIL (sound intensity level) dB on the specified frequency range.
The input sample is windowed with a 5-ms rectangular window without overlap and a 1024-length Fourier
transform (using the FFT function) is computed for each frame. To obtain the normalized intensity for
each frame, the energy in the specified frequency range is normalized by the length of the FFT, the
length of the window (in samples) and the sampling frequency. Finally, the normalized intensities of all
the frames are summed and the corresponding decibel value is computed by using the reference value
IO = 10612.

7.1.3 Spectral tilt

The average spectral tilt is computed by fitting a regression line to 1/3-octave band energies of the
LTAS (long-term average spectrum) in logarithmic scale. The LTAS is computed in 5-ms frames without
overlap. For each frame, a 2048-length Fourier transform (with the fft function) is computed and the
LTAS is obtained as the mean of the absolute values of the Fourier transforms over all frames. The
average energy in the LTAS for each third-octave band is computed and normalized with the width of
the band. These values are then transformed to logarithmic scale and a first-degree polynomial fit is
estimated (using function polyfit). The average spectral tilt (in dB/octave) is three times the value of
the first coefficient of the polynomial.

7.1.4 Vowel space (F1, F2)

The formant extraction tool returns the formant values in the middle point of the selected segment. It
uses Praat [2] to extract the formant values for each consecutive frame in the selected speech segment
and the cheapest paths through those values. Then, the values related to the centre of the time interval
are chosen. This function returns formant info for every selected phone and this data is also used to plot
the vowel space. Most of the analysis options are already optimised and cannot be changed: Time step
= 0.01 s, Maximum formant number = 7, Number of paths to tracks = 5, Formant search range ceiling
= 6500 Hz, Pre-emphasis filter lower limit = 50 Hz, Duration of the analysis window (0.025 s). For
a detailed description of these parameters, please refer to the online Praat manual (Sound to Formant
(Burg) and Formant Track)

7.1.4.1 Formant extraction The sound is re-sampled (Sound: Resample) to a frequency of twice
the value of maximum formant and a pre-emphasis filter is also applied (Sound: Pre-emphasize (in-line)).
For each analysis window, a Gaussian-like window is applied and the LPC coefficients are as per the
algorithm by Burg, as (Childers, D.G., 1978) and (Press, W.H. et al., 1992). The number of "poles” in
this algorithm is set as twice the maximum number of formants. The algorithm finds the best peaks in
the selected range of frequency (between 0 Hz and the maximum formant value). Then, all formants
below 50 Hz and above the ceiling minus 50 Hz are removed because very low frequency (near 0 Hz)
and very high frequency (near the maximum) peaks cannot usually be associated with the vocal tract
resonances and they are likely to be artifacts of the LPC algorithm.

7.1.4.2 Formant tracking After the formant candidate extraction, a tracking on these values is
performed in order to rearrange the peaks to obtain the best formant tracks. This command uses a
Viterbi algorithm with multiple planes and chooses the cheapest path through all the previously selected
peaks (Formant Track). The cost function for one track (e.g. 2) with proposed values Fy; (i = 1...N,
where N is the number of frames) is:

N

CostFunction = Z frequencyCost
i=1

|F2,; — referenceFy|
1000

N B, .
+_ bandWidthCost 2
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where frequencyCost, bandWidthCost, transitionCost, and referenceF2 values are fixed and all set
to 1. Analogous formulas compute the cost of other tracks. The procedure will assign those candidates
that minimize the sum of all-track costs.

7.1.5 Centre of gravity (CoG)

The Centre of Gravity is a measure of the spectrum energy distribution. The average spectrum on the
speech segment is computed. It uses the Praat software [2]. Given the complex spectrum, S(f), f is the
frequency, the CoG is computed by

/O FISCF)Pdf (©)
divided by the“energy” o
/o S(f)df Q)

The value of p is chosen to be 2. For further details please refer to the online Praat manual (Spectrum:
Get the centre of gravity).

