Chapter 8

Multiple Processor Systems

8.1 Multiprocessors
8.2 Multicomputers
8.3 Distributed systems

Multiprocessor Systems
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» Continuous need for faster computers
— shared memory model
— message passing multiprocessor
— wide area distributed system

Multiprocessors

Definition:
A computer system in which two or
more CPUs share full access to a
common RAM

Multiprocessor Hardware (1)
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Bus-based multiprocessors




Multiprocessor Hardware (2)
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* UMA Multiprocessor using a crossbar switch

Multiprocessor Hardware (3)

« UMA multiprocessors using multistage switching
networks can be built from 2x2 switches
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(a) 2x2 switch  (b) Message format

Multiprocessor Hardware (4)

3 Stages

Memories

» Omega Switching Network

Multiprocessor Hardware (5)

NUMA Multiprocessor Characteristics
1. Single address space visible to all CPUs

2. Access to remote memory via commands
- LOAD
- STORE
3. Access to remote memory slower than to local




Multiprocessor Hardware (6)
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Multiprocessor OS Types (1)
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Each CPU has its own operating system

Multiprocessor OS Types (2)
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Master-Slave multiprocessors

Multiprocessor OS Types (3)
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« Symmetric Multiprocessors
— SMP multiprocessor model




Multiprocessor Synchronization (1)
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Multiprocessor Synchronization (2)

CPU3—>
U 3 spins on this (private) lock

/CP
CPU 2 spins on this (private) lock
\ !Iﬁ / CPU 4 spins on this (private) lock
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__— 4 ™ When CPU 1 is finished with the
Shared memory / real lock, it releases it and also

CPU 1 releases the private lock CPU 2

holds the is spinning on

real lock

Multiple locks used to avoid cache thrashing

Multiprocessor Synchronization (3)

Spinning versus Switching
 In some cases CPU must wait
— waits to acquire ready list
* |n other cases a choice exists
— spinning wastes CPU cycles
— switching uses up CPU cycles also

— possible to make separate decision each time
locked mutex encountered

Multiprocessor Scheduling (1)
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» Timesharing
— note use of single data structure for scheduling




Multiprocessor Scheduling (2)

7 ™ 12.cPU partition

Unassigned CPU

 Space sharing
— multiple threads at same time across multiple CPUs

Multiprocessor Scheduling (3)

Thread A, running
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e Problem with communication between two threads
— both belong to process A
— both running out of phase

Multiprocessor Scheduling (4)

Solution: Gang Scheduling
1. Groups of related threads scheduled as a unit (a gang)
2. All members of gang run simultaneously
on different timeshared CPUs
3. All gang members start and end time slices together

Multiprocessor Scheduling (5)
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Multicomputers

o Definition:

 Also known as
— cluster computers
— clusters of workstations (COWSs)

Multicomputer Hardware (1)
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* Interconnection topologies

(a) single switch (d) double torus
(b) ring (e) cube
(c) grid (f) hypercube

Multicomputer Hardware (2)

Multicomputer Hardware (3)
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 Switching scheme
— store-and-forward packet switching
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Network interface boards in a multicomputer




Low-Level Communication Software (1)

If several processes running on node
— need network access to send packets ...

Map interface board to all process that need it

If kernel needs access to network ...

Use two network boards
— one to user space, one to kernel

Low-Level Communication Software (2)
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Node to Network Interface Communication
o Use send & receive rings
e coordinates main CPU with on-board CPU

User Level Communication Software
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» These are blocking
(synchronous) calls

(b) Nonblocking send call

Remote Procedure Call (1)
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 Steps in making a remote procedure call
— the stubs are shaded gray




Remote Procedure Call (2)

Implementation Issues
« Cannot pass pointers

— call by reference becomes copy-restore (but might fail)
» Weakly typed languages

— client stub cannot determine size
» Not always possible to determine parameter types
« Cannot use global variables

— may get moved to remote machine

Distributed Shared Memory (1)
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» Note layers where it can be implemented
— hardware
— operating system
— user-level software

