Chapter 8

Multiple Processor Systems

8.1 Multiprocessors
8.2 Multicomputers
8.3 Distributed systems

Multiprocessor Systems

Local

memory Complete system

CPU
4 W [E /Y
C C C C ﬂ
Shared Inter-

memory [MHC] oonnect

c
e 8k ==
c|] |c] [c] T
(a) (b) (©)

» Continuous need for faster computers
— shared memory model
— message passing multiprocessor
— wide area distributed system

Multiprocessors

Definition:
A computer system in which two or
more CPUs share full access to a
common RAM

Multiprocessor Hardware (1)

Private memory —» Shared
Shared memeory memory

{ I R

CPU CPU M CPU CPU M CPU CPU M
= =
| | | Cache | |
(b)

Bus

(@

Bus-based multiprocessors

Multiprocessor Hardware (2)

Memories

gl |zl |2] |=] 18] [58] |12] |F
sl |e] el el =] |=] |=] |+
: d &
B—- B—¢ €
& & a
-+ k! o

| o000 ity
001 I £ H—D G;j\ G
010 I i
011 I 5 B—D
3
z [100 }— b—O—O—@
(&) 1
e < L
101 - S— 84]
110 I e it @
1 e—e—o—6—o6—6—6—0
i i

Closed
crosspoint
switch

Open

switch

(a)

crosspaint

Crosspoint
switch is open

Crosspoint
switch is closed

(c)

* UMA Multiprocessor using a crossbar switch

Multiprocessor Hardware (3)

« UMA multiprocessors using multistage switching
networks can be built from 2x2 switches

A— —X @ 7T 71—
I Module IAddress I Opcode Value !
B — —Y

(@) (b)

(a) 2x2 switch (b) Message format

Multiprocessor Hardware (4)

3 Stages

Memories

» Omega Switching Network

Multiprocessor Hardware (5)

NUMA Multiprocessor Characteristics
1. Single address space visible to all CPUs

2. Access to remote memory via commands
- LOAD
- STORE
3. Access to remote memory slower than to local

Multiprocessor Hardware (6)

Node 0 Node 1 Node 255
CPU Memory CPU Memory CPU Memory

Local bus

Interconnection network

(a)

2184 I
Bits 8 18 6
| Node | Block |Oﬂset|
(b) 410
3|0
. . 2|1 82
(a) 256-node directory based multiprocessor 1[0
0|0

(b) Fields of 32-bit memory address
(c) Directory at node 36

Multiprocessor OS Types (1)

CPU1 CPU2 CPU 3 CPU 4 Memory l{e]
Has Has Has Has ..Q;ll D§|a
private private private private 3 | 4
os os os (OF; Defa | Data
J |_OS code
AN
Bus

Each CPU has its own operating system

Multiprocessor OS Types (2)

CPU1 CPU2 CPU3 CPU 4 Memory l{e]
Master Slave Slave Slave User

runs runs user runs user runs user processes

os prog pro processes os

_

Bus

Master-Slave multiprocessors

Multiprocessor OS Types (3)

CPU 1 CPU 2 CPU3 CPU4 Memory 110

Runs Runs Runs Runs
users and users and users and users and
shared 0S| |shared OS| |shared OS| |shared OS oS

_| \

\ \Locks

Bus

« Symmetric Multiprocessors
— SMP multiprocessor model

Multiprocessor Synchronization (1)

Word
1000 is Memory CPU 2

initially O
fﬂ th |

|
L1.CPU 1 readsaOJ LE_CPUEreadsaO J

CPUA1

3.CPU 1 writesa 1 4. CPU 2 writes a 1 \B
us

TSL instruction can fail if bus already locked

Multiprocessor Synchronization (2)

CPU3—>
U 3 spins on this (private) lock

/CP
CPU 2 spins on this (private) lock
\ !Iﬁ / CPU 4 spins on this (private) lock

~—
__— 4 ™ When CPU 1 is finished with the
Shared memory / real lock, it releases it and also

CPU 1 releases the private lock CPU 2

holds the is spinning on

real lock

Multiple locks used to avoid cache thrashing

Multiprocessor Synchronization (3)

