
 
 

Chapter 5 
Connectivity in graphs 
 

Introduction 

 This chapter references to graph connectivity and the algorithms used to distinguish 
that connectivity. Graph connectivity theory are essential in network applications, routing 
transportation networks, network tolerance e.t.c. Separation edges and vertices 
correspond to single points of failure in a network, and hence we often wish to identify 
them. We are going to study mostly 2-connected and rarely 3-connected graphs. 
 

5.1 Basic Definitions 

• A connected graph is an undirected graph that has a path   between every  pair of 
vertices  

 
 

• A connected graph with at least 3 vertices is 1-connected if the removal of 1 vertex 
disconnects the graph 

 
 
 

 
 

Figure 5.1.The removal of g disconnects the graph. 
 
 

• Similarly, a graph is one edge connected if the removal of one edge disconnects the 
graph. 

 

 
Figure 5.2.The removal of edge f disconnects the graph 



 
 

 
5.2 Vertex Connectivity Vs. edge connectivity 

 
Connectivity based on edges gives a more stable form of a graph than a vertex based one. 
This happens because each vertex of a connected graph can be attached to one or more 
edges. The removal of that vertex has the same effect with the removal of all these 
attached edges. As a result, a graph that is one edge connected it is one vertex connected 
too. 
 
 
For example 

 
 

Figure 5.3.The removal of vertex a f disconnects the graph 
 

As shown in Figure 5.3 graph g is one edge and one vertex connected. The removal of 
vertex x has the same effect with a possible removal of vertex a (with the term “effect” 
we mean the graph disconnection). The same definitions apply to k-connected graphs 

1. A connected graph is k-connected if the removal of k  vertices disconnects the 
graph. 

2. A k-edges connected graph is disconnected by removing k  edges 
 

Note that if g is a connected graph we call separation edge of g an edge whose 
removal disconnects g and separation vertex a vertex whose removal disconnects g.  
 
 

5.3 Bi-connectivity 
 
5.3.1 Bi-connected graphs  
 

Lemma 5.1:  Specification of a k-connected graph is a bi-connected graph (2-
connected).A connected graph g is bi-connected if for any two vertices u and v of g there 
are two disjoint paths between u and v. That is two paths sharing no common edges or 
vertices except u and v. 
 

 
 



 
Figure 5.4.a bi-connected graph 

 
Theorem 5.1. For any two vertices of a bi-connected graph g there is a simple cycle 
containing them 
 
Proof. Let’s assume that there is no cycle. Then there is only one path from u to v. If we 
remove that path we disconnect the graph. That means that the graph is one-connected. 
We have a contradiction because we supposed that we have 2-connected graph. 
  

 
Figure 5.5: One 2-connected graph 

 
 
 

5.3.2 Bi-connected components 
 

The study of bi-connected components is important in computer networks where 
edges represent connection. Even if a router in a bi-connected component fails, messages 
can still be routed in that component using the remaining routers. 

 
 A bi-connected component of a graph g is a sub-graph satisfying one of the 
following: 

1. It is a maximal sub-graph of g that is bi-connected (Maximal: If we add any other    
    vertex or edge the graph does not remain bi-connected) 
2. A single edge of g consisting of a separation edge and its end-points 



 
 Figure 5.6. Bi-connected components, bridges and articulation points 
 
Separation edges are also called bridges and separation vertices are also called articulation 
points As shown in Figure 5.6 let g be a graph. An articulation point is a vertex whose 
removal disconnects the graph and a bridge is an edge whose removal disconnects the graph 
 
Let G=(V, E) be a depth-first tree of G as shown in Figure 5.6. The articulation points are 
the heavily shaded vertices, the bridges are the heavily shaded edges and the bi-connected 
components are the edges in the cycled regions with the numbering shown. 

 
 

Figure 5.6.the articulation points, bridges and bi-connected components of a 
connected, undirected graph.  



 
 
We can determine articulation points, bridges and bi-connected components using the depth-
first-search algorithm 
 
 
Theorem 5.2   The root of the DFS is an articulation point if and only if it has two or more 
children. 
 
 

 
    
 
Figure 5.7.  (a) The DFS tree (b) The tree after the removal of the heavily shaded root 
 

Proof. Since there are no cross edges between the subtrees of the root if the root has two or 
more children then it is articulation point since its removal separates these two subtrees. If the 
root has only one child then its removal does not disconnect the DFS tree and as a result 
cannot disconnect the graph in general. 

