
ARTICLE SUBMITTED TO IEEE TRANS. ON MULTIMEDIA 1

A Speech/Music Discriminator Based on

RMS and Zero-Crossings

C. Panagiotakis and G. Tziritas�

Department of Computer Science, University of Crete,

P.O. Box 2208, Heraklion, Greece

E-mails: fcpanag,tziritasg@csd.uoc.gr

Abstract

Over the last years major e�orts have been made to develop methods for extracting infor-

mation from audio-visual media, in order that they may be stored and retrieved in databases

automatically, based on their content. In this work we deal with the characterization of an audio

signal, which may be part of a larger audio-visual system or may be autonomous, as for example in

the case of an audio recording stored digitally on disk. Our goal was to �rst develop a system for

segmentation of the audio signal, and then classi�cation into one of two main categories: speech

or music. Among the system's requirements are its processing speed and its ability to function

in a real-time environment. Because of the restriction to two classes, the characteristics that are

extracted are considerably reduced and moreover the required computations are straightforward.

Experimental results show that e�ciency is exceptionally good, without sacri�cing performance.

Segmentation is based on mean signal amplitude distribution, whereas classi�cation utilizes

an additional characteristic related to the frequency. The classi�cation algorithm may be used

either in conjunction with the segmentation algorithm, in which case it veri�es or refutes a

music-speech or speech-music change, or autonomously, with given audio segments. The basic

characteristics are computed in 20 msec intervals, resulting in the segments' limits being speci�ed

within an accuracy of 20 msec. The smallest segment length is one second. The segmentation

and classi�cation algorithms were benchmarked on a large data set, with correct segmentation

about 97% of the time and correct classi�cation about 95%.

Index terms { speech/music classi�cation, audio segmentation, zero-crossing rate
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I. Introduction

A. Problem position

In many applications there is a strong interest in segmenting and classifying audio signals. A

�rst content characterization could be the categorization of an audio signal as one of speech,

music or silence. Hierarchically these main classes could be subdivided, for example into various

music genres, or by recognition of the speaker. In the present work only the �rst level in the

hierarchy is considered.

A variety of systems for audio segmentation and/or classi�cation have been proposed and

implemented in the past for the needs of various applications. We present some of them in the

following paragraphs, permitting a methodological comparison with the techniques proposed in

this paper. We also report their performance for related comparisons. However, the test data

set is di�erent and the conclusions are hindered by this fact.

Saunders [4] proposed a technique for discrimination of audio as speech or music using the

energy contour and the zero-crossing rate. This technique was applied to broadcast radio divided

into segments of 2.4 sec which were classi�ed using features extracted from intervals of 16 msec.

Four measures of the skewness of the distribution of the zero-crossing rate were used with a 90%

correct classi�cation rate. When a probability measure on signal energy was added a performance

of 98% is reported.

Scheirer and Slaney [5] used thirteen features, of which eight are extracted from the power

spectrum density, for classifying audio segments. A correct classi�cation percentage of 94.2% is

reported for 20 msec segments and 98.6% for 2.4 sec segments. Tzanetakis and Cook [8] proposed

a general framework for integrating, experimenting and evaluating di�erent techniques of audio

segmentation and classi�cation. In addition they proposed a segmentation method based on

feature change detection. For their experiments on a large data set a classi�er performance of

about 90% is reported.

In [9] a system for content-based classi�cation, search and retreival of audio signals is pre-

sented. The sound analysis uses the signal energy, pitch, central frequency, spectral bandwidth

and harmonicity. This system is applied mainly in audio data collections. In a more general

framework related issues are reviewed in [1].

In [3] and [6] cepstral coe�cients are used for classifying or segmenting speech and music.

Moreno and Rifkin [3] model these data using Gaussian mixtures and train a support vector
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machine for the classi�cation. On a set of 173 hours of audio signals collected from the WWW a

performance of 81.8% is reported. In [6] Gaussian mixtures are used too, but the segmentation

is obtained by the likelihood ratio. For very short (26 msec) segments a correct classi�cation

rate of 80% is reported.

A general remark concerning the above techniques is that often a large number of features are

used. Furthermore the classi�cation tests are frequently heuristic-based and not derived from an

analysis of the data. In our work we tried at �rst to limit the number of features. We concluded

that a reliable discriminator can be designed using only the signal amplitude, equivalent to the

energy reported previously, and the central frequency, measured by the zero-crossing rate, a

feature already exploited in previous work. In addition we analysed the data in order to extract

relevant parameters for making the statistical tests as e�ective as possible.

We conclude this introduction by describing the signal and its basic characteristics as utilized

in our work. In Section II we present the proposed segmentation method which is a change

detector based on a dissimilarity measure of the signal amplitude distribution. In Section III

the classi�cation technique is presented which could either complete the segmentation, or used

independently. Features extracted from the zero-crossing rate are added and combined to the

amplitude parameters.

B. Description of signal and its characteristics

The signal is assumed to be monophonic. In the case of multi-channel audio signals the average

value is taken as input. There are no restrictions on the sampling frequency functioning equally

well from 11025 Hz to 44100 Hz, while the sound volumemay di�er from one recording to another.

The system is designed to ful�ll the requirement of independence on the sampling frequency and

on the sound volume, and to depend only on the audio content.

Two signal characteristics are used: the amplitude, measured by the Root-Mean-Square (RMS),

and the mean frequency, measured by the average density of zero-crossings. One measure of each

is acquired every 20 msec. We describe these in the following paragraphs.

