The acoustic characteristics of Greek vowels

 produced by adults and children
STUDENT: ANNA SFAKIANAKI SUPERVISOR: PROF. PETER ROACH

"Dissertation submitted in partial fulfilment of the requirements for the degree of MA in Applied Linguistics"

DEPARTMENT OF LINGUISTIC SCIENCE UNIVERSITY OF READING

$$
\text { SEPTEMBER } 1999
$$

Contents

Pages
Acknowledgements i
List of Figures ii
List of Tables vi
Chapter I: Introduction 1
1.1. Research motivation and major findings 1
1.2. Dissertation outline 2
Chapter II: Theoretical Background 3
2.1. Vowel Quality 3
2.1.1. The traditional phonetic theory 3
2.1.2. The inconsistency of the traditional phonetic theory 6
2.1.3. Vowel acoustics 8
2.1.3.1. The sound wave 8
2.1.3.2. The acoustic model of speech production 11
2.1.3.3. Spectrography 13
2.1.3.4. Acoustic properties of vowel quality 15
2.2. The issue of normalisation 21
2.3. Greek vowels 28
2.3.1. Acoustic characteristics 28
2.3.1.1. Spectral characteristics 28
2.3.1.2. Fundamental Frequency $\left(\mathrm{F}_{0}\right)$ 34
2.3.1.3. Amplitude 35
2.3.1.4. Duration 37
2.3.2. Unstressed high vowels 38
Chapter III: Methodology 41
3.1. The subjects 41
3.2. The corpus 41
3.3. The recording technique 42
3.4. The measurement technique 44
3.5. The methods of analysis 46
Chapter IV: Presentation and Discussion of the Results 47
4.1. Male, female and child formant frequencies 47
4.2. Comparisons between classes of speakers 50
4.3. Comparisons with previous studies 55
4.4. The relationships between adult male, adult female and children data 62
Chapter V: Conclusions and suggestions for further research 67
5.1. Main Conclusions 67
5.2. Suggestions for improvements 68
5.3. Suggestions for further research 69
References 72
Appendix 1: The corpus 75
Appendix 2: The data labelling 76
Appendix 3:The adult list 78
Appendix 4: The children's list 79
Appendix 5: Descriptive Statistics Results 80
Appendix 6: Regression Analysis Results 110

Abstract

To our knowledge, no research on the acoustic analysis of children's speech has been published in the Greek language. At the same time, the need for an expanded database, that would include information on children, is underlined in the literature. This study, in an attempt to acknowledge this need, involves the acoustic analysis of men's, women's and children's vowels, with an emphasis on the last, and examines the relationship between adults' and children's acoustic data.

The most important difficulty encountered was the location of the second and third formants of the high, back vowel [u], especially when unstressed, in word-final position and produced by children. Concerning the children's vowels, due to their higher formant frequencies, they were found to be more fronted and open than women's and even more so than men's vowels, so as to form a vowel space placed more "downwards and to the left", as expected from English children's data (Deterding, 1990: 49\&51). A comparison with adults’ data from previous Greek experiments demonstrated that vowels in this study appear to be more fronted and open.

The scattergrams of adults' versus children's data revealed a relation that can be represented by a linear model quite satisfactorily ($\mathrm{R}-\mathrm{Sq}>90 \%$). Thus, children's vowels can be predicted from adults' vowels with minor error, using regression equations. This knowledge has value for speech applications, such as the improvement of automatic speech recognition systems.

Acknowledgements

I would like to thank my parents and Vassilis Spyropoulos for their love and enduring support, and my informants for providing their time for the recordings.

I especially wish to express my gratitude to my supervisor and mentor, Prof. Peter Roach, whose thoughtful guidance inspired and helped me find my way in this scientific field.

List of Figures

Figure

Page

Chapter II

1 Stylised chart of the vowel space 4
2 The cardinal vowel chart 5
3 Simple vibration waveform 9
4 Line spectrum 10
5 Source and filter model of speech production 12
6 Acoustic mapping of vowels to correspond to auditory map 15 (New Zealand English)

7 A cardinal vowel diagram, the coloured areas of which show the areas in which vowels cannot be specified simply in terms of frequencies of their formants

8 Average male and female, and female and child F_{1} against F_{2} for the 10 monophthong vowels of American English

9 Normalisation of average male and female, and average female and child American English vowels by a uniform shift on a log Hertz scale

Mean values of the first two formants of the Greek vowels (stressed and unstressed) produced by males and females

11 The vowels of Greek (from two different experiments), Italian and Spanish in an $\mathrm{F}_{1} \times \mathrm{F}_{2}$ space

Mexican and Castilian pronunciation in comparison to the mean

Figure
Page
13 A composite perceptual vowel map constructed out of those points for which at least three subjects assigned the same category code with high certainty ratings

The vowels of Greek plotted in an $\mathrm{F}_{1} \times \mathrm{F}_{2}$ space, using mean values, at the two tempi, comparing stressed nonfocus to unstressed vowels

15 The vowels of Greek plotted in an $\mathrm{F}_{1} \times \mathrm{F}_{2}$ space, using mean values, at the two tempi, comparing stressed focus to stressed nonfocus vowels

16 Mean F_{0}, measured in the middle of the vowel, at the two tempi and in the different stress-focus conditions

Mean amplitude difference in decibel RMS between the target vowel and the target word, at the two tempi and the different stress-focus conditions

18 Mean target vowel durations at the two tempi and in the different stress-focus conditions

Chapter III

19 The acoustic waveform and the wide-spectrogram of the word [kopáði] produced by an adult male speakerThe acoustic waveform and the FFT spectrum for the vowel [a]45 of the word [kopáði] produced by an adult male speaker

Chapter IV

21 The boxplot for the mean value of the first formant of vowel [i] 47

22 Plot of vowel [i], showing the distribution of the male, female and child formant frequency data

23 Plot of vowel [e], showing the distribution of the male, female and child formant frequency data
24 Plot of vowel [a], showing the distribution of the male, female 52
and child formant frequency data

Plot of vowel [o], showing the distribution of the male, female and child formant frequency data
26 Plot of vowel [u], showing the dis
and child formant frequency data

Greek adult male, female and child vowel spaces
American English male and female, and child and female vowel space

The vowels of Greek produced by male adults based on data from three different experiments

The vowels of Greek produced by female adults based on datafrom two different experiments
Figure Page
31 The vowels (average frequencies) of men, women and children, 61 as found by our study, in comparison with the areas occupied by the Greek vowels, as found by the perceptual vowel study of
Botinis et al. (1997)
32 Male versus female vowel plot 63
33 Male versus child vowel plot 64
$34 \quad$ Female versus child vowel plot 64

List of Tables

TablesPage

Chapter III

1 The mean values of F_{1}, F_{2} and F_{3} (in Hz) of the five Greek 49 vowels produced by men, women and children
2 The mean values of the first two formants of the Greek vowels 57
(stressed and unstressed) produced by adult males and females

3 Minimum and maximum values of the F_{1} and F_{2} frequencies extracted from a perceptual vowel map constructed on the basis of a study using synthetic stimuli judged by four female subjects

4 Means for stressed nonfocus vowels at slow tempo 58
5 The regression equations and R-Sq values for predicting child 65 vowels from adult vowels

Chapter I: Introduction

1.1. Research motivation

Research in acoustic phonetics has been characterised as a field with an "androcratic scientific heritage" (Henton, 1995:422). Lass (1996:221) comments that expanding the acoustic database to include information on children and women is an area of recent progress. The lack of a "complete" database in this sense and the need for an expansion in this direction has been underlined by numerous studies. Especially the value of research in children's speech acoustics has been pointed out in the literature (i.e. Lee et al., 1997, Deterding, 1990:42, Clark \& Yallop, 1995:241), as this knowledge would be used for the improvement of automatic speech recognition systems, text-to-speech synthesis and speech therapy methods, and would provide a better understanding of the speech production mechanism or even bring changes upon speech production theories.

Although research in other languages has already acknowledged the importance of this matter, Greek research still focuses on men's speech, except for few studies including women as subjects (Kontosopoulos et al., 1988 and Botinis et al., 1997). Nevertheless, nothing has been published on children's speech, to our knowledge.

This study constitutes an attempt towards this direction. Men's, women's and children's vowels are analysed acoustically and an emphasis on the spectral characteristics of children's vowels is given, as well as on the relationship between children's and adults' vowels.

1.2. Dissertation outline

Chapter II describes the theoretical background of this study. A historical review begins with the traditional phonetic theory and continues with the insufficiencies and limitations of this theory, which have led research to the direction of acoustic analysis. Some information about the sound wave and the acoustic model of speech production is provided, and emphasis is given on the acoustic properties of vowel quality. This chapter also touches on the issue of normalisation. Differences between classes of speakers and some of the methods that have been suggested as a solution to this issue are recounted. The last part of this chapter reports the acoustic research on Greek vowels and mentions major findings of this area.

Chapters III, IV and V provide a description of this study. Chapter III refers to the methodology: information about the subjects, the corpus, the recording and measurement techniques and the methods for analysing the data are provided. In Chapter IV, the results of the analysis are presented and discussed. Finally, in Chapter V, a summary of the findings is given and some suggestions for further research are made.

Chapter II: Theoretical Background

2.1. Vowel Quality

2.1.1. The traditional phonetic theory

Vowel sounds -also mentioned as vocalic (Clark \& Yallop, 1995:22) or vocoid sounds to avoid "theoretical ambivalence" ${ }^{1}$ (Laver, 1994:270)- are produced "by egressive pulmonic airflow through vibrating or constricted vocal folds in the larynx and through the vocal tract" (Clark \& Yallop, 1995:22). The vocal tract takes different shapes and sizes through the movements of the vocal organs, or articulators, thus modifying the sound. The two major articulators of vowel sounds are the tongue and the lips. Hence the shape and position of the tongue determines the geometry of the oral and pharyngeal cavities, while the shape of the lips controls the front area of the vocal tract and their protrusion can extend its overall length.

As the vocal tract varies, vowel quality changes, and this fact founded Alexander Melville Bell's notion that "the phonetic quality of vowels derived from the position and height of the point of constriction of the tongue" (Lieberman \& Blumstein, 1988:164). Consequently, phoneticians tried to specify vowel sounds "in terms of the position of the highest point of the tongue and the position of the lips" (Ladefoged, 1993:12) and place them in the vowel space, an area of tilted oval shape, "within which the highest point of the body of the tongue is placed in the production of vocoids" (Laver, 1994:272). The vowel space was stylised into a vowel chart (Figure 1) which shows the limits of possible vowel quality (Ladefoged, 1993:219). The points at the four corners of the chart represent vowels with extreme qualities; if

[^0]the tongue were moved beyond these points the generated sound would not be vocalic.

Figure 1 Stylised chart of the vowel space (Jones 1962 \& Abercrombie 1967, as cited in Laver, 1994:273)

The above chart does not provide enough reference points for the description of all the vowels in the existing languages. Therefore, Bell tried to define standard categories of vowel quality and associated articulatory positions (Clark \& Yallop, 1995:23). In the early part of this century, Daniel Jones proposed a set of cardinal vowels as "arbitrary reference points" (Ladefoged, 1993:219), so as to represent the most peripheral tongue positions for vowel sounds (Clark \& Yallop, 1995:24). The cardinal vowels occupy specific points in the vowel continuum (Ladefoged, 1967:76) and do not refer to any particular language; they just provide the boundaries of vowel articulation, so that any vowel in any language can be located within the area they encompass. This area was constructed by Jones as an irregular quadrilateral (Figure 2), whose horizontal sides demonstrate the tongue fronting (or backness), while the vertical sides show the tongue height.

Figure 2 The cardinal vowel chart. The articulatory dimensions ${ }^{2}$ are front versus back and high versus low. The first symbol of each pair corresponds to the primary cardinal set and the second to the secondary (figure adopted from Laver 1994:274 \& Clark \& Yallop 1995:25\&27).

Jones divided ${ }^{3}$ the sixteen cardinal vowels into two sets, each one consisting of eight primary and eight secondary cardinal vowels. In the primary set, two of the cardinal vowels are defined in articulatory terms (Ladefoged, 1993:219), since they are easy to locate by the feel of the tongue. Cardinal 1 (the nearest example in English is the vowel [i] in the word heed) is produced with the tongue as high and as far forward in the mouth as possible, and the lips spread, while cardinal 5 (the nearest example is the vowel [a] in the word hard) is produced with the tongue as low and retracted as possible (Clark \& Yallop, 1995:24). For cardinals 2, 3 and 4 (symbols e, ε and a) the tongue is still fronted but it is lowered in equal steps, so that the front

[^1]primary cardinals are "auditorily equidistant" (Clark \& Yallop, 1995:24, Ladefoged, 1993:220), while the lips progress from spread to neutral position. Cardinals 6, 7 and 8 (symbols \supset, \circ and u) are formed, starting from cardinal 5 and raising the tongue in a retracted position while rounding the lips. The back primary cardinals are also situated at equal auditory intervals. In the secondary set, the cardinals are produced in the same way, except that the lip positions are reversed. The zoning of the Jones cardinal vowel diagram and most of the phonetic symbols of the vowels have been adopted by the IPA (Laver, 1994:274)

2.1.2. The inconsistency of the traditional phonetic theory

According to the traditional phonetic theory, the position of the highest point of the tongue determines vowel quality. X-rays of cardinal vowels, though, show that there is only a rough correspondence between the tongue position and the actual auditory qualities of vowels and that measurements required for vowel descriptions are more complex than the ones proposed by the traditional theory (Ladefoged, 1993:222 and Deterding, 1990:25).

The major problem of the theory is its disregard for the role of the vocal tract organs, apart from the tongue and the lips, in determining vowel quality. Thus, the fact that speakers produce a given auditory quality in more than one ways remains unaccounted for. Lindau (as cited in Clark \& Yallop, 1995:25) has pointed out that speakers are capable of a considerable degree of compensatory articulation to produce a single desired auditory result in vowel quality. Stevens and House (as mentioned in Lieberman \& Blumstein, 1988:169) also demonstrated that most vowels can be generated by means of many different articulatory patterns. For example, lip
opening can have the same auditory influence as adjustments of overall vocal tract length.

Another fact which is not captured by the theory is that a given tongue height corresponds to different vowels. Ladefoged's study (as cited in Lieberman \& Blumstein, 1988:165-166) shows that since the tongue contour is almost identical for the vowels [i], $[\varepsilon]$ and $[e]$, the acoustic elements that differentiate these vowels must be the result of the total supralaryngeal vocal tract area function. Therefore, the factor determining the auditory quality of the sound produced, is not the position of the highest point of the tongue as such, but the overall configuration of the vocal tract (Laver, 1994:271).

An additional problematic aspect is that the cardinal vowel system confuses articulatory and auditory properties, since cardinals 1 and 5 are established on physiological grounds, whereas intermediate vowels are determined by what Jones calls equal "acoustic" (auditory) intervals along the continuum (Clark \& Yallop, 1995:24). As far as the equidistance issue is concerned, Ladefoged (1967:98-100), basing his conclusions on acoustic data, argues that the auditory distance between each of the front cardinal vowels is greater than between each of the back vowels. Lindau (as quoted in Clark \& Yallop, 1995:25) also provides data to show that the cardinal vowel idealisation does not accommodate back vowel data of natural languages.

Finally, in the traditional theory, tongue height is defined as the height of the point of the tongue which is closest to the roof of the mouth (Clark \& Yallop, 1995:25). Recent research (Clark \& Yallop, 1995:26), though, suggests that the location of the major constriction formed by the tongue plays a far more important role than the tongue itself.

In summary, Ladefoged (1993:14) outlines the following drawbacks of the cardinal vowel system: i) vowels that are called high do not have the same tongue height, ii) not all back vowels share the same degree of backness, iii) considerable differences in the shape of the tongue in front and back vowels are disregarded, and iv) the fact that the width of the pharynx varies considerably with, and to some extent independently of, the height of the tongue in different vowels is not taken into account.

It has been proven, in conclusion, that the tongue contour, in itself, is not an invariant specification of the supralaryngeal vocal tract area functions that generate the different vowel qualities (Lieberman \& Blumstein, 1988:167). Consequently, the position of the highest point of the tongue is not a valid indicator of vowel quality (Ladefoged, 1993:221) and hence the traditional labels high-low and front-back should not be taken as descriptions of tongue positions. Laver (1994:272) suggests that the traditional "highest-point" method of description is convenient for discussing the pronunciation of vowels, but not efficient at explaining the underlying physiology.

2.1.3. Vowel acoustics

2.1.3.1. The sound wave

An ostensibly more objective and scientific method for examining vowel quality is the acoustic analysis of speech (Roach, 1992:7-8). This analysis is based on the fact that "all sound results from vibration of one kind or another" (Clark \& Yallop, 1995:207). The vibration is generated by a source, i.e. the human vocal tract, and travels through a propagating medium, i.e. the air. If the vibration is plotted against time, this graph will be a waveform. Figure 3 shows a simple, idealised
vibration waveform known as sinusoidal vibration or simple harmonic motion. Speech, though, involves damped vibrations (due to friction and air resistance) of a complex nature.

Sound waves are characterised by certain properties. One of these properties is amplitude, which refers to the magnitude of displacement in a sound vibration (Clark \& Yallop, 1995:222). Intensity is a property deriving from amplitude and reveals how power is distributed in a space. For the sake of convenience it is expressed in dB (decibels) so that it can be related to perceived loudness (Ladefoged, 1993:187). Another important property of the sound wave is duration; the time taken by one complete cycle is called a period (Clark \& Yallop, 1995:212). Additionally, frequency indicates the number of cycles per second and is usually expressed in Hz (Hertz).