7.1.6 Source features

For details of FO prediction refer to FO estimation. The polarity is estimated by comparing the positive
and negative energy of the glottal flow derivative signal. If the negative energy is greater, the speech
signal most likely has positive polarity (and vice versa). After FO and polarity detection, a suitable
window size is selected for estimating the parameters (3/F0,,in). Iterative adaptive inverse filtering
(TIAIF) is applied to the speech signal to separate the vocal tract transfer function and the voice source
signal. Then, various parameters are extracted, such as:

e [0 and voiced /unvoiced decision 3

e LPC and FFT spectra of voiced speech

e LPC and FFT spectra of unvoiced speech
e LPC and FFT spectra of vocal tract

e LPC and FFT spectral of voice source

e Speech energy

e Harmonic-to-noise ratio (HNR)

e H1-H2 value of the glottal flow signal

e Normalized amplitude quotient (NAQ)

e Individual glottal flow pulses and their average

The harmonic-to-noise ratio is evaluated by peak picking of the harmonics and then comparing the
magnitude difference between the harmonics and the inter-harmonic valleys. These values are averaged
to five equivalent rectangular bandwidth (ERB) bands. Normalized amplitude quotient is evaluated for
each glottal flow pulse and thus averaged to one value for each frame. Finally, all the estimated unique
glottal flow pulses are interpolated to constant length and averaged to estimate the average glottal
flow waveform. Parameters are post-processed with median filtering. Statistics of the parameters are
evaluated with 95% confidence intervals.

30nly available when single WAV file is selected and the analyses are performed on sentence level.
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8 Summary and Conclusions

A new speech corpus, the P8-Harvard corpus, was linguistically and meta-linguistically annotated and
acoustically analyzed. The aim was to identify which acoustic-phonetic characteristics differ between
clear and casual speech then to modify casual speech to sound as intelligible as clear speech.

The P8-Harvard corpus contains, for each of two speakers, 150 sentences produced in a casual and
two clear speaking styles. It is provided with word- and phoneme-level annotation, as well as pause
annotations. Communication was harder in the communication barrier conditions, as shown by a decrease
in keywords correctly transmitted, with the VOC condition being harder for both speakers. Acoustic-
phonetic analysis revealed that sentence duration increased significantly in the barrier conditions, but
that this was mainly due to an increase in pause duration, with a greater number of inter-word pauses
seen in the more difficult (VOC) condition. Speakers also altered their FO in the barrier conditions
(higher FO median in both conditions, broader F0O range in BAB condition only), and increased speech
intensity (mid-frequency region), especially in the BAB condition. Speaker Al hyperarticulated her
vowels in the barrier conditions but no significant vowel space expansion was seen in male speaker A2.
Evidence of communication-barrier specific strategies was seen. There was also evidence of differences
in enhancement strategies across the two speakers for most dimensions.

Analysis of the P8-Harvard corpus showed a consistency of the speakers to elongate content words
and add more pauses in the barrier cases. These adaptations result to a lower speaking rate of the
speech signal. Therefore, two time-scaling modification techniques were developed in order to mimic the
adaptations that speakers Al and A2 make when they elicit clear speech in the barrier conditions. These
time-scaling techniques elongate the non-stationary parts of speech in order not to introduce artifacts
to the speech signal and insert pauses to the signal. The first time-scaling technique is based on the
Rhythmogram of speech and the second on the Perceptual Speech Quality Measure (ITU Standard REC-
BS.1387-1-2001). a set of evaluation experiments was prepared to evaluate the different modifications.
The evaluation must be done by native listeners therefore no listening tests were conducted during the
Enterface2012.

Finally, a significant outcome of P8 is XPlic8, a MATLAB-based graphic tool for carrying out a series
of analyses on speech databases. It comprises of a set of functions for acoustic-phonetic measurement of
speech, as typically used in speech science and phonetics research.
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