 
Theorem 5.3   Let u be a non-root vertex in Gp.  Then ? is an articulation point of G if and 
only if there is no back edge (u, w) such that in Gp , u is a descendant of ? and w is a proper 
ancestor of ?. 

 
Proof: Let consider the typical case of a vertex u, where u is not a leaf and u is not the root. 
Let ?1,?2,....,?? be the children of u. For each child there is a sub-tree of the DFS tree rooted 
at this child. If for some child, there is no back edge (because G is undirected we cannot 
distinguish between back edges and forward edges, and we all call them back edges) going to 
a proper ancestor of u , then if we are to remove i , the sub-tree would become disconnected 
from the rest of the graph, and hence u is an articulation point.  On the other hand if every one 
of the sub-trees rooted at the children of u, have back edges to proper ancestors of u , then if u 
is removed the graph remains connected   

 
The leaves cannot be articulation points because if we remove one leaf the rest of the tree 
remains connected. 

 



5.4 The algorithm for identifying articulation points 
 

All previous theorems and lemmas provide us with the proper background to identify 
articulation points. We can design an algorithm to check these conditions. 

 
The first thing we have to check is if there is a back edge from a sub-tree to an ancestor of a 
given vertex. It would be too expensive to keep track of all the back edges from each sub-tree 
because may be ?(e) back edges. A more simple solution is to keep track of back edge that 
goes highest in the tree.(closest to the root). As we travel from u towards the root the 
discovery times of these ancestors of u get smaller and smaller. So we keep track of the back 
edge (?, w) that has the smallest value of ][wd . 
 

We define 
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Where (u, w) is a back edge for some descendant u of ? 

 
][ulow  is the highest (closest to the root) that you can get in the tree by  taking any one back 

edge from either u, or any of its descendants. 
 

Initialization: 
 ][][ udulow =  
 
Back edge (u, ?): 

])[],[min(][ udulowulow = . We have detected a new back edge coming out 
 of u. If this goes to a lower d value than the previous back edge then make  
this the new low. 
 

Tree edge (u,?): 
])[],[min(][ ulowulowulow = .Since ? is in the sub-tree rooted at u any 

single back edge leaving the tree rooted at ? is a single back edge for the tree 
rooted at u. 

   
Once low[u] is computed for all vertices u, we can test whether a given non-root 

vertex u is an articulation point by using these simple steps. u is an articulation point if and 
only if has a child in the DFS tree for which ][][ udulow ≥  since if there were a back edge 
from either ? or one of its descendants to an ancestor of ? then we would have ][][ udulow <



 

  
 

Figure 5.8. The DFS tree of (a) 
 
 
 
 

The complete algorithm for computing articulation points is  
 
Articulation points  
Input: DFS tree 
Output: The set of articulation points 
 
Algorithm ArtPt (u) 
  1  grayucolor ←][  
  2 ++← timeulow ][  
  3 ][][ ulowud ←    
  4  for each  v in Adj[u] do 
  5  if color[v] =white then   // (u, v) is a tree edge 
  6   uvpred =][  
  7   )(vArtPt  
  8   ])[],[min(][ vlowulowulow =   //update low[u] 
  9   if nullupred =][  then  //root 
10    if  this is u’s second child then 
11     Add u to articulation points set 
12   else if ][][ udvlow ≥  then  //internal node 



13    Add u to set of articulation points 
14  else if  ][upredv ≠  then   // (u, v) back edge 
15   ])[],[min(][ vdulowulow =  
16  
17   

  
 

When processing a vertex u we need to know when a given edge (u, ?) is a back-edge. To do 
this we check if ? is colored gray. This is not quite correct because ? may be the parent of ? in 
the DFS tree and we are seeing the “other side” of the tree edge between ? and u. So we must 
use the predecessor pointer to check that ? is not the parent of u in the DFS tree. 

 
In Figure 5.8 ,(b) is the DFS tree of the graph (a).Using the previous algorithm we can 
identify the articulation points. We start from vertex a where low=1 and d=1 and we color it 
gray. We follow the algorithm for the rest vertices and their low and d is shown in the figure. 
If we know for each vertex low and d we can easily find articulation points  because  u is an 
articulation point if and only if has a child in the DFS tree for which ][][ udulow ≥ . 