Figure 3 Simple vibration waveform (adopted from Calrk \& Yallop, 1995:212)

Being complex, the sound wave consists of more than one vibrations and its frequency of vibration is defined as that of the lowest frequency of the sine (simple) waves that compose it (Clark \& Yallop, 1995:215). This frequency is known as
fundamental frequency $\left(\mathrm{F}_{0}\right)$. Fundamental frequency largely determines pitch, which is the perceived frequency of the sound wave (Lieberman \& Blumstein, 1988:36), but their relationship is nonlinear (Clark \& Yallop, 1995:234). The sine waves form the harmonic components of the sound wave, the fundamental frequency being the first harmonic, the immediately higher component being the second harmonic, etc (Clark \& Yallop, 1995:227-228). In periodic waves (i.e. vowels), the frequency values of the harmonics are integral multiples of the fundamental. If the frequency is plotted against amplitude, the harmonic components of the sound wave will appear as vertical lines (Figure 4).

Figure 4 Line spectrum (adopted from Clark \& Yallop, 1995:228)

This display is called line spectrum. The amplitude peaks of the line spectrum form a shape called envelope, which is determined by the degree of damping in the vibrating system. The factor that determines the spacing of the harmonic lines has to do with the frequency with which the energy is restored (Clark \& Yallop, 1995:230).

This frequency is the effective fundamental frequency. The frequency of the maximum amplitude of harmonic energy (in figure 4 it is 100 Hz) is set by the natural resonant frequency of the vibrating system (Clark \& Yallop, 1995:229), which is a natural frequency at which the system vibrates. A consequence of the latter property is that "a resonant system transmits the energy of input vibration with selective efficiency, reaching its peak at the resonant frequency of the system" (Clark \& Yallop, 1995:220). In an attempt to define the selectivity of a resonant system, the term bandwidth is used, as "the range of frequencies either side of the centre frequency of the system's resonance curve which have an amplitude of 70.7 per cent or greater of the resonant frequency amplitude" (Clark \& Yallop, 1995:220).

2.1.3.2. The acoustic model of speech production

The procedure of speech production by the human vocal tract has been considered in terms of a source and filter model (Figure 5). The periodic vibration (phonation or voicing) of the vocal cords plays the role of the source ${ }^{4}$. Phonation affects voice quality and is characterised by two important properties: firstly, fundamental frequency, the frequency of the vibration of the larynx in phonation, and

[^2]secondly, intensity, as the primary determinant of overall speech intensity (Clark \& Yallop, 1995:240). The range of fundamental frequency employed by speakers is determined mainly by the length and muscular settings of the vocal cords. Consequently there are differences among males, females and children, as well as individual variation. The longer vocal cords of adult males yield a lower range of fundamental frequencies (Lieberman \& Blumstein, 1988:36). Average values suggested by Peterson and Barney (1976:119) are around 130 Hz for males, 220 Hz for females and 270 Hz for children.

Figure 5 Source and filter model of speech production (Clark \& Yallop, 1995:236)

The supralaryngeal vocal tract acts as an adjustable acoustic filter that allows certain bands of wavelengths of sound to pass through (Lieberman \& Blumstein, 1988:31). According to the acoustic model, during phonation, the vocal tract approximates a parallel-sided tube with one end closed, and thus, inside the tube, the air column will resonate at a succession of frequencies (multiple resonance). At these selected frequencies there are resonances, which are observable as peaks of energy. "These peaks of energy, produced by selective enhancement of the source by the tract resonance, are known as formants" (Clark \& Yallop, 1995:246). Hence, the formants are centre frequencies at which local energy maxima passes through the supralaryngeal air passages (Lieberman \& Blumstein, 1988:32\&36). Formants are
conventionally numbered upwards from the lowest in frequency ($\mathrm{F}_{1}, \mathrm{~F}_{2}$, etc.). The three lowest formants play a major part in determining vowel quality. According to Fant and Flanagan, (as cited in Lieberman \& Blumstein, 1988:37) the bandwidths of the formants of different vowels also do markedly distinguish different vowels. It is also important to note that static formant values are not the only crucial determinant of vowel quality. We should take equal interest in the relative relationships between the formants and their movements next to consonants.

The one-tube approximation can be acceptable for the formation of vowels, like [3], during which the articulators are close to a neutral posture. For other vowel sounds, though, the cross-sectional area of the vocal tract ceases to be uniform and its characteristics become more complex. As a result, the location of the resonant peaks on the frequency scale ceases to be equally distributed and a different representation model is needed. To estimate the unequally distributed resonance patterns of a vocal tract with a varying cross-sectional area, we can approximate it to two tubes of different size connected to each other. Fant (as cited in Clark \& Yallop, 1995:248) provides nomographs which allow us to derive the four lowest resonances from the lengths of the resonators and their cross-sectional areas. Nevertheless, the two-tube representation does not cease to be only a crude approximation of this complex system; in fact, the more tubes we use to represent the vocal tract, the better the approximation.

2.1.3.3. Spectrography

As the first three formants play the major role into specifying vowel sounds, an instrument called spectrograph was developed which could produce a three-
dimensional display of acoustic energy across a range of frequencies, where the more intense the energy, the darker the display (Laver, 1994:103). This display is the spectrogram, on which formants are represented by continuous bands of relatively intense energy of changing frequency. The spectrograph initially appeared in an analog version, but later digital versions share the same basic principles with the traditional one (Lieberman \& Blumstein, 1988:53).

The information displayed on the spectrogram depends on the values we have selected for certain variables. For example, in the analysis of vowels the frequency range is commonly set at $0-5 \mathrm{kHz}$, as there is little phonological interest above this range (Clark \& Yallop, 1995:255). Another important variable is the frequency resolution of the spectral analysis, which is set by the bandwidth of the analysing filter. A filter with a wide bandwidth in relation to harmonic spacing yields a wideband ${ }^{5}$ spectrogram. These spectrograms are very accurate in the time dimension, but less accurate in the frequency dimension (Ladefoged, 1993:208). In wide-band spectrograms the formants are visible, because the filter responds rapidly to changes in the energy of the acoustic signal, and the fundamental frequency is accurately determined by counting the number of vertical striations that appear in the dark bands per unit of time (Lieberman \& Blumstein, 1988:57 and Farmer, 1984:27). If the filter has a narrow bandwidth, it pinpoints the energy from the individual harmonics. Hence, narrow-band spectrograms are more accurate in the frequency dimension, but at the expense of accuracy in the time dimension (Ladefoged, 1993:209). Consequently, narrow-band spectrograms are most useful for determining the fundamental frequency. Therefore, conventional spectrographs are usually provided with at least two analysis filters: the narrow band filter is used for analysis of F_{0}, and

[^3]the wide band filter is for formant analysis (Clark \& Yallop, 1995:256 \& Ladefoged, 1967:79).

2.1.3.4. Acoustic properties of vowel quality

After 1946, the spectrograph became available and formant structure was associated with the auditory qualities of speech sounds, testing the traditional vowel theory. It was recognised that a plot of F_{2} on the horizontal axis, with values increasing from right to left, against F_{1} on the vertical axis, with values increasing from top to bottom, bore a remarkable resemblance to the traditional auditory map (see p. 5) of vowel quality (Clark \& Yallop, 1995:266). In this set-up, the value of F_{2} is proportional to vowel fronting, while the value of F_{1} is inversely proportional to vowel height.

Figure 6 Acoustic mapping of vowels to correspond to auditory map - New Zealand English -(from Clark \& Yallop, 1995:267)

The source and filter model has contributed to our understanding of the above relationship (see p. 12). As far as the formation of high vowels is concerned, the cross-sectional area in the front part of the tube is narrowed (or the cross-sectional area in the back half is widened), resulting in a decrease of the first formant frequency (Stevens, 1998:261). On the other hand, low vowels are characterised by a high F_{1} frequency, as a narrowing is made in the posterior one half of the vocal tract (or a widening in the anterior region), during their articulation (Stevens, 1998:268). In summary, for the high vowels, F_{1} is low and close to the fundamental frequency, whereas, for the low vowels, F_{1} is high and the spacing between F_{1} and F_{0} is large. Concerning the front-back distinction, Stevens (1998:283) reports that a forward movement of the tongue body causes an increase of the F_{2} frequency; the maximum value of F_{2} is higher for the high vowels than for the low vowels. Thus, front vowels are characterised by an "empty space" in the spectrum in the mid-frequency range between F_{1} and F_{2}. For the back vowels, on the other hand, F_{2} is displaced to a value that is maximally low and close to F_{1} for a proper selection of the tongue body position (Stevens, 1998:283).

It is obvious that the plot in Figure 6 does not match the cardinal vowel chart (p. 5) as closely as it might be hoped. Ladefoged (1993:196) comments that the correlation between F_{2} and degree of backness is not as good as that between F_{1} and vowel height, even when the formant data are converted to the mel or pitch scale (Clark \& Yallop, 1995:268). Therefore, he proposes the replacement of the F_{2} dimension by the difference between F_{2} and $\mathrm{F}_{1}\left(F_{2}-F_{1}\right)$, as there is a better correlation between the degree of backness and the distance between the first two formants, which are far apart in front vowels and close together in back vowels (Ladefoged, 1993:196 \& Clark \& Yallop, 1995:268).

Until now the third formant frequency has not been mentioned, although it also contributes to vowel quality. The two-dimensional plot, no matter which of the two dimensions (F_{2} or $\mathrm{F}_{2}-\mathrm{F}_{1}$) it has, does not account for F_{3}. Ladefoged (1967:9192) argues that F_{3} contribution to vowel quality depends on the type of vowel. For example, F_{3} contribution is significant in a vowel like [e] (Ladefoged, 1967:88), because F_{2} and F_{3} have approximately the same intensity as F_{1}. On the other hand, F_{3} contributes very little to the total quality effect of a vowel like [o] (Ladefoged, 1967:88), as its intensity is 33 dB below the level of F_{1}. In addition, Ladefoged (1993:227) mentions that F_{3} falls markedly in a rhotacized vowel. As a way to display F_{3} information, Fant (as cited in Clark \& Yallop, 1995:269) suggested the use of a weighted F_{2}, which would take account of F_{3} as F_{2} increases in frequency. Clark \& Yallop (1995:269) suggest that an F_{3} axis should be added as an extension of the F_{1} axis of the two-dimensional plot, so that useful information can be provided.

Despite the fact that formants are important for the description of a vowel sound, Ladefoged (1967:80-81) observes that no operational definition of a formant has been given which can be easily applied. The centre of a formant is sometimes difficult to locate for various reasons. But we cannot assume that a formant frequency has "disappeared" because it is not marked, and likewise we have to be careful to avoid interpreting every dark bar as though it reflects the presence of a formant frequency (Lieberman \& Blumstein 1988:67). For these reasons, Lieberman \& Blumstein (1988:42) mention that speech scientists have to make use of their knowledge of where the formant frequencies of various sounds should be. Ladefoged (1967:86) also underlines the important role of experience gained by looking at many speech samples. He notes though that this procedure is characterised by circularity, as
some answers are prejudged. Nevertheless, in some cases the formant frequencies cannot be spotted, despite this prior knowledge and experience.

Some of the difficulties encountered while examining spectrographic data are given by Ladefoged (1967:81-84) and are summarised below:
i) The centre of F_{1} is difficult to locate when it is low in frequency. The reason is that there is no peak in the spectrum and it is not certain whether the centre is nearer to the fundamental or to the second harmonic.
ii) The centre frequencies of F_{1} and F_{2} are difficult to locate when F_{1} and F_{2} are close together. It seems as though they coincide.
iii) The above problems become more prominent when the fundamental frequency is high (also Peterson \& Barney, 1976:115). This problem is evident in vowels produced by women and children (Lieberman \& Blumstein, 1988:42 and Clark \& Yallop, 1995:250).
iv) When F_{2} is much lower in intensity than F_{1}, it is difficult to locate. There is no second formant with sufficient intensity for its frequency location to be measured.
v) When F_{2} is low in intensity, F_{3} is also difficult to locate for the same reason.
vi) Sometimes "spurious" formants occur in vowels. A peak might appear at a position not associated with any formant. These "spurious" formants must be ignored.

All the above points led to Ladefoged’s (1967:101-103) observation that there are two areas on a formant chart or on the cardinal vowel chart (Figure 7) in which vowels cannot be specified simply in terms of the frequencies of their formants. In area A, it is difficult to locate the centre of the first two formants, because F_{1} has a very low frequency, while in area B, the same task is difficult, because the first and second formants are very close together. Cues utilised by the ear in assessing the
quality of vowels in area A are probably the high intensity of F_{3} in comparison with F_{2} and the mean frequency of F_{2} and F_{3}. Area B is more problematic, but possible cues are the mean frequency of F_{1} and F_{2}, and the absence of energy in the upper part of the spectrum.

Figure 7 A cardinal vowel diagram, the coloured areas of which show the areas in which vowels cannot be specified simply in terms of frequencies of their formants (taken from Ladefoged, 1967:102)

There are also problems when analysing vowel targets within the dynamic spectra of syllables. Clark \& Yallop (1995:270) remark that making accurate estimations of vowel formant frequencies is less straightforward when the vowel is between consonants. A possible explanation is that the syllable peak is of short duration and the articulators do not have sufficient time to establish a stable target. The effects of preceding and following consonants also hinder a stable target.

Despite all the above difficulties, Ladefoged (1967:84-85) points out that the formant theory of vowel quality is well established. One of the main reasons is that spectrograms show quite clearly the pattern that develops in a conversational utterance. Additionally, even if some formants do not have auditory effects and are
hard to locate, once they are found, they provide the best specification of a sound. Moreover, the fact that intelligible speech can be synthesised on the basis of formant frequencies reveals that formants are indeed important in the acoustic analysis of speech.

Finally, as we have mentioned, the formant frequency pattern is closely related to the vocal tract state and Stevens (as cited in Clark \& Yallop, 1995:295) noted that this pattern has to do with phonological distinctiveness (quantal theory). Thus, the universal language triangle of [i], [a], and [u] (quantal vowels) is the preferred three vowel system, as quantal vowels represent three stable and acoustically non-critical articulatory positions. The oral \& pharyngeal tubes are maximally expanded and/or maximally constricted in the production of these vowels and as a result they have well-defined spectral peaks because of the convergence of two formant frequencies (Lieberman \& Blumstein, 1988:174). Ladefoged (1993:225) mentions that the universal triangle is based on the principle of sufficient perceptual separation. The perceptual distance between the sounds of a language has to be maximised, if they are to be acoustically distinct. Consequently, the formant frequencies of the vowels will be as far as possible when plotted on a vowel chart and spaced at approximately equal distances apart (Ladefoged, 1993:268). This tendency is more evident in languages with a comparatively small number of vowels (i.e. the Greek language).

2.2. The issue of normalisation

Despite the swift progress in the analysis of speech, one of the puzzles that remain unanswered is the following: since the aforementioned acoustic characteristics of a sound depend greatly on the physical characteristics of the speaker's vocal tract, how is it possible that different speakers produce sounds that are considered the "same" even by trained phoneticians? It seems that the human brain has the ability to compensate for this acoustic variation so that it can recognise the same utterance produced by different talkers. This ability is referred to as perceptual normalisation (Lass, 1996:330). Peterson and Barney (1976:118) suggest that part of the variation is caused by the differences between classes of speakers, that is men, women, and children. A direct consequence of this variety is that children's formants are highest, the women's intermediate, and the men's lowest in frequency (Peterson and Barney, 1976:118).

Little is known about the perceptual process responsible for the aforementioned compensations, nor is it known whether a normalisation procedure takes place in the human brain at all. Verbrugge et al. (as cited in Lass, 1996:296) suggest that adjustment to talkers may have more to do with tracking articulatory dynamics than with frequency-based calibration. Nevertheless, scientists have tried to find a procedure of speaker normalisation, which would adjust the acoustic data to cancel differences associated with vocal tract size. Thus, a variety of algorithms have been proposed for performing mathematical normalisations of formant data. These procedures can be used in order to program digital computers to "recognise" vowels. The computer program has access to a memory in which the acoustic consequences of various possible vocal tract shapes are stored. Thus, the spectra of the incoming
speech signal are matched against the internal spectra generated by the memory (Lieberman \& Blumstein, 1988:42).

One of the earliest algorithms was Funt's scaling of formant data in relation to vocal tract size (Clark \& Yallop, 1995:269). Bladon (1985) also proposed an auditory-phonetic approach to sex normalisation. As the human auditory system does not analyse speech like a spectrograph, he suggests (1985:30-31) that the acoustical vowel spectrum should be transformed into an auditory spectrum, using psychological and electrophysiological knowledge. The resulting male and female pseudo-auditory spectra are normalised to a great extent, when the female sound is displaced downward in frequency by one Bark. Bladon (1985:35) admits, however, that the outcome of this procedure still needs adjustments ${ }^{6}$.