Spinning versus Switching
 In some cases CPU must wait
— waits to acquire ready list
* |n other cases a choice exists
— spinning wastes CPU cycles
— switching uses up CPU cycles also

— possible to make separate decision each time
locked mutex encountered

Multiprocessor Scheduling (1)

GGG G @ EE pfalafa
[[l [e] 7], cpu A E]E] crurz (Al 5] [e]1[7]
S G goes de_ [5] [5]
[15]
Pioi—— &0 Pfioﬁtv? 160 Pty —— ©

6| __T0® s T0O® 6 _T0O®

s|__+® s +® 5| +®

4 4 4

3l +ee0 3l +e@0 3 1+e@0®

I +O® I +O® I 40®

1 1 1

o000 o T0O0 o100

(a) (b) (c)

» Timesharing
— note use of single data structure for scheduling

Multiprocessor Scheduling (2)

7 ™ 12.cPU partition

Unassigned CPU

 Space sharing
— multiple threads at same time across multiple CPUs

Multiprocessor Scheduling (3)

Thread A, running
—
CPUO A By Ay B, Ay By
Requést 1 i equest:2 |
: eply 1 ' Reply 2
CPU1 B, A, B, A, B, A,
Time 0 100 200 300 400 500 600

e Problem with communication between two threads
— both belong to process A
— both running out of phase

Multiprocessor Scheduling (4)

Solution: Gang Scheduling
1. Groups of related threads scheduled as a unit (a gang)
2. All members of gang run simultaneously
on different timeshared CPUs
3. All gang members start and end time slices together

Multiprocessor Scheduling (5)

CPU
0 1 2 3 4 5

of A A, A, | A, | A | A
1B B, B, Co Cy C.

of D, | D, D, | D, | D, | &

Time 3 E, E, E, E, Eg Eg
slot 4] A, A, A, A, A, A
s| B, | B, B, | C, | C, e,

] I D, D, Dy D, Eo

7 E, E, E, E, E, E,

Gang Scheduling

Multicomputers

o Definition:

 Also known as
— cluster computers
— clusters of workstations (COWSs)

Multicomputer Hardware (1)

I Q oooao
(a) (&)

o ooaoQ
oooao

[= = = iy =]

oOoooao
{d} (e) U]

* Interconnection topologies

(a) single switch (d) double torus
(b) ring (e) cube
(c) grid (f) hypercube

Multicomputer Hardware (2)

Multicomputer Hardware (3)

CPU1 Four-port Input port
switch Qutput port
H A 1 B H A H B ii i A L B
(05 v o N 1z o v |1 R
o =] O =) =
Entire ||||C 1|I|D |||IC |1|ID ||l|C 1|I|D
e = [| s o v w1 = [
Ty O[30, 0] P A, I B, D A forue
I LI LI Eutis [l I [e
packet packet
(a) (b) (c)

 Switching scheme
— store-and-forward packet switching

Node 1 Node 2
Main RAM Main RAM
User 1 D oy
= L
0s { il | _}2 \4\- /5
—
Switch
Main RAM Main RAM
[y =
EN
'Ik Optional f
on- board

CPU Interface

Interface board
board

RAM

Node 3 Node 4

Network interface boards in a multicomputer

Low-Level Communication Software (1)

If several processes running on node
— need network access to send packets ...

Map interface board to all process that need it

If kernel needs access to network ...

Use two network boards
— one to user space, one to kernel

Low-Level Communication Software (2)

) Receive
Node 1 Send ring ring CPU Node 2

boneon \\
&

/

Interface board

Main RAM

os os

Bit map

Node to Network Interface Communication
o Use send & receive rings
e coordinates main CPU with on-board CPU

User Level Communication Software

(a) Blocking send call

8 |
Sender runnin g | blocked | Sender running

e Minimum services

provided lswu“im iy
. : M ge being sent :
— send and receive @
commands

Sender

blocked
|"_"| Sender running

l Trap [Ralum
|
J Message L
copled to a
kernel buffer
{b)