 
As with DFS-based algorithms the running time is ?(n+e). You could use the algorithm to 
determine which edges are in the bi-connected components if we store the edges in a stack as 
we go through DFS search. When we come to an articulation point all the edges in the bi-
connected component will be in the stack 
 

 
 
 

5.5 Equivalence Classes and the Linked Relation 
 

Let C be a collection of objects. We can define a Boolean relation for each pair x, y in C. The 
relation R is an equivalence relation if it has the following properties 
 

I. Reflexive: xRx  This means that the relation is true for each x in C 
II. Symmetric: xRy=yRx for each pair (x, y) in C 

III. Transitive: xRy  and yRz => xRz .if xRy is true and yRz is true then xRz is true for 
every x,y,z in C 

 
Two edges of a graph are linked if there is a cycle that contains them .A link relation is a sort 
of an equivalence relation. 
 

 
Figure 5.9. Transitive Property of Link Relation 
 

 
In Figure 5.9, it is obvious that if there is a cycle that contains h and e and another that 
contains e and f. The two cycles have a common edge and if we remove e we will still have a 



cycle that contains h and f  hence the link relation is transitive. It is also obvious that the link 
relation is reflexive and symmetric so link relation is an equivalence relation.  
 
 
 
5.6 Bi-connected components computing via DFS 

 
In the beginning we can construct an auxiliary graph B as follows 
 
An Auxiliary graph B of a given graph G has the following properties: 

§ The vertices of B are the edges of G.  
 
§ For every back-edge e of G let f1,f2,…,fk be the discovery edges of G  that 

form a cycle with e. Graph B contains the edges (e,f1),…,(e,fk)   
 

 
 

Figure 5.10. The steps of construction of the auxiliary graph from the given graph a 
 
In Figure 5.10 (a) is the given graph. In (b) vertices are becoming edges and for every back 
edge we include in the Auxiliary graph the edges that form a cycle with these back edges. 
For example we have the back edge GF which forms a cycle with edges FI and IG. As a 
result, in the Auxiliary graph we have (i).If we combine (iii), (iv) and (v) , we get the final 
auxiliary graph shown in figure 10. 
 
 



 
 

Figure 5.11. The final auxiliary graph 
 
 
Since there are m-n+1 back edges and each cycle induced by a back-edge has at most O (n) 
edges the graph has at most O(nm) edges. 
 
 
We can see that as a result of the previous step we have a “forest” . Each connected 
component of this “forest” satisfies the equivalence class in the link relation. We can call 
these equivalence classes as link components of G. 
 
We can summarize the previous steps in the following algorithm. 

1. Perform a DFS on G. 
2. Compute the auxiliary graph F by identifying the cycles of G induced by each back-

edge. 
3. Compute the connected components of  F. 
4. For each connected component of F output the vertices of G in the corresponding 

block. 
 

The initial DFS traversal of G takes O(m) time. The main computation however is the 
construction of the auxiliary graph. As a result algorithm takes O (nm) time because the 
bottleneck is the computation of the auxiliary graph. 
 
Now we have a simple way to determine the bi-connected components, separation edges and 
separation vertices of a graph G in linear time. 
 

• The bi-connected components are the linked components of the auxiliary graph. 
 
• The separation edges are the single – element link components of the auxiliary graph. 
 
• A vertex v of G is a separation vertex if and only if v has incident edges in at least 

two distinct equivalence classes of linked edges 
 

Note that we can simplify the algorithm in order to take O(m) time using, a very important 
observation: we don’t actually need the entire auxiliary graph but we only need to identify the 
connected components in B. As a result we don’t actually need all the edges of the auxiliary 
graph but just enough of them in order to construct a spanning forest of B. So we can reduce 
the time in O(m) by using a “smaller Auxiliary graph” which is a spanning forest of B. 