As the greatest difference between the classes of speakers (men, women, children) is the size of the vocal tract, this may lead to the assumption that "a uniform shift along the log Hertz frequency axis of all spectral features will achieve a simple, first-order normalisation" (Deterding, 1990:3). Deterding (1990:43-46), however, demonstrates that a uniform normalisation will not cover all cases. He points out that a uniform shift on the log Hertz scale is not enough to normalise sex and age, as the lines in Figures 8(a) and 8(b) are not of the same length and do not have the same gradient of 1.0. If a gradient is less than $1.0, \mathrm{~F}_{2}$ needs to be shifted more than F_{1}, while if a gradient is more than $1.0, \mathrm{~F}_{1}$ needs a greater shift than F_{2}. Concerning sex normalisation (Figure 8(a)), he observes that F_{1} of open vowels and F_{2} of front vowels need greater than average shifts- a finding confirmed by Fant (as cited in Deterding, 1990:46) in a study of Swedish male and female speakers and in data from

[^4]a number of languages. Concerning age normalisation (Figure 8(b)), he notes that F_{2} of close back vowels $[u, v$] requires a larger shift than others.

Figure 8 Average male and female (a) and female and child (b) F_{1} against F_{2} for the 10 monophthong vowels of American English, using the data from Peterson and Barney (adopted from Deterding, 1990:44\&45).

Deterding (1990:46) also observes that male vowels and possibly child vowels tend to be less peripheral (or more central) than female vowels (Figure 9). Henton (1995:420) also finds that women use the periphery of the articulatory space, compared with men, whose vowels might be closer to the centre.

Deterding (1990:50-60) mentions the following factors as possible sources for the observed greater centralisation of male vowels in comparison to female vowels.

1) Vocal tract length. Adult female vocal tracts tend to be 17% shorter than those of men. The greater length of the male vocal tract causes all resonance features
of male speech to be at a lower frequency than the corresponding features in female speech.

Figure 9 Normalisation of average male and female (a) and average female and child (b) American English vowels by a uniform shift on a log Hertz scale (from Deterding, 1990:47\&49).
2) Ratio of pharynx and oral cavities. Men have a proportionately longer pharynx than women. The pharynx represents about 52% of the total length of the male vocal tract, while for women it represents only 45% of the total length. Concerning children, the proportion of the total length occupied by the pharynx is about 43% for both males and females of 11 years of age. Therefore, the vocal tracts of children are similarly proportioned to those of women but not to those of men. The differently proportioned vocal tract length of men and women can partly explain the greater F_{2} shift in back vowels.
3) Size of maximum constriction. The male vocal tract is proportionately more open, affecting the frequency of F_{1} and resulting in a tendency for more central vowels.
4) Sociological variation. There is evidence that the degree of male-female variation can vary considerably from one community to the other. Pickering (as cited in Blandon, 1990:55) suggests that the size of constriction depends on gender, but can also be controlled by the speakers. Bladon (1985:36) also notes that "in some communities, a sex-linked, socially motivated, learned characteristic is responsible, along with the factor of sexual dimorphism, that males speak more like (or unlike) females". The fact that females' vowel spaces are larger and more peripheral than those of males, indicates that females' articulatory gestures are more extreme, resulting in more careful speech. Greater articulatory distinction may be equalled with standard or prestige forms, so a possible explanation given by a great number of studies is that women play the role of the guardians of the standard (Deterding, 1990:56 and Henton, 1995:421). An alternative explanation is that the higher fundamental frequency of female speech results in an under-sampling of their spectra which is compensated by the use of peripheral vowels.
5) Fundamental frequency. This is the major difference between male and female speech ${ }^{7}$.
6) Coupling. Female speech has a proportionately longer open phase. This results in the average formant frequencies and bandwidths being raised, which affects vowel quality.
7) Spectral tilt. The fact that female speech has a greater spectral tilt has important implications for the whole-spectrum based vowel recognition. If the spectral envelopes of male and female speech were compared without making the normalising shift Bladon (1985:34) proposes, then no adjustment should be needed

[^5]for a spectral tilt. This suggests that any adjustment for spectral tilt may relate to the amount of normalising shift.
8) Spectral noise. As female speech has a longer open phase, a greater volume of air is able to pass through the glottis, resulting in a slight audible friction. The additional spectral noise and the high spectral tilt constitute important acoustic correlates of breathy voice.

As far as adult-child variability is concerned, Lee et al. (1999:1455) report that children's speech, compared to adults' speech, exhibits higher pitch and formant frequencies, longer segmental durations and greater temporal and spectral variability. The differentiation of male and female F_{2} and F_{3} patterns begins around age 11 and the formants become fully distinguishable around age 15. Physical growth of the speech apparatus occurs gradually up to approximately age 14 for females and age 15 for males. Between ages 10 and 15, formant frequencies of male speakers decrease faster with age and reach much lower absolute values than those of female speakers (Lee et al., 1999:1464), although Smith et al. (1998:95) mention that not all speech production characteristics mature on the same schedule for a given child.

Deterding (1990:42) mentions that there has been less research on the acoustics of children's speech, while Lass (1996:221) underlines the need for more acoustic data on children of both genders. The collection of such data is essential for the creation of a better developmental model of the vocal tract for speech production research, as well as for the improvement of automatic recognition programs of children's speech (Lee et al., 1997). Potamianos et al. (as cited in Lee et al., 1999:1455) has shown that a speech-recognition system trained on adults' speech degrades substantially when tested on the speech of children age 12 and younger. This degradation in recognition performance can be attributed to the acoustic
differences between children's and adults' speech, as well as to the acoustic variability inherent in children's speech.

Apart from sex and age differences, there are more factors which influence the acoustic realisations of phonetic contrasts. Different phonetic contexts, speaking rate differences, idiosyncratic articulatory strategies and dialects are some of them (Lass, 1996:295). Ladefoged (1993:211) stresses the importance of knowing how to discount purely individual features in an acoustic record, if one is to measure features that are linguistically significant. He mentions that spectrograms show relative vowel quality: for two different speakers, the relative positions of the vowels on a formant chart will be the same, but the absolute values of the formant frequencies will differ (1993:212-213). This is why Eli Fischer Jørgensen (as cited in Ladefoged, 1967:97) has stated that it is somewhat dubious to plot the vowels of different persons indiscriminately on the same chart. Because a formant plot, besides the information about the phonetic qualities of the vowels, also carries information about individual characteristics, it is preferable to combine the vowels of the same person by lines, so that whole patterns are compared. The fact that speakers maintain their systemic contrasts, despite the variability in the phonetic realisations of their vowels, reveals the general principle, that "phonological distinctiveness is a matter of relative contrast within a system rather than a matter of absolute or universal phonetic values" (Clark, 1995:273). This means that the exact phonetic quality of a vowel does not depend on the absolute values of its formant frequencies, but on the relationship between the formant frequencies for that vowel and the formant frequencies for other vowels pronounced by the same speaker (Ladefoged, 1967:97).

2.3. Greek vowels

2.3.1. Acoustic characteristics

The vowel system of Modern Greek has been traditionally characterised as a "very common symmetrical" one (Joseph \& Philippaki-Warburton, 1987:263). The vowels are arranged as follows (Philippaki-Warburton, 1992):

	Front	Back	
High	/i/	/u/	
Mid	/e/		/o/
Low		/a/	

Koutsoudas \& Koutsoudas (as cited in Fourakis et al., 1999:29) transcribe the mid vowels as [ε] and [0], instead of $[\mathrm{e}]$ and $[0]^{8}$.

2.3.1.1. Spectral characteristics

Not many acoustic analyses of Greek vowels have been conducted in the past. Kontosopoulos et al. (1988) analysed stressed and unstressed Greek vowels produced by 7 male and 7 female subjects, and on the basis of the acoustic measurements, the "dispersion field" was composed (Figure 10). They stated that there is no overlap

[^6]

Figure 10 Mean values of the first two formants of the Greek vowels (stressed and unstressed) produced by (a) males and (b) females (adopted from Kontosopoulos et al., 1988:116).
between articulatory spaces of neighbouring vowels and hence Greek vowels are "distinct", so that "no acoustic confusion is caused" (1988:107).

Jongman et al. (as cited in Fourakis et al., 1999:29) analysed stressed vowels produced by 4 male speakers and also reported that Greek vowels are well separated in an acoustic space, allowing for maximal contrast between vowel categories. This finding was also replicated in a perceptual study on the identification of synthetic stimuli by American and Greek subjects, carried out by Hawks \& Fourakis (as cited in Fourakis et al., 1999:29 and Botinis et al., 1997). In this study, Greek listeners, unlike their American counterparts, rejected large numbers of stimuli as not possible Greek vowels. Additionally, the responses of Greek and American subjects were compared, and it was demonstrated that the subspaces for Greek [e] and [o] overlapped the American subspaces for $[\mathrm{e}]-[\varepsilon]$ and $[0]-[\supset]$ respectively.

Another study on the Greek vowel space was carried out by Fourakis et al. (1999:39-40) and compares Greek to Italian, Spanish and Greek data from Jongman et al. (as cited in Fourakis et al., 1999:39) (Figure 11). They note that point vowels [$\mathrm{i}, \mathrm{a}, \mathrm{u}$] lie in about the same position, whereas the mid front vowel for Spanish and

Greek, [e], lies close to the Italian mid front lax vowel, and the mid back vowel for the two languages, [o], lies between the Italian lax and tense mid back vowels. These results, as well as the results of Hawks \& Fourakis' study, mentioned above, reflect the contrast-based principle. As we can see in Figure 11, Spanish vowels have higher F_{2} values than Greek vowels. This observation was also made by Bradlow (as cited in Fourakis et al., 1999:29), who ascribed this difference to a language-specific base-of-articulation property, which, in this case, involves a more front tongue position for Spanish than for Greek. Fourakis et al. (1999:39) also note that the Spanish vowel space is 3% larger than the Greek space, while the Italian space is 49% larger than the Greek. This great difference is due to the fact that the Italian vowel space expands in order to accommodate the two extra vowels.

Figure 11 The vowels of Greek (from two different experiments), Italian and Spanish in an $\mathrm{F}_{1} \times \mathrm{F}_{2}$ space. The ellipses are used to group points for ease of exposition (adopted from Fourakis et al., 1999:39).

Greek vowels have also been compared to Mexican and Castilian vowels. Botinis (in Kontosopoulos et al., 1988:118) places mean values of the Greek vowels in Mexican and Castilian vowel subspaces (Figure 12).

Figure 12 Continuous line: Mexican pronunciation, dashed line: Castilian pronunciation, black dots: mean value of the corresponding Greek vowels (adopted from Kontosopoulos et al., 1988:118).

Another perceptual study on Greek vowel space using synthetic stimuli was conducted by Botinis et al. (1997). Four female subjects listened to 465 synthetic vowel tokens with F_{1} frequencies ranging from 250 to 800 Hz and F_{2} frequencies ranging from 900 to 2900 Hz in 50 Hz steps. The subjects were asked to identify each stimulus as one of the five Greek vowels or reject it, and also state their certainty on a certainty scale. The perceptual vowel maps constructed for each subject shows that the points assigned to the [e] category are more numerous than any of the other categories and thus it occupies more space than others. Additionally, there seems to be little or no overlap between categories. If there is any overlap, it is between [a] and [o], while [i] and [u] are well separated for each subject. The composite vowel map for all subjects (Figure 13) shows that all categories are well separated. The high average rejection rate (64\%) is reflected in the large unoccupied portions of space. It can be, therefore, concluded that "the Greek vowel space is organised in a maximally
contrastive manner, as proposed by Liljencrants and Lindblom" (Botinis et al., 1997 and Fourakis et al., 1999:42).

Figure 13 A composite perceptual vowel map constructed out of those points for which at least three subjects assigned the same category code with high certainty ratings (adopted from Botinis et al., 1997).

Botinis et al. (1995) and Fourakis et al. (1999) have also studied the influence of focus, stress and tempo on the first two formants and the spectral characteristics of Greek vowels. Five male speakers produced the five Greek vowels at slow and fast tempo, in lexically stressed and unstressed syllables, and in lexically stressed syllables of words appearing in focus position.

Concerning the influence of stress and tempo, they made the following observations (Botinis et al., 1995:405 and Fourakis et al., 1999:38) (Figure 14).

1) Lack of stress causes a reduction of the overall vowel space, which is 30% for slow tempo and 23% for fast tempo.
2) The shift from slow to fast tempo causes a reduction in the vowel space, which is 11% for stressed nonfocus vowels and 2% for unstressed vowels.
3) At both tempi, all vowels (except [e] at the fast tempo) have lower F_{1} frequencies, which results in an overall raising of the unstressed vowel space.

Figure 14 The vowels of Greek plotted in an $F_{1} \times F_{2}$ space, using mean values, at the two tempi, comparing stressed nonfocus to unstressed vowels (adopted from Fourakis et al., 1999:37).

As far as the influence of focus and tempo are concerned, they concluded that the slow-tempo, stressed focus vowels define the largest vowel space, followed by slow-tempo, stressed nonfocus vowels, while the smallest spaces are defined by the unstressed vowels at the two tempi (Fourakis et al., 1999:38) (Figure 15).

Figure 15 The vowels of Greek plotted in an $\mathrm{F}_{1} \times \mathrm{F}_{2}$ space, using mean values, at the two tempi, comparing stressed focus to stressed nonfocus vowels (adopted from Fourakis et al., 1999:37).

2.3.1.2. Fundamental Frequency $\left(\mathrm{F}_{0}\right)$

Fundamental frequency is one of the main correlates of focus in Modern Greek. Botinis (as cited in Fourakis et al., 1999:30) found that F_{0} increases substantially when focus is realised. In the aforementioned study, Fourakis et al. (1999:35) make the following observations (Figure 16).

1) All three types of vowels have higher F_{0} values at the fast tempo than at the slow tempo.
2) Stressed nonfocus vowels have significantly higher F_{0} values than unstressed values, and this effect is more pronounced at the fast tempo.
3) Stressed focus vowels have much higher F_{0} values than stressed nonfocus vowels.

Figure 16 Mean F_{0}, measured in the middle of the vowel, at the two tempi and in the different stressfocus conditions (adopted from Fourakis et al., 1999:35).

An interesting point noted by Fourakis et al. (1999:38-39) is that vowel quality influence on F_{0} can be detected only in the slow-focus position. In the other five conditions, this influence is very weak or absent. They comment that this result is "in stark contrast to the phenomenon of intrinsic pitch of vowels". Therefore, Greek does not seem to follow the so-called universal hierarchical distribution of intrinsic F_{0}. Fourakis et al. (1999:41) also comment on the remarkably high values of F_{0}, which were consistently higher than 200 Hz for all male speakers, and conclude that this result demonstrates the important role of F_{0} for focus in Greek.

2.3.1.3. Amplitude

Fourakis et al. (1999:35-36) mention that vowel amplitude is influenced by tempo, stress and focus in the following ways (Figure 17).

1) Vowels at fast tempo have significantly lower amplitudes than at the slow tempo.
2) Stressed nonfocus vowels have significantly higher amplitudes than unstressed vowels.
3) The amplitudes of stressed focus vowels are greater than those of stressed nonfocus vowels, but this effect is marginally significant.

Figure 17 Mean amplitude difference in decibel RMS between the target vowel and the target word, at the two tempi and the different stress-focus conditions (adopted from Fourakis et al., 1999:36).

Figure 17 demonstrates that low and high vowels are not intrinsically different in terms of amplitude, which is another difference between Greek and other languages. For example, vowel [a] should have the greatest amplitude values, according to the hierarchical structure of intrinsic intensity distribution; nevertheless, it is found to have the lowest values in all prosodic conditions (Fourakis et al., 1999:39).

2.3.1.4. Duration

Dauer (as cited in Fourakis et al., 1999:30) mentions that the intrinsic factor of quality affects the duration of Greek vowels, and hence high vowels are the shortest and low vowels the longest. Additionally, she states that vowels in stressed syllables are longer and have higher intensity. This finding is also reported by Fourakis (as cited in Fourakis et al., 1999:30), who points out that unstressed Greek vowels are 25% shorter than stressed ones. In addition, Botinis (as cited in Botinis et al., 1995:404) characterises duration and intensity as the main prosodic correlates of stress in Greek.

In the aforementioned study, Fourakis et al. (1999:34-35) examine the relationship between duration and factors like vowel quality, stress, tempo and focus, and reach the following conclusions (Figure 18).

1) The quality of the vowel has a significant effect on duration, causing a tripartite categorisation regardless of stress and tempo. Vowel [i] has consistently the shortest duration, vowel [a] the longest, and vowels [u], [o] and [e] are in between.
2) Vowels in the slow tempo are longer than in the fast tempo.
3) Stressed nonfocus vowels are longer (40\%) than unstressed vowels. However, a shift from slow to fast tempo causes a 30% reduction to stressed nonfocus vowels, whereas unstressed vowels are shortened by only 15%.
4) Stressed focus vowels are significantly shorter than stressed nonfocus vowels at the slow tempo, but marginally so at the fast tempo.

Figure 18 Mean target vowel durations at the two tempi and in the different stress-focus conditions (adopted from Fourakis et al., 1999:34).

Fourakis et al. (1999:40) comment that the combined effect of tempo and stress caused fast-unstressed vowels to be 50% shorter than slow-stressed vowels, thus exhibiting the effects of incomprehensibility, first proposed for English by Klatt. Concerning the influence of vowel quality on duration, the resulting pattern was expected with the exception of vowel [u], which was consistently longer than [i]. This result indicates that durations are not assigned by height only, but in the case of high vowels, by backness as well, and in this sense, Greek high vowels are different from American English (1999:38).