Distributed Shared Memory (2)

Globally shared virtual memaory consisting of 16 pages
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Distributed Shared Memory (3)
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* False Sharing
» Must also achieve sequential consistency




Multicomputer Scheduling
Load Balancing (1)
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» Graph-theoretic deterministic algorithm
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 Sender-initiated distributed heuristic algorithm
— overloaded sender

Load Balancing (3)
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 Receiver-initiated distributed heuristic algorithm
— under loaded receiver

Distributed Systems (1)

Item Multiprocessor Multicomputer Distributed System
Node configuration CPU CPU, RAM, netinterface | Complete computer
Node peripherals All shared Shared exc. maybe disk | Full set per node
Location Same rack Same room Possibly worldwide
Internode communication | Shared RAM Dedicated interconnect Traditional network
Operating systems | One, shared | Multiple,same | Possibly all different
File systems One, shared One, shared Each node has own
Administration One organization | One organization Many organizations

Comparison of three kinds of multiple CPU systems




Distributed Systems (2) Network Hardware (1)

Common base for applications

Application Application Application Application Computer
Middleware Middleware Middleware Middleware \
Ccmputer\
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e Ethernet
Achieving uniformity with middleware (a) classic Ethernet

(b) switched Ethernet

Network Hardware (2) Network Services and Protocols (1)

Backbone High-bandwidth fiber

Service Example
Regional network NS Reliable message stream Sequence of pages of a book
hﬂf;idb";id‘th Router at ISP Connection-oriented Reliable byte stream Remote login
. ) Unreliable connection Digitized voice
Dial-up line
toihome PG J Unreliable datagram Network test packets

Fib . .
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Fl B L Request-reply Database query
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Ethernet

Network Services
The Internet




Network Services and Protocols (2)

Intarnet\
Host Router
"\“ Ethernet 1
L ! header
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Headers

* Internet Protocol
e Transmission Control Protocol
* Interaction of protocols

Document-Based Middleware (1)

e The Web
— a big directed graph of documents

Document-Based Middleware (2)

How the browser gets a page

Asks DNS for IP address

DNS replies with IP address
Browser makes connection
Sends request for specified page
Server sends file

TCP connection released
Browser displays text

Browser fetches, displays images
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File System-Based Middleware (1)

1. Client fetches file

Client Server - Old file Client Server
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2. Accesses are 3. When client is File stays
done on the done, file is on server
client returned to server
@ (b)

 Transfer Models
(a) upload/download model
(b) remote access model




File System-Based Middleware (2)

Naming Transparency .
(b) Clients have same view of file system
(c) Alternatively, clients with different view
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» Semantics of File sharing
— (a) single processor gives sequential consistency
— (b) distributed system may return obsolete value

File System-Based Middleware (4)
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_ Client's view
» AFS — Andrew File System

— workstations grouped into cells
— note position of venus and vice

Shared Object-Based Middleware (1)
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» Main elements of CORBA based system
— Common Object Request Broker Architecture




Shared Object-Based Middleware (2)

 Scaling to large systems
— replicated objects
— flexibility
» Globe
— designed to scale to a billion users
— a trillion objects around the world

Shared Object-Based Middleware (3)

Address space
_LClass object contains the method
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Append message

Delete message
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Globe structured object

Shared Object-Based Middleware (4)

Class object
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» A distributed shared object in Globe
— can have its state copied on multiple computers at once

Shared Object-Based Middleware (5)
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the communication subobject

Network /

Internal structure of a Globe object




Coordination-Based Middleware (1)

e Linda

— independent processes

— communicate via abstract tuple space
e Tuple

— like a structure in C, record in Pascal

(SWIA,’ le-eiefel,’ ,2i6bpsud,’ .Hopsys,)
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1. Operations: out, in, read, eval

Coordination-Based Middleware (2)
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Publish-Subscribe architecture

Coordination-Based Middleware (3)

e Jini - based on Linda model
— devices plugged into a network
— offer, use services

e Jini Methods
1. read
2. write
3. take
4. notify