Link Components  
Input: A connected graph G 
Output: The link components of G 
 
Algorithm LinkComponents (G)  
   1      nullAuxGr ←     //Initially empty auxiliary graph. 
   2  )(sDFS     //DFS of G starting at an arbitrary vertex s. 
   3  for each DFS discovery edge f   
   4  fAuxGrAuxGr +←  //add f as vertex in Auxiliary graph 
   5    unlinkedf ←   //mark  f  unlinked 
   6   for each vertex v of G 
   7  )()( vparentvp ←   //the parent of v in the DFS tree. 
   8  for each vertex v, in increasing rank order as visited in the DFS do 
   9   for each back-edge e= (u, v) with destination v do 
  10          eAuxGrAuxGr +←  
  11           while su ≠ do 
  12        if AuxGrf ∋  corresponding to discovery edge (u, p (u)). 
  13     ),( feAuxGrAuxGr +←  
  14       if  unlinkedf =  then 
  15     linkedf ←  
  16     )(upu ←  
  17        else 
18      su ←  //shortcut to the end of the while loop  19  
 Compute the connected components of the Ayx 

 
Figure 5.12. The algorithm in action 



 
As we can see in Figure 5.12 (a) is the input graph G after the DFS traversal. Vertices are 
labeled by their rank in the visit order, and the back edges are drawn with dashed lines. In the 
beginning each discovery edge is inserted in the Auxiliary graph and marked as unlinked. 
After processing back edge (G, F) we have (b) and then after processing (C, E) we get (c) etc. 
The final Auxiliary graph is (f) in the end of the algorithm. 

 
5.7 Fundamental circuits of a graph 
  

• A co-tree of a graph ),( EVG =  with respect to a spanning tree ),( EVT ′=  is the 
set of edges )( EE ′− .If G has n vertices then any co-tree, if one exists, has 

)1( −− nE  edges. Any edge of a co-tree is called a chord of the spanning tree. 
 

• The ring-sum of two graphs G1= (V1, E1) and G2= (V2,E2) is the graph ( ( V1UV2 ), 
((E1 U E2) – ( E1 n  E2 ) ) ).In other words the edge set of the ring-sum of G1, G2 
consists of those edges which are either in G1 or are in G2 but are not in both. The 
ring-sum of G1 and G2 is written like 21 GG ⊕   

 
 It is easy to prove that the operation of ring-sum is both commutative and associative: 
  
  G1 ⊕  G2 = G2 ⊕  G1, 
 
 and 
  
  (G1 ⊕  G2) ⊕  G3 = G1 ⊕  (G2 ⊕  G3) 
 
It is easy to realize that the addition of a chord to a spanning tree of a graph creates precisely 
one circuit. In a graph the collection of these circuits with respect to a particular spanning tree 
is called asset of fundamental circuits. Any arbitrary circuit of the graph can be expressed as a 
ring-sum combination of the fundamental circuits. Hence we can suppose that the 
fundamental circuits form a basis for the circuit space.  

 
 ⊕

 
 

Figure 5.13. A spanning tree of a graph G 
  



   

 
Figure 5.14. The fundamental set of circuits of G with respect to T 

 
 

 
 

Figure 5.15. Circuits produced using right sum 
All previous figures show for the graph illustrated  ,a spanning tree T, the corresponding set 
of fundamental circuits and some other circuits expressed as linear combination of these. In 
general we have the following theorem 
 
Theorem 5.4. A set of fundamental circuits, with respect to some spanning tree of a graph G, 
forms a basis for the circuit space of G. 
 
We have an immediate corollary: 
 



Corollary 5.1. The circuit space for a graph with E  edges and n vertices has dimension 

)1( +− nE  
  
We could construct an algorithm that can find a set of fundamental circuits of a graph in 
polynomial time. 
 
Set of Fundamental circuits  
Input: A graph G 
Output: The set of fundamental circuits 
 
Algorithm Fund (G) 
   1 
  2      Find a spanning tree and the corresponding co-tree CT of G 
  3      nullFCS ←  
  4      for all Cuue iii ∈′= ),(  do 

  5           find the path from iu  to iu′  in T and denote it by iP  

  6       { }iii ePC ∪←  

  7             iCFCSFCS ∪←  
  8              
 
 
Firstly we find the T spanning tree and the corresponding co-tree CT of G. We can achieve 
that in )),(max( EnO  time. Then for each edge in CT the algorithm finds one fundamental 
circuit and adds in to the set FCS. The whole path finding process requires no more than 

)(nO time. Because the number of the edges in CT is )( EO ,the total worst complexity of 

the algorithm is )( 3nO . 
 
Fundamental circuits were early used by Kirchoff to develop its voltage laws. These laws are 
based in solving several equations over an electric network. Theorem 5.4 and its corollary tell 
us which circuits of the underlying graph of the network and how many of them, provide a 
linearly independent set of equations. 
 

 