2.3.2. Unstressed high vowels

As we mentioned above, all Greek vowels are slightly longer when stressed. Mackridge (1985:18) comments that "a stressed vowel retains the same quality as, and is slightly longer than an unstressed vowel, the chief component of stress being
extra loudness". Holton et al. (1997:7) report that there is very little vowel weakening in unstressed syllables, but the unstressed vowels may become slightly shorter and devoiced when they occur in word-final position.

The unstressed high vowels [i] and [u], however, are subject to extreme shortening, devoicing or elision in certain environments (Dauer, 1981:17). These phenomena are not purely optional, but depend mainly on the phonetic environment and position relative to the stressed syllable. Dauer recognises five "stages" in unstressed high vowel reduction (1981:17-19).

1) The normal, unreduced vowel. It occurs when preceded or followed by voiced consonants and in environments where vowel reduction does not take place. It has lower intensity and shorter duration than the corresponding stressed vowel. As far as formant structure is concerned, for [i], the second and third formant are present, and for [u] sometimes only the second formant.
2) The short vowel. It occurs after a liquid or nasal and has complete formant structure. It is perceived as a syllabic or a slightly lengthened nasal or lateral.
3) The very short, "centralised" vowel. It occurs between a voiceless and voiced consonant, or between voiceless stops and fricatives. It has low overall intensity and only the first formant is present but in a very reduced form.
4) The whispered vowel. It occurs most often between voiceless consonants and is quite common after a voiceless consonant at the end of a phrase with a falling intonation pattern. It has a very low overall intensity and there is no F_{0} trace. The first formant is absent, but the preceding
consonant is followed by a short period of friction or voicelessness, with energy in the region of the second and third formants. Despite the above characteristics, the vowel is perceived very clearly.
5) The elided vowel. It occurs most often between two voiceless consonants, but its appearance also depends on timing. The consonant is released directly into the following consonant, so that there is no evidence of the presence of the vowel, but it is perceived through the palatalisation (in case of [i]) or non-palatalisation (in case of [u]) of the preceding consonant.

Particularly on [i] reduction, Dauer (1981:22) comments that it is most likely to occur in a completely voiceless environment, regardless of position of stress, and almost certainly will occur if this syllable is also the post-stressed one. Concerning the style of speech, she notes that a careful style seems to involve more whispering of vowels, whereas a more casual style involves more elision (1981:23). Reduction and elision also occur frequently in common verb endings and everyday words, and less frequently in words from the formal language. The position in the phrase is another important factor. At the end of the sentence said with a falling intonation pattern, unstressed high vowels placed between voiceless consonants are frequently devoiced. Finally, concerning the motivation for this reduction, Dauer (1981:26-27) discusses that there are physiological restrictions that prevent the complete realisation of vowels of very short duration (Lindblom's undershoot hypothesis), and that, in fact, devoicing the vowel seems to make it easier to achieve the proper rhythm in Greek.

Chapter III: Methodology

3.1. The subjects

This study looks at the spectral characteristics of Greek vowels produced by all three classes of speakers: adult males, females and children. Thus, the subjects who took part in the experiment were 10 adult males, 10 females and 10 children of both genders.

The adult male and female subjects were between 20 and 28 years old and were all undergraduate or postgraduate students at the University of Reading. Eight of the subjects came from Athens or central Greece, nine of the subjects came from Northern Greece (mainly Thessaloniki) and 3 subjects came from Southern Greece (Crete). All subjects spoke standard Greek ${ }^{9}$.

All the children came from Crete and their ages ranged from five to ten. Three of them were male and seven female. They all were monolingual speakers of Greek with no reported history of speech, language or hearing problems.

3.2. The corpus

The corpus consisted of 30 words (Appendix 1, p. 75). The set of the first six words contained the vowel [i] in three positions: word-initially (i.e. ìr日a, imèra) word-medially (i.e. poðilato, iðikòs) and word-finally (i.e. cerì, mesimèri). The first word of each pair contained the stressed vowel, whereas the second word of the

[^7]pair contained the unstressed vowel. The set of the next six words contained the vowel [e$]$ in the same positions and stress conditions, etc.

As all words had more than one syllable (up to four syllables), they contained more than one vowels in several positions, stressed or unstressed. These instances were also taken into account, so that the analysis would be based on more tokens of vowels, rather than only six for each vowel. So, the final number of tokens for each vowel was: 15 for [i], 17 for [e], 23 for [a], 19 for [o] and 6 for [u]. On total, there were 80 tokens of vowels in the aforementioned positions and stress conditions ${ }^{10}$. It is noteworthy that [u] did not occur in any of the other words, apart from the ones especially selected to contain it (set of last six words). This demonstrates the very low frequency of occurrence of this vowel in Greek (Dauer, 1981:20).

The chosen words were simple and common, so that even a 5 -year-old would be acquainted with them and would be able to articulate them freely. These words were written in the described order (first the set for [i], then for [e], for [a], for [o], and lastly for $[\mathrm{u}]$) on one sheet of paper in the format of a list ${ }^{11}$.

3.3. The recording technique

Two different recording techniques were used for the adults and for the children. As far as the adults are concerned, the recordings were made in a quiet room. Most of the subjects preferred to read the list to themselves before the recording. For the recording, they were told to read the list (one column and then the other, rather than pairing the words of the two columns) at a comfortable speech rate

[^8]and loudness. The recordings were made on a portable minidisc recorder. A hyper cardioid dynamic microphone was held within 30 cm from the subject's mouth and to one side, so as to avoid breathing into it.

Before the actual recording, the subjects were asked to start reading the list as loud as they would do at the recording. The recording level was then set for each individual, to make sure that the signal was not at too high a level. The level was deliberately kept considerably lower than the overload region, so that no electrical energy would be introduced but at the same time a useful signal would be captured (Lieberman \& Blumstein, 1988:76). Once the experiment began, the recording level was kept constant. Each subject was recorded twice, so that the best signal would be chosen for acoustic analysis.

Concerning the children, the recordings were made on a domestic stereo recorder and saved on an audio cassette, as the minidisc was not available. A lapel microphone was used, so as to keep the distance fixed and also avoid overloading. The children who knew how to read and felt confident with their reading skills, were asked to practice reading the list at a comfortable speech rate before the recording. The children who did not know how to read or who could not read at a comfortable/normal speech rate, were asked to repeat each word after their mother or father. Two of the children, a male aged five and a female aged six, had to follow the second option. Each child was recorded twice and the best recording was chosen for analysis.

3.4. The measurement technique

The adults' recordings, stored on the minidisc, and the children's recordings, stored on the audio tape, were transferred to the Kay Elemetrics Computerized Speech Lab (CSL) set up at the Phonetics Laboratory of the University of Reading. The sampling rate was set at 8 kHz , as the analysis included only vowels.

The first three formants of each vowel were measured from wide-band spectrograms. Since there were 80 vowel tokens for each subject and 30 subjects were recorded, 2,400 vowels were analysed on total. Figure 19 shows the acoustic waveform (window A) and the wide-spectrogram (window B) of the word [kopáði] produced by an adult male speaker. The vibrations of the three vowels, [o], [a] and [i] are clearly visible on the waveform. The formant structure of the first vowel, [o], is not complete, as this vowel is unstressed and has a short duration. On the other hand, the first three formants of the vowel [a] are manifested clearly and were found to be $916 \mathrm{~Hz}, 1382 \mathrm{~Hz}$ and 2834 Hz correspondingly. The formant structure of vowel [i] can also be discerned although F_{1} is not clearly visible. As we can see, the formant structure of the vowels was influenced by the surrounding consonants. The formants were extracted at approximately the temporal midpoint of the vowel to avoid taking into account these influences.

An FFT-derived spectrum taken at the middle of the vowel supplemented the spectrogram measurement in cases, when values of the formants could not be determined with certainty ${ }^{12}$. Figure 20 shows the FFT spectrum for the vowel [a] shown above. The cursor has been placed so that the middle of the vowel is analysed.

[^9]If the value of a formant could not be estimated with a high degree of certainty, it was left blank.

Figure 19 The acoustic waveform (window A) and the wide-spectrogram (window B) of the word [kopáði] produced by an adult male speaker.

Figure 20 The acoustic waveform (window A) and the FFT spectrum (window B) for the vowel [a] of the word [kopáði] produced by an adult male speaker.

3.5. The methods of analysis

The data that were collected from the formant measurements were analysed statistically using the Minitab statistical software program ${ }^{13}$. Descriptive statistics was performed for each one of the three formants of the five vowels produced by adults and children ${ }^{14}$. We note that, although the vowels were divided into six categories in view of their position in the word and their stress condition, the descriptive analysis was performed for all six categories for each vowel collectively. At this point of the research we are more interested in the overall acoustic characteristics of the five vowels. As a next step, it would be very interesting to analyse each category separately and compare them, so that the role of the two aforementioned factors on the spectral characteristics of the vowels is examined.

Regression analysis was also performed, so as to find the regression equation which would predict the child formant values from the adult male and/or female formant values. The regression analysis was performed for each vowel separately and for all vowels collectively as well.

It is also important to note that although children's speech displays great variability in its acoustic characteristics mainly due to the developmental factor ${ }^{15}$, we will not look into these differences, as here we attempt to give a more general picture of the children's speech spectral characteristics and compare them with the adult ones.

[^10]
Chapter IV: Presentation and Discussion of the Results

4.1. Male, female \& child formant frequencies

The descriptive statistics provided information about the scattering of the data for each one of the first three formants of every vowel, for adult males, adult females and children separately. The results for the first formant of vowel [i] produced by children is shown as an example below. The boxplot in Figure 21 demonstrates clearly the way the data is distributed along the frequency scale.

Descriptive Statistics

Variable	N	$\mathrm{N} *$	Mean	Median	Tr Mean	StDev	SE Mean
v1cf1	145	5	581.43	587.00	581.35	81.98	6.81
Variable	Min	Max		Q1	Q3		
v1cf1	311.00	795.00	544.00	622.00			
* NOTE * N missing $=5$							

Boxplot of $\mathbf{F}_{\mathbf{1}}$ for child vowel [i]

Figure 21 The boxplot for the mean value of the first formant of vowel [i] produced by children.

As we mentioned above ${ }^{16}$, the frequencies that could not be estimated with certainty were left out. This resulted in the appearance of missing values in the data. In the above instance, which refers to F_{1} of the vowel [i], the missing values are five. There are other instances ${ }^{17}$, though, that the number of the missing values was quite high. The highest number of missing values involves F_{3} of the vowels [o] and $[u$] produced by children (30 and 39 missing values correspondingly). This might have to do with the fact that the fundamental frequency of children's voice is high, thus creating problems in formant location (Lieberman \& Blumstein, 1988:42 and Clark \& Yallop, 1995:250). Additionally, F_{3} was often low in intensity in children's speech, which made its estimation difficult. Especially concerning the vowel [u], it was observed that F_{3} was completely absent in most cases and that, if [u] was not stressed and at a word-final position (i.e. in the word [scìlu]), then, either F_{2} and F_{1} were hard to discern, or there was no trace of the vowel on the waveform at all, making the analysis impossible ${ }^{18}$.

The mean values of the formants of the five vowels produced by men, women and children are displayed on Table 1 below.

[^11]| i | | | |
| :---: | :---: | :---: | :---: |
| | Male | Female | Child |
| F_{1} | 423 | 469 | 581 |
| F_{2} | 2073 | 2571 | 2873 |
| F_{3} | 2593 | 3109 | 3637 |
| e | | | |
| | Male | Female | Child |
| F_{1} | 601 | 687 | 719 |
| F_{2} | 1811 | 2231 | 2607 |
| F_{3} | 2560 | 3051 | 3612 |
| a | | | |
| | Male | Female | Child |
| F_{1} | 736 | 873 | 922 |
| F_{2} | 1466 | 1699 | 1811 |
| F_{3} | 2459 | 2713 | 3197 |
| 0 | | | |
| | Male | Female | Child |
| F_{1} | 583 | 657 | 730 |
| F_{2} | 1137 | 1219 | 1462 |
| F_{3} | 2479 | 2817 | 3240 |
| u | | | |
| | Male | Female | Child |
| F_{1} | 434 | 451 | 560 |
| F_{2} | 921 | 955 | 1190 |
| F_{3} | 2460 | 2804 | 3172 |

Table 1 The mean values of $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{3} (in Hz) of the five Greek vowels produced by men, women and children.

4.2. Comparisons between classes of speakers

The figures in Table 1 were fitted into plots. The first formant of each vowel was plotted against the second, so that the distribution of the values could be compared in relation to sex and most importantly age. Figure 22 is the plot of the vowel [i].

VOWELi

Figure 22 Plot of vowel [i], showing the distribution of the male, female and child formant frequency data.

As it can be observed, male formant frequencies are lower than female frequencies and even lower than children's frequencies. There are only few F_{2} children's values which are close to men's F_{2} values, and a small number of children's formant frequencies close to women's frequencies. Therefore, the vowel [i], produced by a child, would most likely be more front and lower (or more open) than an adult [i].

VOWEL e

Figure 23 Plot of vowel [e], showing the distribution of the male, female and child formant frequency data.

Concerning the vowel [e] (Figure 23), we observe that children's F_{1} and F_{2} values are much higher than men's and only few of them are close to women's. Thus, children's [e] vowel is lower and more front (or more open) than the adult [e].

VOWEL a

Figure 24 Plot of vowel [a], showing the distribution of the male, female and child formant frequency data.

Children's vowel [a] shows a more scattered picture than the two previous vowels (StDev for F_{1} is 163.8 and for F_{2} 286.4). A considerable number of children's vowel formants are amidst adult's formants . Still, a child's [a] tends to be more open and somewhat more front than an adult's [a].

VOWEL o

Figure 25 Plot of vowel [o], showing the distribution of the male, female and child formant frequency data.

Figure 25 shows that children's values are again quite scattered and some of children's formant frequencies are close to adults' formant frequencies. Looking at the majority of children's values, though, we draw the conclusion that children's [o] is lower and less back than adults’ [o]. In addition, male and female adult values are not
as far apart as it is the case with the previous vowels, a fact which possibly has to do with the intrinsic quality of the vowel $[0]^{19}$.

VOWEL u

Figure 26 Plot of vowel [u], showing the distribution of the male, female and child formant frequency data.

The plot on Figure 26 demonstrates the problem we encountered with the vowel [u]. Firstly, the number of the values is distinctly lower than that of the other

[^12]vowels, due to the formant location difficulties ${ }^{20}$. Secondly, the data for all classes of speakers are quite scattered, either because of location problems or because of the nature of the vowel. Nevertheless, we can say that children's [u] is lower and less back than adults' $[u]$.

4.3. Comparisons with previous studies

We saw that children's vowels seem to be more front and lower (or more open) than adults' vowels, as children values of F_{1} and F_{2} are higher than adult values. In addition, the front vowels display the above characteristics to a greater degree than the back vowels; that is to say, the difference/distance between the child and adult values becomes smaller as we move from front $[\mathrm{i}, \mathrm{e}]$ to back $[\mathrm{o}, \mathrm{u}]$ vowels.

The above observations can be demonstrated more clearly on Figure 27, which shows the vowel spaces of the three classes of speakers. F_{2} is plotted on the horizontal axis, with values increasing from right to left, against F_{1} on the vertical axis, with values increasing from top to bottom, in order to make it referable to the traditional auditory map (Clark \& Yallop, 1995:266). It is quite clear that, according to our data, the children's vowel space is placed more "downwards and to the left", in comparison to the adults' vowel spaces. On the other hand, men's vowel space seems to be positioned more "upwards and to the right", if compared with women's and children's vowel spaces. We also observe that women's vowel space is the "broadest", followed by the children's vowel space, while the men's is the "smallest" vowel space.

[^13]

Figure 27 Greek adult male, female and child vowel spaces.

The vowel space pattern for the three classes of Greek speakers on Figure 27 has many similarities with Deterding's findings (1990:49\&51) concerning English speakers’ vowel spaces (Figure 28). English men's and children’s vowel spaces also seem to have a similar shift to the Greek men's and children's vowel spaces.

Figure 28 American English male and female (a) and child and female (b) vowel space (adopted from Deterding, 1990:49\&51).

Previous Greek studies refer only to the spectral characteristics of Greek vowels produced by adults ${ }^{21}$. Kontosopoulos et al. (1988), based on the average frequency values of F_{1} and F_{2} of Greek vowels produced by 7 men and 7 women, construct Greek vowel spaces of i) stressed vowels produced by men, ii) stressed vowels produced by women, iii) unstressed vowels produced by men, iv) unstressed vowels produced by women, v) vowels produced by men, and vi) vowels produced by women. Vowel spaces (v) and (vi) ${ }^{22}$ are in a condition most comparable to our study, as we study stressed and unstressed vowels collectively. No tables with frequency values are given, and hence Table 2 below is based on figures extracted from the plots ${ }^{23}$ and was used for the comparisons.

Vowels	$\mathrm{F}_{\mathbf{1}}$		$\mathrm{F}_{\mathbf{2}}$	
	Male	Female	Male	Female
i	300	320	2050	2550
e	470	620	1700	2200
a	730	800	1540	1600
o	540	600	1120	1000
u	400	350	1050	790

Table 2 The mean values of the first two formants of the Greek vowels (stressed and unstressed) produced by adult males and females (based on Kontosopoulos et al., 1988:116).