‘Sender running

» These are blocking
(synchronous) calls

(b) Nonblocking send call

Remote Procedure Call (1)

Client CPU Server CPU
Client Server.
stub stub
-~
2 4
Operating system Y A Operating system
1
L 3 ot

\ Network

 Steps in making a remote procedure call
— the stubs are shaded gray

Remote Procedure Call (2)

Implementation Issues
« Cannot pass pointers

— call by reference becomes copy-restore (but might fail)
» Weakly typed languages

— client stub cannot determine size
» Not always possible to determine parameter types
« Cannot use global variables

— may get moved to remote machine

Distributed Shared Memory (1)

Machine 1 Machine 2 Machine 1 Machine 2 Machine 1 M.
Run-time Run-time Run-time R i R i R i
system system system system system system
Operating Operating Operating Operating Operating Operating
system system system system system system
Hardware Hardware Hardware Hardware Hardware Hardware
Shared memaory Shared memary Shared memory

fa) (&) (&)

» Note layers where it can be implemented
— hardware
— operating system
— user-level software

Distributed Shared Memory (2)

Globally shared virtual memaory consisting of 16 pages

[o]1T2]ala]s]s]7 s sro]11]s2]1a]1a]1s]

/A

Replication REE DEE [BERH [@EE
(a) Pages distributed on [0 | [EE | R | s
4 machines [i | i

Metwork
(a)

(b) CPU 0 reads page LEE HRE [DEE (EE
10

CPUOD CPU1 CcPU2 CPU3

I I I I

(&)

DEE TEE DL [EE
(c) CPU 1 reads page o

10 CPUOD CPU1 CPUZ2 CPU3

(&)

Distributed Shared Memory (3)

CPU 1 CPU2
| —
_ AU |__ Aand B are unrelated
Shared g SURIGYY n e e ‘A E/ shared variables that just
page E o) happen to be on the same page
18
Code using Code using
variable A variable B

i

MNetwork

* False Sharing
» Must also achieve sequential consistency

Multicomputer Scheduling
Load Balancing (1)

[} [} }
[} [} }
Node1 | Node2 | Nede 3 Nede 1) Node 2
I ' 1
1 1
1 1

Traffic

Process

» Graph-theoretic deterministic algorithm

Load Balancing (2)

I'm overloaded
/
%
@
45
c)
%
®
&

Moy ——1
b Er

 Sender-initiated distributed heuristic algorithm
— overloaded sender

Load Balancing (3)

fQﬂ®
9 %
‘J\ ®
e
Gnh :§f£:>fgf

I'm bored
-—

I'm free tonight

(b)

 Receiver-initiated distributed heuristic algorithm
— under loaded receiver

Distributed Systems (1)

Item Multiprocessor Multicomputer Distributed System
Node configuration CPU CPU, RAM, netinterface | Complete computer
Node peripherals All shared Shared exc. maybe disk | Full set per node
Location Same rack Same room Possibly worldwide
Internode communication | Shared RAM Dedicated interconnect Traditional network
Operating systems | One, shared | Multiple,same | Possibly all different
File systems One, shared One, shared Each node has own
Administration One organization | One organization Many organizations

Comparison of three kinds of multiple CPU systems

Distributed Systems (2) Network Hardware (1)

Common base for applications

Application Application Application Application Computer
Middleware Middleware Middleware Middleware \
Ccmputer\
Windows Linux Solaris Mac OS L—|_| L—|_| L—|_| L—|_| L—I—] S
Pentium Pentium SPARC Macintosh \ Ethernet —»
Ethernet [J__l IJ__I Iﬁ IJ_-l
(a) (b)
MNetwork
e Ethernet
Achieving uniformity with middleware (a) classic Ethernet

(b) switched Ethernet

Network Hardware (2) Network Services and Protocols (1)

Backbone High-bandwidth fiber

Service Example
Regional network NS Reliable message stream Sequence of pages of a book
hﬂf;idb";id‘th Router at ISP Connection-oriented Reliable byte stream Remote login
.) Unreliable connection Digitized voice
Dial-up line
toihome PG J Unreliable datagram Network test packets