Botinis et al. (1997) constructed a perceptual vowel map using synthetic stimuli, which were identified by 4 female speakers ${ }^{24}$. The figures in Table

[^14]3 below were extracted from the vowel map and were used in the comparisons, since no tables of figures were provided in the article.

Vowels	$\mathbf{F}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{2}}$
i	$220-310$	$2200-2800$
e	$400-650$	$1600-2300$
a	$700-800$	$1000-1400$
o	$420-600$	$400-1100$
u	$220-310$	$400-1050$

Table 3 Minimum and maximum values of the F_{1} and F_{2} frequencies extracted from a perceptual vowel map constructed on the basis of a study using synthetic stimuli judged by four female subjects (Botinis et al., 1997).

Fourakis et al. (1999) give tables of figures, but only for F_{1} and F_{2}, in their study for the influence of focus, stress and tempo on the first two formants and the spectral characteristics of Greek vowels produced by five male speakers ${ }^{25}$. Fourakis et al. (1999:39) mention that "the condition most comparable to other published results is the slow, unstressed nonfocus condition", and thus this is the one we use for the comparisons (Table 4).

Vowels	$\mathbf{F}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{2}}$
i	322	2088
e	463	1745
a	692	1280
o	475	1002
u	338	926

Table 4 Means for stressed nonfocus vowels at slow tempo (adopted from Fourakis at al., 1999:32).

[^15]The first comparison refers to the adult male vowels (Figure 29). We compare our data (Table 1, p. 49) with the data given by Kontosopoulos et al. (1988) and Fourakis et al. (1999) (Tables 2 and 4, pp. 57\&58)

Figure 29 The vowels of Greek produced by male adults based on data from three different experiments. The ellipses group points for ease of exposition.

We observe that front vowels [i, e] are more open in our data than what the other two sources show. In addition, vowel [e] and vowel [a] are more fronted and vowel [o] is less back according to our data. Kontosopoulos et al. seem to agree on the front vowels' position with Fourakis et al., whereas they seem to agree more with this study on the position of [a] and [o].

Concerning adult female vowels, our data are compared only with the data of Kontosopoulos et al., as, to our knowledge, no other study has analysed female vowels (Figure 30)

Figure 30 The vowels of Greek produced by female adults based on data from two different experiments.

Our data show that all female vowels are more fronted and more open in comparison with the previous study's data. Obviously, the first two formants were found to have higher frequencies in our study.

The differences in the results might be due to the different individuals that took part in each experiment or with the nature of the measurements themselves. Formants are difficult to locate with absolute certainty and this may cause some variation in the results.

The results of the perceptual study (Botinis et al., 1997) were compared to our results, in order to see if the frequencies of F_{1} and F_{2} of the vowels produced by men, (Figure 31).

Comparison with perceptual vowel map study

Figure 31 The vowels (average frequencies) of men, women and children (represented by pairs of letters only instead of dots, to avoid confusion), as found by our study, in comparison with the areas occupied by the Greek vowels (pink rectangles), as found by the perceptual vowel study of Botinis et al. (1997). The first letter of each vowel-point indicates the class of speaker ($\mathrm{M}=$ adult male, $\mathrm{F}=$ adult female and $\mathrm{C}=$ child) and the second indicates the vowel.

The only vowels which actually fall into the corresponding designated areas, although only marginally, are the two male mid vowels [e] and [o]. Concerning the rest of the male vowels, the back vowels [u, o] and vowel [a] are quite close to the
areas, whereas vowel [i] seems to fall into the area of [e]. The female mid vowels seem to be close to their corresponding areas. Female vowels [i], [a] and [u] are more open, while [a] and [u] are more fronted as well. As far as children's vowels are concerned, we observe that all of children's vowels are quite far away from the areas; they are found more fronted and open.

In summary, we could say that male vowels and most of female vowels of our study are covered to some degree by the areas found by the above perceptual study, but children's vowels are not accounted for. The discrepancies which arose from the comparison might have to do with the different methods which were used to establish the vowel position. The reasons that these differences became highlighted in children's data might have to do with the problems in children's formants location or might suggest that the use of synthetic stimuli is not a very dependable source for establishing children's formant frequencies.

4.4. The relationships among adult male, adult female and children data

An interesting question is whether there is any relationship between adult male and female formant frequencies and between adult and children formant frequencies of the Greek vowels. The existence of such relationships would indicate a way in which differences between the classes of speakers could be normalised, and thus constituting the base of a methodology to achieve more accurate speech recognition programs. Nearey (as cited in Deterding, 1990:3) has suggested that a single normalising shift is sufficient to normalise for all the vowels of a speaker. Based on that, Deterding (1990:43-46) performs this first-order normalisation and observes that
complete normalisation for all vowels is not a procedure quite so simple, as each vowel shift is of a different gradient ${ }^{26}$.

In an attempt to find out what the relationship between men and women vowels and especially between adult and children vowels of the Greek language is like, we first plot male versus female formant frequencies. We observe that the data tend to create a line (Figure 32). The same trend is observed when plotting male versus child (Figure 33) and female versus child (Figure 34) formant frequencies.

Male vs. female vowel plot

Figure 32 Male versus female vowel plot.

[^16]Male vs. child vowel plot

Figure 33 Male versus child vowel plot.

Female vs. child vowel plot

Figure 34 Female versus child vowel plot.

It is observed that there is some degree of linear relation between the variables and hence this relation can be represented quite well by a linear model (Woods et al., 1986:156). We can use regression analysis to find an equation which will help to explain the variation in one variable (i.e. child formant frequencies) by using another variable (i.e. adult formant frequencies). We can also use multiple regression, that is, using both adult variables to predict child frequencies (Ryan \& Joiner, 1994:290).

The regression equations predicting the child vowels from the adult vowels and the R-Sq values for these equations are displayed on Table 5 below 27. It is obvious that the equations explain the variation in child vowels quite satisfactorily, as the $\mathrm{R}-\mathrm{Sq}$ value is higher than 90% for all equations.

Vowel	Equation	R-Sq
[i]	child[i] $=43.6+0.482$ male[i]+ 0.731 female[i]	96.3%
[e]	child[e] $=-88.7+0.369$ male[e] + 0.891 female[e]	97.7%
[a]	child[a] $=-93.4+0.760$ male[a] + 0.506 female[a]	90.5%
[o]	child[o] = 13.8 + 0.631 male[o] + 0.579 female[o]	93.8%
[u]	child[u] $=42.6+0.963$ male[u] + 0.262 female[u]	91.1%
All	child[v] $=-39.4+0.568$ male[v] + 0.678 female[v]	94.7%

Table 5 The regression equations and R-Sq values for predicting child vowels from adult vowels.

Lee et al. (1999:1455) note that the problem of automatic recognition of children's speech has gained attention in the recent years and that speech-recognition

[^17]systems trained on adult speech perform unsatisfactorily when tested on children's speech. The study of the relationship between adult and children vowels could become valuable for many speech applications such as automatic recognition of children's speech, text-to-speech synthesis, etc.

Chapter V: Conclusions and suggestions for further research

5.1. Main conclusions

The five Greek vowels produced by men, women and children have been analysed acoustically and their relationship according to speaker class has been investigated. A summary of the findings and observations of this study is presented in this section.

Concerning the procedure of formant location, several problems were encountered, the most prominent of which was the difficulty in locating the third formant of the back vowels; this difficulty was especially highlighted in the formant structure of the high, back vowel [u] when unstressed, in word-final position and produced by a child.

A comparison between the three classes of speakers has shown that children's vowels are generally more fronted and more open than women's vowels and even more so in comparison to men's vowels, and the difference between the children's and adults' values becomes greater as we move from back $[\mathrm{o}, \mathrm{u}]$ to front $[\mathrm{i}, \mathrm{e}]$ vowels. This difference is demonstrated clearly through the children's vowel space, which is placed more "downwards and to the left", in comparison to the adults' vowel spaces.

The above "speaker class pattern of the vowel space" for Greek is similar to the one for English, as described by Deterding (1990:49\&51). A comparison with previous Greek studies on adults’ data shows that vowels are generally found to be more fronted and open in this study, that is to say, F_{1} and F_{2} were found to have higher values. The fact that different individuals took part in each experiment and the
difficulties in locating formants may account for the differences. As far as children's values are concerned, their formant frequency values were found not to fall within the corresponding vowel areas specified by a perceptual study of the Greek vowels (Botinis et al., 1997). One possible explanation is that different methods were used to establish the vowel position.

Finally, it is suggested that children's formant frequencies can be predicted, using adults' formants. A multiple regression analysis provided equations for each vowel separately, as well as for all vowels combined, which explain the variation in children's vowels quite satisfactorily (R-Sq > 90\%).

5.2. Suggestions for improvements

As we mentioned before, this study did not examine the effect of stress and the position of the vowel in the word, although the corpus was selected upon these criteria. Therefore, we could next investigate how the above factors have influenced the vowel formants of each speaker class.

Another issue, which has already been raised, concerns the difficulties that were encountered during the formant location procedure. These difficulties were highlighted when dealing with the two back vowels, but were also present in other cases, especially in vowels produced by women and children, as formants may not be distinctly defined for voices with high F_{0} (Clark \& Yallop, 1995:250). Many values were left out, as a consequence. Deterding (1990:97) mentions that formant trackers could be the answer to this location problem, as they allow each frame to refer to the results of previous frames and thereby make a more "intelligent" decision concerning the location of formants in the current frame. He notes, though, that this choice may
be risky. Lee et al. (1999:1457), in an acoustic study of children's speech, also report that measuring with an automatic formant-tracking program was not the solution to the problem, as F_{2} and F_{3} were often inaccurate for vowels produced by young children due to poor spectral resolution at high frequencies, spurious spectral peaks, and formant-track merging. Therefore, it might be worthwhile to use both techniques, so as to locate formants with greater certainty.

The formant location problem also seems to be affected by the elicitation method. Reading a list has its drawbacks as a method of elicitation. For example, we observed that the subjects tended to increase speech rate, lower intensity and articulate "carelessly" towards the end of the list, thus giving poor samples of vowels. The last words contained the vowel [u], which was already under-represented in the rest of the corpus ${ }^{28}$, and hence the analysis was based on a relatively small number of [u] data. This problem might be solved by randomising the list for each speaker, although it might create difficulties in processing the data. Alternatively, a different elicitation technique could be used. For example, the subject could be asked to produce sustained vowels, thus providing "clearer" tokens. It might be argued that the vowels would then not be articulated naturally. An answer to this argument is that the five Greek vowels are found in isolation in many linguistic contexts, as opposed to English vowels.

5.3. Suggestions for further research

Clark \& Yallop (1995:241) comment that most research in speech acoustics has used male voices, partly for reasons of convenience in spectrographic analysis. In

[^18]addition, Henton (1995:422) underlines that in speech recognition research, it was assumed for many years that women are more difficult to recognise, a fact that she judges, based on her data, as a sexist assumption, which was fed by an "androcratic scientific heritage focusing on males' speech alone". Lass (1996:221) also emphasises the need for a more expanded database. Recent research on several languages has taken the above points into account, but unfortunately Greek does not seem to be one of them. The great majority of research has used only adult male data, neglecting women to an important extent and ignoring children. To our knowledge, research on the Greek language refers only to acoustic characteristics of adult speech.

Lass (1996:221) notes that more data are needed on women speakers and children of both genders, as acoustic theories may need to be revised to take these data into account. Potamianos et al. (as cited in Lee et al., 1999:1455) reports that speech recognition systems trained on adults' speech degrade substantially when tested on the speech of children age twelve and younger. Without doubt the acoustic analysis of children's voices must gain attention, and this study is a small first step towards the expansion of the Greek acoustic database. As our analysis involves only vowels, a future step would include the analysis of consonants as well.

Future research could also involve more chronological detail, so as to study the effect of developmental factors in the acoustics of children's speech. Lee et al. (1999:1455) comment that a more chronologically detailed acoustic database obtained from a larger number of subjects with a wider range is needed, in order to better understand developmental acoustic patterns in children's speech; this knowledge would be valuable for automatic recognition of children's speech, evaluation and training of deaf children or children with speech problems, text-to-speech synthesis,
and also for the construction of a better developmental model of the vocal tract for speech production research (Lee et al, 1997).

References

Bladon, A. (1983). Acoustic phonetics, auditory phonetics, speaker sex and speech recognition: a thread. In Fallside, F. \& Woods, W. A. (eds.) Computer speech processing. London: PHI. 29-38.

Botinis, A., Fourakis, M. \& Hawks, J. W. (1997). A perceptual study of the Greek vowel space using synthetic stimuli. In Eurospeech '97: Proceedings of the $5^{\text {th }}$ European Conference on Speech Communication and Technology (on CDROM).

Botinis, A., Fourakis, M. \& Katsaiti, M. (1995). Acoustic characteristics of Greek vowels under different prosodic conditions. In Proceedings of the XIII ${ }^{\text {th }}$ International Congress of Phonetic Sciences (vol. 4). 404-407.

Clark, J. \& Yallop, C. (1995). An introduction to phonetics and phonology. $2^{\text {nd }}$ edition. Oxford: Blackwell.

Dauer, R. (1981). The reduction of unstressed high vowels in modern Greek. Journal of the International Phonetic Association. (vol. 10). 17-27.

Deterding, D. H. (1990). Speaker normalisation for automatic speech recognition. Ph.D. Thesis. University of Cambridge.

Farmer, A. (1984). Spectrography. In Code, C. \& Ball, M. (eds.) Experimental clinical phonetics. London: Croom Helm. 21-40.

Fourakis, M., Botinis, A. \& Katsaiti, M. (1999). Acoustic characteristics of Greek vowels. Phonetica 56. 28-43.

Henton, C. (1995). Cross-language variation in the vowels of female and male speakers. In Proceedings of the XIII ${ }^{\text {th }}$ International Congress of Phonetic Sciences (vol. 4). 420-423.

Holton, D., Mackridge, P. \& Philippaki-Warburton, I. (1997). Greek: A comprehensive grammar of the modern language. London: Routledge.

Joseph, B. D. \& Philippaki-Warburton, I. (1987) Modern Greek. London: Croom Helm.

Kontosopoulos, N., Ksiromeritis, N., Tsitsa, A. (1988). Akustikes erevnes epi ton elinikon fthogon (Acoustic research on the Greek sounds). Glossologia 5-6. 103-122.

Ladefoged, P. (1967). Three areas of experimental phonetics. Oxford: OUP.
Ladefoged, P. (1993). A course in phonetics. $3^{\text {rd }}$ ed. Harcourt Brace College Publishers.

Lass, N. J. (ed.) (1996) Principles of experimental phonetics. London: Mosby.
Laver, J. (1994). Principles of phonetics. Cambridge: CUP.
Lee, S., Potamianos, A., Narayanan, S. (1997). Analysis of children's speech: duration, pitch and formants. In Eurospeech '97: Proceedings of the $5^{\text {th }}$ European Conference on Speech Communication and Technology (on CDROM).

Lee, S., Potamianos, A., Narayanan, S. (1999). Acoustics of children's speech: Developmental changes of temporal and spectral parameters. Acoustical Society of America. (vol. 105). 1455-1468.

Lieberman, P. \& Blumstein, S. E. (1988). Speech physiology, speech perception, and acoustic phonetics. Cambridge: CUP.

Mackridge, P. (1985). The Modern Greek language: a descriptive analysis of Standard Modern Greek. Oxford: OUP.

Peterson, G. E. \& Barney, H. L. (1976). Control methods used in a study of the vowels. In Fry, D. B. (ed.) Acoustic phonetics. Cambridge: CUP. 104-122.

Philippaki-Warburton, I. (1992). Isagogi sti theoritiki glosologia (Introduction to theoretical linguistics). Athens: Nefeli.

Roach, P. (1992). Introducing phonetics. London: Penguin English.
Ryan, B. F. \& Joiner, B. L. (1994). Minitab Handbook. $3^{\text {rd }}$. edition. Belmont: ITP.
Smith, B. L. \& Kenney, M. K. (1998) An assessment of several acoustic parameters in children's speech production development: longitudinal data. Journal of Phonetics 26. 95-108.

Stevens, K. N. (1998). Acoustic phonetics. Cambridge Mass.: MIT Press
Woods, A., Fletcher, P. \& Hughes, A. (1986) Statistics in language studies. Cambridge: CUP.

Appendix 1: The corpus

Greek word	Transcription	Translation*
1. η ¢ $\rho \theta \alpha$	ìr θ a	came (I)
2. $\eta \mu \varepsilon$ ¢́ α	imèra	day
3. $\pi \mathrm{o} \grave{\text { ¢ }}$ 入 $\alpha \alpha \tau$	poðilato	bicycle
4. ε ¢ δ ıко́s	iðikòs	special
5. кєрí	cerì	candle
6. $\mu \varepsilon \sigma \square \eta \mu \varepsilon ́ \rho \iota$	mesimèri	noon
7. $\alpha i ́ \mu \alpha$	èma	blood
8. $\varepsilon \delta \dot{\prime}$	еðо	here
9. σ ¢¢¢¢દ́vio̧	siðerenos	iron
10 ка¢еvéo	kafenio	coffee shop
11. $\kappa \alpha \lambda \hat{\varepsilon}$	kalè	good (klitiki)
12. ε غ́ $\varphi \varepsilon \rho \varepsilon$	èfere	brought (he/she/it)
13. $\alpha \lambda \lambda \rho \sigma$	àlos	another
14. акрıßо́s	akrivòs	expensive
15. копо́ $\delta 1$	kopaði	flock/herd
16. $\kappa \alpha \rho \alpha \mu \varepsilon ́ \lambda \alpha ~$	karamèla	candy
17. к $\alpha \lambda \dot{\alpha}$	kalà	well
18. $\pi \varepsilon$ ¢ $\delta 1 \lambda \alpha$	pèðila	sandals
19. ótav	òtan	when
20. ©paíos	orèos	nice
21. к $\alpha \lambda$ ós	kalòs	good
22. о́ μ оряоя	òmorfos	beautiful
23. $\alpha \beta \gamma$ ó	avyò	egg
24. áço	vàzo	vase
25. оธ́тє	ùte	neither
26. oupavós	uranòs	sky
27. ßoú $\lambda \alpha$	vùla	spot
28. $\mu \pi$ оик λ_{λ}	bukàli	bottle
29. какои́	kakù	bad (gen.)
30. бки́入ov	scillu	dog (gen.)

[^19]
Appendix 2: The data labelling

Number	Position 1	Stress word-initially 2
stressed		
3	word-initially	unstressed
4	word-medially	stressed
5	word-medially	unstressed
6	word-finally	stressed

Vowel [i]

1	2	3	4	5	6
ìr日a	imèra	poðilato	iðikòs	cerì	mesimèri
	iðikòs	kafenìo	mesimèri		kopaði
		scìlu	siðerenos		bukàli
			akrivòs		
			pèðila		

Vowel [e]

1	2	3	4	5	6
èma	eðò	imèra	ceri	kale	èfere
èfere		mesimèri	mesimèri		ùte
		siðerenos	siðerenos		
		karamèla	kafenìo		
		pèðila	èfere		
		orèos			

Vowel [a]

1	2	3	4	5	6
àlos	akrivòs	kopaði	poðilato	kala	ìrөa
	avyò	vàzo	kafenìo		imèra
		bukàli	kale		èma
			karamèla		karamèla
			karamèla		pèðila
			kalà		vùla
			otan		
			kalòs		
			kakùs		

Vowel [o]

1	2	3	4	5	6
òtan	orèos	iðikòs	poðilato	eðò	poðilato
òmorfos		akrivòs	siðerenos	avyo	kafenìo
		kalòs	àlos		vàzo
		uranòs	kopaði		
			orèos		
			òmorfos		
			òmorfos		

Vowel [u]

1	2	3	4	5	6
ùte	uranòs	vùla	bukàli	kaku	scìlu

Appendix 4：The children＇s list

$\boldsymbol{\eta} \boldsymbol{\rho} \boldsymbol{\theta} \boldsymbol{\alpha}$	$\kappa \alpha \rho \alpha \mu \varepsilon ́ \lambda \alpha$
ทиغ́p α	к $\alpha \lambda \boldsymbol{\alpha}$
$\pi 0 \delta \eta{ }^{\prime} \lambda \alpha \tau 0$	$\pi \delta \dot{\delta} \boldsymbol{\lambda} \lambda \alpha$
عıбıKó¢	ótov
Kepí	Wpaíos
$\boldsymbol{\mu \varepsilon \sigma \eta} \boldsymbol{\mu}$	ка入入ó¢
$\alpha i ́ \mu \alpha$	о́иор甲оя
\＆ $\boldsymbol{\delta} \boldsymbol{\omega}$	$\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma}$ ó
бlסEpévios	β á̧o
кג¢EVEío	0ข์ τ
ка入£́	ovpavós
غ́¢¢ре	$\beta 0$ ¢́da
व́ $\lambda \lambda \lambda 0 ¢$	$\mu \pi 0 \cup \kappa \alpha ์ \lambda ı$
גкрıßó¢	Kんкоv́
коли́¢ $\delta 1$	$\sigma \kappa v ์ \lambda 0 v$

Appendix 5: Descriptive Statistics Results

VOWEL [i]

MALE

F1

Descriptive Statistics

Variable	N	$\mathrm{N} *$	Mean	Median	Tr Mean	StDev	SE Mean
v1mf1	145	5	423.14	414.00	420.39	52.97	4.40
Variable	Min	Max		Q1	Q3		
v1mf1	259.00	639.00	397.00	449.00			
* NOTE * N missing $=5$							

Boxplot of v1mf1

F2

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v1mf2	145	5	2073.5	2091.0	2075.9	199.0	16.5
Variable	Min	Max		Q1	Q3		
v1mf2	1209.0	2644.0	1926.5	2203.5			
* NOTE * N missing $=5$							

Boxplot of v1mf2

F3

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v1mf3	144	6	2593.4	2627.0	2596.9	201.3	16.8
Variable	Min	Max		Q1	Q3		
v1mf3	1661.0	3301.0	2489.0	2713.0			
* NOTE * N missing $=6$							

Boxplot of v1mf3

FEMALE

F1

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v1ff1	149	1	468.97	449.00	468.12	61.27	5.02
Variable	Min	Max	Q1	Q3			
v1ff1	328.00	604.00	432.00	518.00			
* NOTE * N missing $=1$							

Boxplot of v1ff1

F2

Descriptive Statistics

Variable	N	N* *	Mean	Median	Tr Mean	StDev	SE Mean
v1ff2	149	1	2571.2	2592.0	2576.4	182.5	15.0
Variable	Min	Max	Q1	Q3			
v1ff2	2074.0	2973.0	2454.0	2696.0			

* NOTE * N missing $=1$

Boxplot of v1ff2

F3

Descriptive Statistics

Variable	N	N*	Mean	Median	Tr Mean	StDev	SE Mean
v1ff3	149	1	3109.2	3128.0	3106.9	199.0	16.3
Variable	Min	Max		Q1	Q3		
v1ff3	2610.0	3699.0	2955.0	3232.0			
* NOTE * N missing $=1$							

Boxplot of v1ff3

CHILD

F1

Descriptive Statistics

Variable	N	$\mathrm{N} *$	Mean	Median	Tr Mean	StDev	SE Mean
v1cf1	145	5	581.43	587.00	581.35	81.98	6.81
Variable	Min	Max		Q1	Q3		
v1cf1	311.00	795.00	544.00	622.00			
* NOTE * N missing $=5$							

Boxplot of v1cf1

F2

Descriptive Statistics

Variable	N	$\mathrm{N} *$	Mean	Median	Tr Mean	StDev	SE Mean
v1cf2	143	7	2873.1	2921.0	2904.7	333.5	27.9
Variable	Min	Max		Q1	Q3		
v1cf2	1296.0	3457.0	2731.0	3094.0			
* NOTE * N missing $=7$							

Boxplot of v1cf2

F3

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v1cf3	141	9	3637.2	3647.0	3647.6	153.7	12.9
Variable	Min	Max		Q1	Q3		
v1cf3	3042.0	3992.0	3560.0	3733.0			
* NOTE * N missing $=9$							

Boxplot of v1cf3

VOWEL [e]

MALE

F1

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v2mf1	170	601.37	587.00	598.63	72.00	5.52
Variable	Min	Max	Q1	Q3		
v2mf1	397.00	1088.00	570.00	639.00		

Boxplot of v2mf1

F2

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v2mf2	170	1811.1	1788.5	1811.4	145.7	11.2
Variable	Min	Max	Q1	Q3		
v2mf2	1123.0	2229.0	1728.0	1901.0		

Boxplot of v2mf2

F3

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v2mf3	170	2560.4	2592.0	2566.0	168.7	12.9
Variable	Min	Max	Q1	Q3		
v2mf3	2091.0	2921.0	2437.0	2696.0		

Boxplot of v2mf3

FEMALE

F1

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v2ff1	170	687.38	682.50	686.74	90.27	6.92
Variable	Min	Max	Q1	Q3		
v2ff1	414.00	916.00	604.00	760.00		

Boxplot of v2ff1

F2

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v2ff2	170	2230.5	2212.0	2228.3	147.9	11.3
Variable	Min	Max	Q1	Q3		
v2ff2	1832.0	2696.0	2143.0	2316.0		

Boxplot of v2ff2

F3

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v2ff3	170	3050.6	3059.0	3053.2	159.6	12.2
Variable	Min	Max	Q1	Q3		
v2ff3	2679.0	3387.0	2938.0	3197.0		

Boxplot of v2ff3

CHILD

F1

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v2cf1	170	719.27	708.00	718.32	102.55	7.87
Variable	Min	Max	Q1	Q3		
v2cf1	483.00	1088.00	656.00	777.00		

Boxplot of v2cf1

F2

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v2cf2	170	2607.3	2627.0	2611.2	183.7	14.1
Variable	Min	Max	Q1	Q3		
v2cf2	2039.0	3111.0	2497.2	2713.0		

Boxplot of v2cf2

F3

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v2cf3	170	3558.0	3612.0	3569.1	190.5	14.6
Variable	Min	Max	Q1	Q3		
v2cf3	2973.0	3923.0	3469.8	3685.5		

Boxplot of v2cf3

VOWEL [a]

MALE

F1

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v3mf1	228	2	735.89	725.00	734.24	77.15	5.11
Variable	Min	Max		Q1	Q3		
v3mf1	553.00	1019.00	678.25	777.00			
* NOTE * N missing $=2$							

Boxplot of v3mf1

F2

Descriptive Statistics

Variable	N	N* *	Mean	Median	Tr Mean	StDev	SE Mean
v3mf2	228	2	1465.7	1469.0	1462.4	133.2	8.8
Variable	Min	Max	Q1	Q3			
V3mf2	1175.0	2005.0	1365.0	1555.0			
* NOTE * N missing $=2$							

Boxplot of v3mf2

F3

Descriptive Statistics

Variable	N	N*	Mean	Median	Tr Mean	StDev	SE Mean
v3mf3	217	3	2459.1	2454.0	2463.0	205.3	13.9
Variable	Min	Max		Q1	Q3		
v3mf3	1884.0	2869.0	2333.0	2592.0			
* NOTE * N missing $=3$							
N m							

Boxplot of v3mf3

FEMALE

F1

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v3ff1	230	872.55	864.00	869.38	94.01	6.20
Variable	Min	Max	Q1	Q3		
v3ff1	622.00	1158.00	807.75	916.00		

Boxplot of v3ff1

F2

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v3ff2	230	1698.8	1719.5	1703.3	145.2	9.6
Variable	Min	Max	Q1	Q3		
v3ff2	1158.0	2195.0	1624.0	1780.0		

Boxplot of v3ff2

F3

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v3ff3	220	2712.8	2696.0	2708.6	237.3	16.0
Variable	Min	Max	Q1	Q3		
v3ff3	2229.0	3301.0	2558.0	2852.0		

Boxplot of v3ff3

CHILD

F1

Descriptive Statistics

Variable	N	N*	Mean	Median	Tr Mean	StDev	SE Mean
v3cf1	228	2	921.9	898.0	919.9	163.8	10.9
Variable	Min	Max		Q1	Q3		
v3cf1	570.0	1330.0	829.0	1019.0			
* NOTE * N missing $=2$							

Boxplot of v3cf1

F2

Descriptive Statistics

Variable	N	N*	Mean	Median	Tr Mean	StDev	SE Mean
v3cf2	228	2	1811.3	1866.0	1814.9	286.4	19.0
Variable	Min	Max		Q1	Q3		
v3cf2	1123.0	2644.0	1576.5	2034.8			
* NOTE * N missing $=2$							

Boxplot of v3cf2

F3

Descriptive Statistics

Variable	N	N*	Mean	Median	Tr Mean	StDev	SE Mean
v3cf3	215	5	3196.8	3163.0	3214.6	332.1	22.7
Variable	Min	Max	Q1	Q3			
v3cf3	1918.0	3889.0	3007.0	3439.0			
* NOTE * N missing $=5$							

Boxplot of v3cf3

VOWEL [o]

MALE

F1

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v4mf1	177	13	583.02	587.00	581.70	61.52	4.62
Variable	Min	Max		Q1	Q3		
v4mf1	397.00	777.00	535.00	622.00			
* NOTE * N missing $=13$							

Boxplot of v4mf1

F2

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v4mf2	177	13	1137.3	1106.0	1127.2	148.8	11.2
Variable	Min	Max		Q1		Q3	
v4mf2	881.0	2039.0	1054.0	1209.0			
* NOTE * N missing $=13$							

Boxplot of v4mf2

F3

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v4mf3	168	22	2479.3	2497.5	2483.1	243.5	18.8
Variable	Min	Max		Q1	Q3		
v4mf3	1901.0	2938.0	2316.0	2679.0			
* NOTE * N missing $=22$							

Boxplot of v4mf3

FEMALE

F1

Descriptive Statistics

Variable	N	Mean	Median	Tr Mean	StDev	SE Mean
v4ff1	190	657.32	639.00	653.67	84.54	6.13
Variable	Min	Max	Q1	Q3		
v4ff1	345.00	1123.00	599.75	708.00		

Boxplot of v4ff1

F2

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v4ff2	188	2	1219.1	1192.0	1205.7	163.6	11.9
Variable	Min	Max		Q1	Q3		
v4ff2	898.0	2039.0	1123.0	1291.8			
* NOTE * N missing $=2$							

Boxplot of v4ff2

F3

Descriptive Statistics

Variable	N	N*	Mean	Median	Tr Mean	StDev	SE Mean
v4ff3	188	2	2816.9	2825.5	2817.2	230.0	16.8
Variable	Min	Max	Q1	Q3			
v4ff3	2316.0	3370.0	2627.0	2973.0			

Boxplot of v4ff3

CHILD

F1

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v4cf1	186	4	729.66	708.00	727.73	102.45	7.51
Variable	Min	Max		Q1	Q3		
v4cf1	518.00	1019.00	656.00	812.00			
* NOTE * N missing $=4$							

Boxplot of v4cf1

F2

Descriptive Statistics

Variable	N	N*	Mean	Median	Tr Mean	StDev	SE Mean
v4cf2	185	5	1462.0	1400.0	1434.5	295.4	21.7
Variable	Min	Max		Q1	Q3		
v4cf2	950.0	2748.0	1296.0	1563.5			
* NOTE * N missing $=5$							

Boxplot of v4cf2

F3

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v4cf3	160	30	3239.8	3232.0	3245.9	287.6	22.7
Variable	Min	Max		Q1	Q3		
v4cf3	2419.0	3785.0	3076.0	3469.8			
* NOTE * N missing $=30$							

Boxplot of v4cf3

VOWEL [u]

MALE

F1

Descriptive Statistics

Variable	N	N*	Mean	Median	Tr Mean	StDev	SE Mean
v5mf1	56	4	434.36	414.00	429.86	58.75	7.85
Variable	Min	Max		Q1	Q3		
v5mf1	311.00	691.00	401.25	449.00			
* NOTE * N missing $=4$							

Boxplot of v5mf1

F2

Descriptive Statistics

Variable	N	N*	Mean	Median	Tr Mean	StDev	SE Mean
v5mf2	55	5	920.6	864.0	906.8	189.1	25.5
Variable	Min	Max		Q1	Q3		
v5mf2	604.0	1417.0	795.0	1037.0			
* NOTE * N missing $=5$							

Boxplot of v5mf2

F3

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v5mf3	52	18	2459.7	2437.0	2446.5	239.0	33.1
Variable	Min	Max		Q1	Q3		
v5mf3	2108.0	3284.0	2281.0	2627.0			
* NOTE * N missing $=18$							

Boxplot of v5mf3

FEMALE

F1

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v5ff1	59	1	451.34	432.00	449.98	55.47	7.22
Variable	Min	Max	Q1	Q3			
v5ff1	311.00	587.00	414.00	483.00			
* NOTE * N missing $=1$							

Boxplot of v5ff1

F2

Descriptive Statistics

Variable	N	$\mathrm{N} *$	Mean	Median	Tr Mean	StDev	SE Mean
v5ff2	57	3	954.7	864.0	925.4	237.7	31.5
Variable	Min	Max		Q1		Q3	
v5ff2	725.0	2281.0	829.0	1062.5			
* NOTE * N missing $=3$							

Boxplot of v5ff2

F3

Descriptive Statistics

Variable	N	N^{*}	Mean	Median	Tr Mean	StDev	SE Mean
v5ff3	58	12	2803.6	2756.5	2799.7	227.0	29.8
Variable	Min	Max		Q1	Q3		
v5ff3	2385.0	3318.0	2627.0	2973.0			
* NOTE * N missing $=12$							

Boxplot of v5ff3

CHILD

F1

Descriptive Statistics

Variable	N	N*	Mean	Median	Tr Mean	StDev	SE Mean
v5cf1	56	4	560.3	570.0	562.3	77.2	10.3
Variable	Min	Max		Q1	Q3		
v5cf1	380.0	708.0	518.0	622.0			
* NOTE * N missing $=4$							

Boxplot of v5cf1

F2

Descriptive Statistics

Variable	N	$N *$	Mean	Median	Tr Mean	StDev	SE Mean
v5cf2	53	7	1189.9	1140.0	1162.8	292.2	40.1
Variable	Min	Max		Q1		Q3	
v5cf2	760.0	2143.0	958.5	1339.0			

[^20]
Boxplot of v5cf2

F3

Descriptive Statistics

Variable	N	N* *	Mean	Median	Tr Mean	StDev	SE Mean
v5cf3	31	39	3172.2	3197.0	3224.1	441.4	79.3
Variable	Min	Max	Q1	Q3			
v5cf3	1814.0	3785.0	3059.0	3491.0			
* NOTE * N missing $=39$							