Fib . .
wpp:rrzzm \ Connectionless Acknowledged datagram Registered mail
Fl B L Request-reply Database query

Local router — ? L—r| ? L—rl ?4— Host
™~

Ethernet

Network Services
The Internet

Network Services and Protocols (2)

Intarnet\
Host Router
"\“ Ethernet 1
L ! header
/ | | IP l'I'CPl Message
Ethermnet ;V_J

Headers

* Internet Protocol
e Transmission Control Protocol
* Interaction of protocols

Document-Based Middleware (1)

e The Web
— a big directed graph of documents

Document-Based Middleware (2)

How the browser gets a page

Asks DNS for IP address

DNS replies with IP address
Browser makes connection
Sends request for specified page
Server sends file

TCP connection released
Browser displays text

Browser fetches, displays images

© N O Ok e

File System-Based Middleware (1)

1. Client fetches file

Client Server - Old file Client Server

I B 111 [Request
ML) —=2 |
A [l Reply A
| \ |
2. Accesses are 3. When client is File stays
done on the done, file is on server
client returned to server
@ (b)

 Transfer Models
(a) upload/download model
(b) remote access model

File System-Based Middleware (2)

Naming Transparency .
(b) Clients have same view of file system
(c) Alternatively, clients with different view

|||||

L
" 2 Write &~ / HHE 1. Read "ab”
Single processor - Write "¢ ‘/
1, Write "¢” \
Criginal
1 - file File server
(oD
/
/
2. Read gets "abc” 3. Read gats "ab”
(@) Client 2

&)
» Semantics of File sharing
— (a) single processor gives sequential consistency
— (b) distributed system may return obsolete value

File System-Based Middleware (4)

User process

- Root directory
< Vice emu |
sarver -
[Venus |
Operating system Operating system
cp celll motd
Is cell2
sh cell3
cell4

\
A

A :IEEIV_LEE
Symbolic = N
-~
T~—>sh]

Network

link.

_ Client's view
» AFS — Andrew File System

— workstations grouped into cells
— note position of venus and vice

Shared Object-Based Middleware (1)

Client _ Client stub Sk5|510l'l\ Server
Client \ < |__ Server
code code
Object —
< ClientjoRB adapter Server|ORB
Operating|system Operatingllsysiam

IIOP protocol /

Network

» Main elements of CORBA based system
— Common Object Request Broker Architecture

Shared Object-Based Middleware (2)

 Scaling to large systems
— replicated objects
— flexibility
» Globe
— designed to scale to a billion users
— a trillion objects around the world

Shared Object-Based Middleware (3)

Address space
_LClass object contains the method

List messages

Read message

Append message

Delete message

State of

State of mailbox 2

O/ mailbox 1]
=@
- .
F- -
Interface used to \
access mailbox 1 Interface used to

access mailbox 2

Globe structured object

Shared Object-Based Middleware (4)

Class object

Computer 1 Computer 1
T

| |6
-—1Interface
@) @S
Each computer

hasacopy of — = |« Distributed shared object
the integer (the ————————

object's state) O @
F- PSR

Computer 3 Computer 4

» A distributed shared object in Globe
— can have its state copied on multiple computers at once

Shared Object-Based Middleware (5)

Computer ,Objed

Interface —h—
=

Control
subobject

Semantics
subobject

Replication
subobject

Communication
Security subobject

subobject

Operating system

Messages in and out go through

the communication subobject

Network /

Internal structure of a Globe object

Coordination-Based Middleware (1)

e Linda

— independent processes

— communicate via abstract tuple space
e Tuple

— like a structure in C, record in Pascal

(SWIA,’ le-eiefel,’ ,2i6bpsud,’ .Hopsys,)
(Jsmx-1," 1 ' 3°1¢)
(.9pc.’ 5" @)

1. Operations: out, in, read, eval

Coordination-Based Middleware (2)

W.AN

- /%Lé\ £13

Publish-Subscribe architecture

Coordination-Based Middleware (3)

e Jini - based on Linda model
— devices plugged into a network
— offer, use services

e Jini Methods
1. read
2. write
3. take
4. notify