Boxplot of v5cf3

Appendix 6: Regression Analysis Results

VOWEL [i]

Regression Analysis

```
The regression equation is
```

```
cfreqv1 = 43.6 + 0.482 mfreqv1 + 0.731 ffreqv1
```

410 cases used 40 cases contain missing values

Predictor	Coef	StDev	T	P
Constant	43.56	25.68	1.70	0.091
mfreqv1	0.48197	0.07324	6.58	0.000
ffreqv1	0.73106	0.05975	12.24	0.000
S = 253.9	R-Sq $=96.3 \%$	R-Sq (adj) $=96.3 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	688588487	344294244	5339.53	0.000
Error	407	26243440	64480		
Total	409	714831928			
Source	DF	Seq SS			
mfreqv1	1	678934075			
ffreqv1	1	9654413			

Unusual Observations

Obs	mfreqv1	cfreqv1	Fit	StDev Fit	Residual	St Resid
20	1763	3094.0	2952.7	42.8	141.3	0.56 X
21	2281	3733.0	3581.8	37.7	151.2	0.60 X
50	2437	1849.0	3353.6	16.1	-1504.6	-5.94R
51	2782	3405.0	4088.6	27.9	-683.6	-2.71R
87	3007	3595.0	3564.7	52.3	30.3	0.12 X
95	2506	2489.0	3196.7	27.5	-707.7	-2.80R
96	2903	3042.0	3779.9	27.6	-737.9	-2.92R
141	3301	3768.0	4009.8	50.6	-241.8	-0.97 X
149	1970	2074.0	2901.1	18.9	-827.1	-3.27R
162	1661	3508.0	2979.5	55.9	528.5	2.13RX
275	2143	1434.0	3135.8	19.4	-1701.8	-6.72R
299	1209	1365.0	2597.2	74.9	-1232.2	-5.08RX
300	2229	3681.0	3543.5	40.0	137.5	0.55 X
365	2644	1296.0	3288.8	34.7	-1992.8	-7.92R
366	3180	3059.0	3963.9	41.6	-904.9	-3.61RX
437	1745	3197.0	2463.7	12.9	733.3	2.89R
438	2419	3992.0	3281.3	16.7	710.7	2.81 R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

VOWEL [e]

Regression Analysis

The regression equation is
cfreqv2 $=-88.7+0.369$ mfreqv2 +0.891 ffreqv2

Predictor	Coef	StDev	T	P
Constant	-88.74	18.03	-4.92	0.000
mfreqv2	0.36913	0.04471	8.26	0.000
ffreqv2	0.89054	0.03699	24.07	0.000
S = 179.8	$R-S q=97.7 \%$	$R-S q($ adj $)=97.7 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	707069229	353534615	10932.21	0.000
Error	507	16395775	32339		
Total	509	723465005			
Source	DF	Seq SS			
mfreqv2	1	688329076			
ffreqv2	1	18740154			

Unusual								Observations								
Obs	mfreqv2	cfreqv2	Fit	StDev Fit	Residual	St Resid										
44	1676	2731.00	2869.36	24.13	-138.36	-0.78 X										
59	1918	2264.00	2650.56	8.38	-386.56	$-2.15 R$										
60	2627	3889.00	3420.77	16.14	468.23	$2.61 R$										
61	691	483.00	889.44	12.40	-406.44	$-2.27 R$										
72	2713	3871.00	3406.21	20.67	464.79	$2.60 R$										
81	2817	3768.00	3398.29	26.43	369.71	$2.08 R X$										
87	2800	3595.00	3330.57	27.92	264.43	$1.49 \times$										
90	2782	3681.00	3370.23	25.52	310.77	1.75 X										
101	1814	2679.00	2242.60	13.98	436.40	$2.43 R$										
102	2696	3871.00	3368.77	21.02	502.23	$2.81 R$										
104	1676	2765.00	2376.89	8.30	388.11	$2.16 R$										
108	2713	3076.00	3529.10	17.01	-453.10	$-2.53 R$										
111	2852	3128.00	3611.58	21.12	-483.58	$-2.71 R$										
114	2748	3145.00	3588.33	16.96	-443.33	$-2.48 R$										
117	2834	3128.00	3588.91	20.94	-460.91	$-2.58 R$										
123	2748	3232.00	3634.64	15.84	-402.64	$-2.25 R$										
126	2765	3145.00	3563.44	18.40	-418.44	$-2.34 R$										
129	2748	3128.00	3542.02	18.23	-414.02	$-2.31 R$										
135	2834	3197.00	3573.77	21.41	-376.77	$-2.11 R$										
138	2748	2990.00	3526.88	18.66	-536.88	$-3.00 R$										
140	1676	2713.00	2299.42	8.02	413.58	$2.30 R$										
150	2921	2973.00	3529.30	27.46	-556.30	$-3.13 R X$										
153	2782	3007.00	3523.41	20.41	-516.41	$-2.89 R$										
165	2575	3145.00	3601.06	11.96	-456.06	$-2.54 R$										
177	2713	3215.00	3575.41	15.83	-360.41	$-2.01 R$										
183	2696	3145.00	3522.83	16.44	-377.83	$-2.11 R$										
206	1763	2091.00	2485.59	8.21	-394.59	$-2.20 R$										
227	1693	2039.00	2474.89	9.62	-435.89	$-2.43 R$										

234	2368	3699.00	3325.17	10.58	373.83	$2.08 R$
243	2177	3681.00	3238.64	12.75	442.36	$2.47 R$
255	2281	3664.00	3261.89	10.57	402.11	$2.24 R$
308	1849	2938.00	2548.51	8.21	389.49	$2.17 R$
319	1088	691.00	1066.26	19.96	-375.26	$-2.10 R$
323	1123	2834.00	2403.42	37.27	430.58	$2.45 R X$
329	1486	2765.00	2614.00	24.75	151.00	$0.85 \times$
330	2091	3716.00	3637.91	31.55	78.09	$0.44 \times$
333	2748	3750.00	3357.68	24.13	392.32	$2.20 R X$
344	1434	2834.00	2410.46	19.79	423.54	$2.37 R$
383	1866	2696.00	2308.10	14.33	387.90	$2.16 R$
404	1745	2333.00	2894.83	21.33	-561.83	$-3.15 R$
405	2298	3215.00	3668.01	21.77	-453.01	$-2.54 R$
473	1763	2108.00	2716.24	13.85	-608.24	$-3.39 R$

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

VOWEL [a]

Regression Analysis

The regression equation is
cfreqv3 $=-93.4+0.760 \mathrm{mfreqv3}+0.506$ ffreqv3
664 cases used 16 cases contain missing values

Predictor	Coef	StDev	T	P
Constant	-93.44	28.90	-3.23	0.001
mfreqv3	0.75957	0.05549	13.69	0.000
ffreqv3	0.50607	0.05197	9.74	0.000
S = 299.2	R-Sq $=90.5 \%$	$R-S q($ adj $)=90.5 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	562762920	281381460	3143.82	0.000
Error	661	59161468	89503		
Total	663	621924388			
Source	DF	Seq SS			
mfreqv3	1	554276432			
ffreqv3	1	8486488			

Unusual Observations						
Obs	mfreqv3	cfreqv3	Fit	StDev Fit	Residual	St Resid
3	2454	3560.0	3441.1	37.4	118.9	0.40 X
29	2281	3163.0	3248.5	39.0	-85.5	-0.29 X
50	2108	3439.0	3012.3	36.8	426.7	1.44 X
58	1417	1140.0	1831.1	12.1	-691.1	-2.31R

59	2368	2177.0	3375.8	41.0	-1198.8	-4.05RX
68	1935	3111.0	2915.8	48.3	195.2	0.66 X
71	2834	*	3353.7	35.8	*	X
77	2817	3664.0	3279.6	39.8	384.4	1.30 X
85	2713	3094.0	3191.5	35.3	-97.5	-0.33 X
88	2713	3629.0	3165.7	37.4	463.3	1.56 X
91	2644	3439.0	3086.9	36.0	352.1	1.19 X
94	2834	3716.0	3248.5	44.4	467.5	1.58 X
103	2869	2955.0	3310.0	43.2	-355.0	-1.20 X
106	2679	3353.0	3122.1	37.1	230.9	0.78 X
112	2852	3422.0	3332.5	39.4	89.5	0.30 X
115	2713	3889.0	3165.7	37.4	723.3	2.44RX
118	2713	3405.0	3174.3	36.7	230.7	0.78 X
121	2765	3422.0	3178.8	42.3	243.2	0.82 X
124	2765	3647.0	3187.4	41.5	459.6	1.55 X
127	2748	3612.0	3192.2	39.1	419.8	1.42 X
130	2765	3612.0	3222.4	38.6	389.6	1.31 X
133	2713	3439.0	3147.9	38.8	291.1	0.98 X
136	2575	3387.0	2999.6	35.4	387.4	1.30 X
139	2869	2540.0	3529.1	27.8	-989.1	-3.32R
141	1659	1348.0	2041.2	13.8	-693.2	-2.32R
142	2852	2039.0	3507.1	27.6	-1468.1	-4.93R
167	1521	1123.0	1901.4	12.1	-778.4	-2.60R
168	2471	1918.0	3200.5	19.9	-1282.5	-4.30R
171	2817	2212.0	3428.4	29.0	-1216.4	-4.09R
183	2834	2540.0	3458.5	28.7	-918.5	-3.08R
227	2610	2523.0	3034.8	36.5	-511.8	-1.72 X
275	2281	3578.0	2977.2	18.3	600.8	2.01R
281	2177	3647.0	2740.8	16.0	906.2	3.03R
298	2212	3647.0	2942.5	20.5	704.5	2.36R
301	2298	3647.0	2963.8	17.4	683.2	2.29R
304	2316	3716.0	3012.4	18.3	703.6	2.36R
313	2229	3612.0	2894.2	17.1	717.8	2.40R
322	2368	3612.0	2982.0	18.2	630.0	2.11R
328	2229	3647.0	2911.4	17.8	735.6	2.46R
331	2177	3595.0	2915.9	21.4	679.1	2.28R
334	2229	3647.0	2981.7	21.8	665.3	2.23R
340	2056	3439.0	2675.2	15.5	763.8	2.56 R
365	1451	2644.0	1760.7	14.6	883.3	2.96R
410	1642	1140.0	2019.7	13.8	-879.7	-2.94R
411	2143	3232.0	3125.9	43.5	106.1	0.36 X
431	1953	3128.0	2841.9	38.8	286.1	0.96 X
436	1590	1400.0	2093.5	13.7	-693.5	-2.32R
439	1538	1400.0	2045.4	14.7	-645.4	-2.16R
446	1884	3318.0	2570.9	21.9	747.1	2.50 R
451	1590	1365.0	2137.6	16.5	-772.6	-2.59R
455	2091	3612.0	3121.8	49.3	490.2	1.66 X
467	2074	2852.0	3064.9	45.8	-212.9	-0.72 X
496	2558	2661.0	3354.1	22.5	-693.1	-2.32R
499	2195	3094.0	3148.2	39.5	-54.2	-0.18 X
535	2091	2782.0	3051.5	42.5	-269.5	-0.91 X
553	2350	3612.0	2959.8	17.9	652.2	2.18R
594	2350	3612.0	2907.1	19.7	704.9	2.36R
597	2247	3629.0	2942.8	18.4	686.2	2.30R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

VOWEL [o]

Regression Analysis

The regression equation is

```
cfreqv4 = 13.8 + 0.631 mfreqv4 + 0.579 ffreqv4
```

485 cases used 85 cases contain missing values

Predictor	Coef	StDev	T	P
Constant	13.81	23.27	0.59	0.553
mfreqv4	0.63128	0.05743	10.99	0.000
ffreqv4	0.57888	0.05039	11.49	0.000

$S=261.9 \quad R-S q=93.8 \% \quad R-S q(a d j)=93.8 \%$
Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	498220247	249110123	3632.03	0.000
Error	482	33058961	68587		
Total	484	531279208			
Source	DF	Seq SS			
mfreqv4	1	489169152			
ffreqv4	1	9051095			

Unusual Observations

Obs	mfreqv4	cfreqv4	Fit	StDev Fit	Residual	St Resid
17	1106	2696.0	1422.3	12.4	1273.7	4.87R
27	2177	*	3149.1	36.4	*	X
35	1227	2195.0	1558.3	12.1	636.7	2.43R
51	2298	3163.0	3285.1	35.7	-122.1	-0.47 X
63	2834	*	3303.3	37.3	*	X
71	1348	2333.0	1584.9	17.4	748.1	2.86R
84	2765	*	3149.8	41.1		X
87	2817	3716.0	3262.5	38.4	453.5	1.75 X
90	2748	3457.0	3169.1	38.2	287.9	1.11 X
99	2886	3094.0	3246.4	46.0	-152.4	-0.59 X
108	2938	3629.0	3329.0	45.3	300.0	1.16 X
111	2782	3785.0	3250.8	35.9	534.2	2.06RX
114	2903	3215.0	3257.2	46.9	-42.2	-0.16 X
128	1486	1365.0	2132.2	23.1	-767.2	-2.94R
144	2886	2938.0	3526.6	29.5	-588.6	-2.26R
198	2713	*	3086.8	40.5	*	* X
200	1019	2419.0	1207.0	15.8	1212.0	4.64R
201	2921	3595.0	3338.6	43.0	256.4	0.99 X
207	2506	2454.0	3126.4	22.2	-672.4	-2.58R
212	1054	1849.0	1249.4	15.8	599.6	2.29R
222	2886	2558.0	3326.3	40.5	-768.3	-2.97RX
228	2765	3266.0	3229.7	35.8	36.3	0.14 X
231	2039	3681.0	2891.8	29.5	789.2	3.03R
237	1918	3629.0	2635.3	21.6	993.7	3.81R

240	2195	3681.0	3030.2	26.3	650.8	2.50 R
252	1935	3578.0	2756.1	28.6	821.9	3.16R
258	2091	3733.0	2924.6	27.4	808.4	3.10 R
261	2091	3664.0	2674.5	16.5	989.5	3.79 R
270	2126	2938.0	3147.0	41.0	-209.0	-0.81 X
276	1901	3353.0	2864.9	40.4	488.1	1.89 X
279	2091	3612.0	2924.6	27.4	687.4	2.64R
320	1175	2419.0	1496.0	12.2	923.0	3.53R
342	2264	3648.0	2853.8	18.7	794.2	3.04R
345	2126	*	3196.8	45.0	*	* X
348	2108	2852.0	3185.4	45.8	-333.4	-1.29 X
353	2039	1417.0	2011.3	54.3	-594.3	-2.32RX
381	2056	3560.0	2972.5	34.0	587.5	2.26R
387	2108	*	3175.6	45.0	*	* X
393	2039	2903.0	2991.9	37.1	-88.9	-0.34 X
434	1244	950.0	1769.3	19.0	-819.3	-3.14R
453	2454	2696.0	3293.8	24.9	-597.8	-2.29R
456	2195	2679.0	3350.3	50.6	-671.3	-2.61RX
501	2160	3180.0	3158.0	38.6	22.0	0.08 X
527	1451	2679.0	1940.0	13.8	739.0	2.83 R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

VOWEL [u]

Regression Analysis

The regression equation is
cfreqv5 $=42.6+0.963$ mfreqv5 +0.262 ffreqv5
126 cases used 64 cases contain missing values

Predictor	Coef	StDev	T	P
Constant	42.58	44.56	0.96	0.341
mfreqv5	0.9627	0.1510	6.37	0.000
ffreqv5	0.2623	0.1243	2.11	0.037
S = 289.4	R-Sq $=91.1 \%$	R-Sq (adj) $=91.0 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	105991631	52995816	632.85	0.000
Error	123	10300144	83741		
Total	125	116291775			

Source	DF	Seq SS
mfreqv5	1	105618767
ffreqv5	1	372865

Unusual Observations

Obs	mfreqv5	cfreqv5	Fit	StDev Fit	Residual	St Resid
13	3284	*	3961.0	142.6	*	X
20	2281	2039.0	2864.0	60.5	-825.0	-2.92R
35	2679	*	3337.9	79.4	*	* X
39	2264	1814.0	3074.3	97.1	-1260.3	-4.62RX
42	2834	*	3523.3	86.8	*	* X
45	2886	*	3573.4	92.7	*	X
48	2834	*	3491.6	96.1	*	X
57	2627	*	3260.6	81.1	*	* X
61	2696	3145.0	3331.4	87.9	-186.4	-0.68 X
64	2748	*	3377.0	95.7	*	* X
67	2627	*	3246.9	85.1	*	X
70	2610	*	3235.0	81.8	*	* X
75	604	1469.0	814.2	31.2	654.8	2.28R
80	2160	3612.0	2819.9	54.9	792.1	2.79R
83	2108	3629.0	2801.6	66.7	827.4	2.94R
86	2247	3629.0	2917.3	55.1	711.7	2.51R
88	691	1849.0	925.2	30.0	923.8	3.21R
99	2696	3629.0	3358.7	80.1	270.3	0.97 X
124	2281	*	3072.5	88.3	*	* X
134	2627	2731.0	3441.8	74.2	-710.8	-2.54R
146	2160	*	2901.8	79.7	*	* X
151	1192	881.0	1788.4	121.4	-907.4	-3.45RX
153	2143	3094.0	2876.2	77.9	217.8	0.78 X

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

ALL VOWELS

Regression Analysis

The regression equation is
cvowels $=-39.4+0.568$ mvowels +0.678 fvowels
2195 cases used 205 cases contain missing values

Predictor	Coef	StDev	T	P
Constant	-39.36	11.89	-3.31	0.001
mvowels	0.56763	0.02821	20.12	0.000
fvowels	0.67832	0.02387	28.42	0.000
S = 266.1	$R-S q=94.7 \%$	$R-S q(a d j)=94.7 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	2756517156	1378258578	19470.56	0.000
Error	2192	155164655	70787		
Total	2194	2911681811			

Source	DF	Seq SS
mvowels	1	2699341709
fvowels	1	57175447

Unusual Observations

Obs	mvowels	cvowels	Fit	StDev Fit	Residual	St Resid
20	1763	3094.00	2872.21	19.41	221.79	0.84 X
21	2281	3733.00	3518.29	18.41	214.71	0.81 X
26	1659	3076.00	2520.14	12.43	555.86	2.09R
50	2437	1849.00	3325.33	8.89	-1476.33	-5.55R
51	2782	3405.00	4048.90	15.63	-643.90	-2.42R
87	3007	3595.00	3589.87	19.16	5.13	0.02 X
95	2506	2489.00	3188.14	10.48	-699.14	-2.63R
96	2903	3042.00	3777.06	11.70	-735.06	-2.77R
141	3301	3768.00	4038.25	18.97	-270.25	-1.02 X
149	1970	2074.00	2849.29	10.20	-775.29	-2.92R
162	1661	3508.00	2884.85	24.44	623.15	2.35RX
275	2143	1434.00	3087.90	10.79	-1653.90	-6.22R
299	1209	1365.00	2475.66	31.34	-1110.66	-4.20RX
300	2229	3681.00	3476.56	19.22	204.44	0.77 X
365	2644	1296.00	3290.21	12.85	-1994.21	-7.50R
366	3180	3059.00	3981.10	15.98	-922.10	-3.47R
437	1745	3197.00	2416.33	6.75	780.67	2.94R
438	2419	3992.00	3256.10	8.48	735.90	2.77R
494	1676	2731.00	2693.94	17.32	37.06	0.14 X
600	2921	2973.00	3553.26	16.70	-580.26	-2.19R
693	2177	3681.00	3118.74	10.50	562.26	2.11 R
773	1123	2834.00	2180.62	25.23	653.38	2.47RX
774	2229	3716.00	3418.22	17.35	297.78	1.12 X
779	1486	2765.00	2445.00	17.51	320.00	1.21 X
780	2091	3716.00	3398.23	22.56	317.77	1.20 X
794	1434	2834.00	2275.07	14.23	558.93	2.10R
978	777	587.00	1174.98	9.35	-587.98	-2.21R
1018	1417	1140.00	1901.84	5.76	-761.84	-2.86R
1019	2368	2177.00	3543.93	15.77	-1366.93	-5.15R
1027	1330	1158.00	1817.18	6.11	-659.18	-2.48R
1028	1935	3111.00	3122.46	20.18	-11.46	-0.04 X
1031	2834	*	3304.45	20.09	*	* X
1034	2800	3629.00	3296.68	18.87	332.32	1.25 X
1037	2817	3664.00	3212.72	22.13	451.28	1.70 X
1042	2575	3595.00	2969.54	18.94	625.46	2.36RX
1045	2713	3094.00	3141.48	19.74	-47.48	-0.18 X
1048	2713	3629.00	3106.89	20.80	522.11	1.97 X
1051	2644	3439.00	3032.45	20.04	406.55	1.53 X
1054	2834	3716.00	3163.36	24.44	552.64	2.09RX
1063	2869	2955.00	3230.03	23.91	-275.03	-1.04 X
1066	2679	3353.00	3063.85	20.62	289.15	1.09 X
1069	2817	3560.00	3306.33	19.31	253.67	0.96 X
1072	2852	3422.00	3267.86	21.99	154.14	0.58 X
1075	2713	3889.00	3106.89	20.80	782.11	2.95RX
1078	2713	3405.00	3118.42	20.44	286.58	1.08 X
1081	2765	3422.00	3101.13	23.30	320.87	1.21 X
1084	2765	3647.00	3112.66	22.93	534.34	2.02RX
1087	2748	3612.00	3126.75	21.73	485.25	1.83 X
1090	2765	3612.00	3159.47	21.48	452.53	1.71 X
1093	2713	3439.00	3083.15	21.53	355.85	1.34 X
1096	2575	3387.00	2946.48	19.65	440.52	1.66 X
1099	2869	2540.00	3523.74	15.46	-983.74	-3.70R
1101	1659	1348.00	2074.48	7.42	-726.48	-2.73R
1102	2852	2039.00	3501.88	15.36	-1462.88	-5.51R

1127	1521	1123.00	1949.34	6.22	-826.34	-3.11R
1128	2471	1918.00	3262.56	8.79	-1344.56	-5.06R
1130	1555	1365.00	1968.64	6.66	-603.64	-2.27R
1131	2817	2212.00	3412.15	16.33	-1200.15	-4.52R
1136	1486	1313.00	1941.01	5.80	-628.01	-2.36R
1140	2782	2921.00	3310.21	17.72	-389.21	-1.47 X
1143	2834	2540.00	3444.86	16.13	-904.86	-3.41R
1148	1417	1227.00	1772.96	6.88	-545.96	-2.05R
1154	1365	1313.00	1896.07	6.49	-583.07	-2.19R
1155	2247	2523.00	3146.94	9.23	-623.94	-2.35R
1180	1590	1607.00	2141.13	5.78	-534.13	-2.01R
1187	2610	2523.00	2977.88	20.23	-454.88	-1.71 X
1198	1659	1521.00	2168.09	5.93	-647.09	-2.43R
1207	1624	1555.00	2125.16	5.86	-570.16	-2.14R
1208	2627	3318.00	3092.66	17.48	225.34	0.85 X
1211	2852	2903.00	3443.55	16.88	-540.55	-2.04R
1241	2177	3647.00	2778.90	8.51	868.10	3.26 R
1249	2402	3578.00	3023.96	10.53	554.04	2.08 R
1258	2212	3647.00	3033.46	7.98	613.54	2.31 R
1261	2298	3647.00	3023.26	7.98	623.74	2.35R
1264	2316	3716.00	3080.29	7.93	635.71	2.39R
1273	2229	3612.00	2961.04	7.53	650.96	2.45 R
1282	2368	3612.00	3016.19	9.63	595.81	2.24 R
1288	2229	3647.00	2984.10	7.52	662.90	2.49R
1291	2177	3595.00	3013.60	8.24	581.40	2.19R
1294	2229	3647.00	3078.39	8.37	568.61	2.14 R
1297	2437	3647.00	3090.63	10.27	556.37	2.09R
1300	2056	3439.00	2745.49	6.80	693.51	2.61R
1305	1642	1572.00	2170.65	5.77	-598.65	-2.25R
1317	2575	3128.00	2993.28	18.21	134.72	0.51 X
1325	1451	2644.00	1792.26	7.42	851.74	3.20R
1370	1642	1140.00	2053.30	7.37	-913.30	-3.43R
1371	2143	3232.00	3310.39	17.44	-78.39	-0.30 X
1376	1521	1417.00	2019.89	5.68	-602.89	-2.27R
1377	2229	2350.00	3030.90	7.78	-680.90	-2.56R
1396	1590	1400.00	2175.73	6.10	-775.73	-2.92R
1399	1538	1400.00	2134.68	6.51	-734.68	-2.76R
1402	1486	1417.00	2105.16	7.31	-688.16	-2.59R
1403	2316	2679.00	3385.53	13.05	-706.53	-2.66R
1406	1884	3318.00	2683.13	8.71	634.87	2.39R
1411	1590	1365.00	2234.74	7.10	-869.74	-3.27R
1414	1555	1400.00	2015.45	5.97	-615.45	-2.31R
1415	2091	3612.00	3328.36	20.23	283.64	1.07 X
1417	1451	1313.00	1980.15	5.99	-667.15	-2.51R
1426	1486	1348.00	2011.55	5.83	-663.55	-2.49R
1427	2074	2852.00	3259.70	18.70	-407.70	-1.54 X
1429	1538	1434.00	1982.06	6.09	-548.06	-2.06R
1435	1434	1365.00	2017.31	6.95	-652.31	-2.45R
1456	2558	2661.00	3429.29	9.17	-768.29	-2.89R
1477	2558	2765.00	3358.74	9.38	-593.74	-2.23R
1480	2454	2731.00	3311.24	8.70	-580.24	-2.18R
1495	2091	2782.00	3234.07	17.15	-452.07	-1.70 X
1513	2350	3612.00	2994.45	9.51	617.55	2.32R
1518	2471	3629.00	3039.39	12.62	589.61	2.22R
1554	2350	3612.00	2923.90	11.02	688.10	2.59 R
1557	2247	3629.00	3018.06	7.63	610.94	2.30 R
1603	1313	1279.00	1983.90	10.33	-704.90	-2.65R
1636	1503	1434.00	2009.67	5.70	-575.67	-2.16R
1657	1106	2696.00	1420.74	6.51	1275.26	4.79R
1675	1227	2195.00	1559.29	6.46	635.71	2.39R
1703	2834	*	3327.51	19.41		* X

1711	1348	2333.00	1569.64	9.65	763.36	2.87 R
1715	2748	3249.00	3267.17	17.53	-18.17	-0.07 X
1721	2713	3647.00	3212.03	17.64	434.97	1.64 X
1724	2765	*	3159.47	21.48	*	* X
1727	2817	3716.00	3282.59	20.01	433.41	1.63 X
1730	2748	3457.00	3185.09	19.95	271.91	1.02 X
1733	2852	3474.00	3408.28	17.85	65.72	0.25 X
1739	2886	3094.00	3251.89	23.99	-157.89	-0.60 X
1748	2938	3629.00	3339.74	23.58	289.26	1.09 X
1751	2782	3785.00	3274.93	18.74	510.07	1.92 X
1754	2903	3215.00	3261.54	24.45	-46.54	-0.18 X
1766	2800	2973.00	3507.64	13.36	-534.64	-2.01R
1768	1486	1365.00	2187.24	9.40	-822.24	-3.09R
1784	2886	2938.00	3580.20	14.72	-642.20	-2.42R
1799	2817	3007.00	3564.09	12.75	-557.09	-2.10R
1835	2679	3111.00	3157.45	17.80	-46.45	-0.17 X
1838	2713	*	3094.68	21.17	*	* X
1840	1019	2419.00	1183.46	8.76	1235.54	4.65 R
1841	2921	3595.00	3353.83	22.40	241.17	0.91 X
1847	2506	2454.00	3176.60	10.70	-722.60	-2.72R
1852	1054	1849.00	1227.07	8.75	621.93	2.34R
1853	2748	3405.00	3278.70	17.20	126.30	0.48 X
1862	2886	2558.00	3345.50	21.12	-787.50	-2.97RX
1868	2765	3266.00	3253.07	18.65	12.93	0.05 X
1871	2039	3681.00	2982.07	11.47	698.93	2.63 R
1877	1918	3629.00	2702.43	8.17	926.57	3.48R
1880	2195	3681.00	3117.42	9.93	563.58	2.12R
1892	1935	3578.00	2840.96	11.23	737.04	2.77R
1898	2091	3733.00	3011.58	10.48	721.42	2.71R
1901	2091	3664.00	2718.55	7.35	945.45	3.55 R
1919	2091	3612.00	3011.58	10.48	600.42	2.26R
1960	1175	2419.00	1495.18	6.51	923.82	3.47R
1982	2264	3648.00	2898.83	8.79	749.17	2.82R
1985	2126	*	3324.49	18.61	*	* X
1988	2108	2852.00	3314.27	19.04	-462.27	-1.74 X
1993	2039	1417.00	1950.34	27.85	-533.34	-2.02RX
2027	2108	*	3302.74	18.66	*	* X
2051	2385	2852.00	3400.96	11.25	-548.96	-2.07R
2074	1244	950.00	1803.64	8.08	-853.64	-3.21R
2084	2402	2817.00	3352.27	9.79	-535.27	-2.01R
2093	2454	2696.00	3381.79	9.37	-685.79	-2.58R
2096	2195	2679.00	3492.53	21.18	-813.53	-3.07RX
2167	1451	2679.00	1967.94	5.87	711.06	2.67R
2223	3284	*	3782.37	25.34	*	* X
2230	2281	2039.00	2873.20	9.80	-834.20	-3.14R
2249	2264	1814.00	3449.62	16.93	-1635.62	-6.16R
2285	604	1469.00	795.27	8.46	673.73	2.53R
2290	2160	3612.00	2991.74	8.20	620.26	2.33R
2293	2108	3629.00	3044.30	10.78	584.70	2.20R
2296	2247	3629.00	3076.39	8.08	552.61	2.08 R
2298	691	1849.00	915.20	8.03	933.80	3.51 R
2344	2627	2731.00	3702.48	11.71	-971.48	-3.65R
2361	1192	881.00	2184.51	22.16	-1303.51	-4.92RX
2365	881	1590.00	999.99	9.12	590.01	2.22R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

[^0]: ${ }^{1}$ The term "vowel" could refer to the phonological level as well as the phonetic level and is therefore avoided in some introductory books so as not to create confusion. Since this dissertation views the vowel from a phonetic perspective only, there is no need to adopt any alternative term.

[^1]: ${ }^{2}$ The qualities in the parentheses refer to the degree of stricture of open approximation; i.e. vowels made in the area closest to the roof of the mouth are called close vowels (Laver, 1994:276).
 ${ }^{3}$ Roach (1992:19) suggests that the primary/secondary division should be abandoned "for the sake of consistency" and the term "rounded" or "unrounded" should be used to characterise each vowel.

[^2]: ${ }^{4}$ Fricational sounds, unlike phonation, can be generated at any location in the vocal tract (Clark \& Yallop, 1995:241). Frication control (Figure 5) will not be discussed as it is beyond the scope of this dissertation.

[^3]: ${ }^{5}$ An example of a wide-band spectrogram can be seen in section 3.4., p. 45.

[^4]: ${ }^{6}$ See p. 25 (about sociological variation and spectral tilt).

[^5]: ${ }^{7}$ See also section 2.1.3.2., p. 12.

[^6]: ${ }^{8}$ For explanation., see below, p. 29.

[^7]: ${ }^{9}$ Although each area has certain "accent characteristics", these are not likely to be detected in an acoustic analysis of vowels produced by reading from a list. Hence, these differences do not constitute a limitation to this acoustic study of vowels. It might be interesting, though, to confirm this opinion. Although a number of studies on several Greek dialects have been carried out, the issue has not been examined from an acoustical perspective, to our knowledge.

[^8]: ${ }^{10}$ Appendix 2 (p. 76) contains five tables, one for each vowel. Each column refers to a certain vowel position and stress condition and shows which words were used in each category.
 ${ }^{11}$ See Appendices 3 and 4 (pp. 78\&79). The words in the children's list were printed in a larger font size for easier recognition.

[^9]: ${ }^{12}$ For difficulties when measuring formant frequencies, see section 2.1.3.4., pp. 18ff, and for difficulties when estimating formants of high Greek vowels, see section 2.3.2., pp. 38ff.

[^10]: ${ }^{13}$ The relative MTB file is saved on a disc. See Appendix 7 on the inside cover of the dissertation.
 ${ }^{14}$ See section 4.1., p. 47.
 ${ }^{15}$ See section 2.2., p. 26.

[^11]: ${ }^{16}$ See section 3.4., p. 44.
 ${ }^{17}$ For the rest of the Descriptive Analysis results, see Appendix 5, p. 80.
 ${ }^{18}$ For more difficulties when measuring formant frequencies, see section 2.1.3.4., pp. 18ff and for difficulties when estimating formants of high Greek vowels, see section 2.3.2., pp. 38ff.

[^12]: ${ }^{19}$ See section 2.1.2., p. 7.

[^13]: ${ }^{20}$ See section 4.1., p. 47, section 2.1.3.4., pp. 18 ff and section 2.3.2., pp. 38ff.

[^14]: ${ }^{21}$ See also section 2.3.1.1., pp. 28ff.
 ${ }^{22}$ These vowel spaces are displayed in section 2.3.1.1., p. 29.
 ${ }^{23}$ The average values of $\mathrm{F}_{1}, \mathrm{~F}_{2}$, and F_{3} are published in Kontosopoulos, N., Ksiromeritis, N., Tsitsa, A. (1986). Ta elinika fonienta (akoustiki tous fisi) (Greek vowels (their acoustic nature)). Lexicografikon Deltion tis Akadimias Athinon 16. 289-301. Unfortunately, we could not find this article.
 ${ }^{24}$ The vowel map is displayed in section 2.3.1.1., p. 32.

[^15]: ${ }^{25}$ For more information about this study, see section 2.3.1.1., pp. 32ff.

[^16]: ${ }^{26}$ See section 2.3., p. 23.

[^17]: ${ }^{27}$ See Appendix 6, p. 110, for the complete Regression Analysis results for each vowel and for all vowels combined.

[^18]: ${ }^{28}$ The reason for this has been given in section 3.3., p. 42

[^19]: *The translation is broad. Some Greek words have more than one English equivalents. Also note that a Greek word may have a different rate of occurrence than its equivalent in English, which explains the fact that the word might be common for a Greek child, but not for an English child of the same age.

[^20]: * NOTE * N missing $=7$