The signal amplitude, A, is de�ned as follows:

A =

vuut NX
n=1

x2(n) (1)

Voice and music are distinguished by the distribution of amplitude values. Figures 1 and 2 show

the RMS measured as described above and the corresponding histogram for a music and for a
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speech signal. The distributions are di�erent and may be exploited for both segmentation and

classi�cation. The mean frequency is approximated by the average number of zero-crossings
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Fig. 1. The RMS of a music signal and its histogram.

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 2. The RMS of a voice signal and its histogram.

in the 20 msec interval. Figures 3 and 4 show the zero-crossing rate and the corresponding

histograms for a music and for a voice signal.

The two characteristics used in our work are almost independent. We have tested two measures

of independence for the veri�cation of this hypothesis. The �rst is the Blomquist measure [2],

de�ned as

V =
jn1 � n2j

n
(2)

where n is the number of data pairs, n1 is the number of pairs with the same sign related to

the median values of the two variables, and n2 is the number of pairs with opposite sign. The



ARTICLE SUBMITTED TO IEEE TRANS. ON MULTIMEDIA 5

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fig. 3. The average number of zero-crossings for a music signal and its histogram.
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Fig. 4. The average number of zero-crossings for a voice signal and its histogram.

empirical value obtained for V was about 0.1, showing an almost sure independence. We have

also used the ratio of the mutual information to the sum of entropies of the two variables

I =
X

Pi log
1

Pi
+
X

Qj log
1

Qj
(3)

and have obtained a value of about 0.05, again near the independence condition. The indepen-

dence between the RMS and ZC of the signal is more clear in music than in speech. This is due

to the fact that speech contains frequent short pauses, where both the RMS and ZC are close to

zero, and therefore correlated in this case. We exploit this possible discrimination in a feature

de�ned for the classi�cation.

In [5], [8] and [9] the classi�cation uses features extracted from the power spectrum density

computed by the FFT as the spectral centroid, which however is strongly correlated with the

zero-crossing rate. The maximal frequency and the pitch have been also used, as well as the
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power spectrum density at 4 Hz, which is roughly the syllabical speech frequency. On the other

hand the LPC coe�cients and the cepstrum analysis, as they are used for speech analysis, can

discriminate speech from music [3] [6].

II. Segmentation

Segmentation is implemented in real-time and is based only on RMS. For each 1 sec frame

50 values of the RMS are computed from successive intervals of 20 msec. The mean and the

variance of the RMS is calculated for each frame. The segmentation algorithm is separated in

two stages. In the �rst stage, the transition frame is detected. In the second stage, the instant

of transition, with an accuracy of 20 msec, is marked. The last stage is more time consuming,

but is employed only in case of frame change detection.

The instantaneous accuracy is �xed at 20 msec because the human perceptual system is gen-

erally not more precise, and moreover because speech signals remain stationary for 5{20 msec

[7]. The maximal interval for measuring speech characteristics should therefore be limited to

intervals of 20 msec.

A. Change detection between frames

In this stage, frames containing probable transitions are sought. A change is detected if the

previous and the next frames are su�ciently di�erent. The detection is based on the distribution

of the RMS values, which di�er between speech and music, as seen in the pevious section. In

speech the variance is large in comparison with the mean value, because there are pauses between

syllables and words, while in music the variation of the amplitude remains in general moderated.

We do not attempt to measure the distance between the distributions, which could be expen-

sive, but rather search for an appropriate model for them in order to reduce the problem to the

estimation of some parameters, and obtain the dissimilarity as a function of these parameters.

We have observed that the generalized �2 distribution �ts well the histograms for both music

and speech (Figures 5 and 6). We can see that the approximation is acceptable. The good �t is

due to the Laplacian (symmetric exponential) distribution of the audio signals. The generalized

�2 distribution is de�ned by the probability density function

p(x) =
xae�bx

ba+1�(a+ 1)
; x � 0: (4)
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The parameters a; b are related to the the mean and the variance values of the RMS,

a =
�2

�2
� 1 and b =

�2

�
: (5)
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Fig. 5. RMS histogram for a collection of music data and its �tting by the generalized �2 distribution.
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Fig. 6. RMS histogram for a collection of voice data and its �tting by the generalized �2 distribution.

The segmentation will be based on a dissimilarity measure which is applied between frames.
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We propose to use a known similarity measure de�ned on the probability density functions

�(p1; p2) =
Z q

p1(x)p2(x)dx (6)

The similarity takes values in the interval [0; 1], where the value 1 means identical distributions,

and zero means completely non-intersecting distributions. For this reason, the value 1��, known

as the Matusita distance [10], can be interpreted as the distance between the content of the two

frames. It is well-known that the above similarity measure is related to the classi�cation error

[10]. For the case of two equiprobable hypotheses the classi�cation error is bounded by

Pe �
�(p1; p2)

2
: (7)

For the generalized �2 distribution the similarity measure depends on the parameters a and b,

�(p1; p2) =
�(a1+a2

2
+ 1)p

�(a1 + 1)�(a2 + 1)

2
a1+a2

2
+1b

a2+1

2

1 b
a1+1

2

2

(b1 + b2)
a1+a2

2
+1

: (8)

At �rst the similarity measure, or the corresponding distance, is used for localizing a candidate

change frame. Therefore, we compute for each frame i a value D(i), which gives the possibility

of a change within that frame,

D(i) = 1� �(pi�1; pi+1): (9)

Basically, if there is a single change within frame i, then frames i� 1 and i+ 1 must di�er. On

the other hand, if the change is instantaneous, e.g., a very brief interval within the frame, then

frames i� 1 and i+ 1 will be similar and the factor �(pi�1; pi+1) will be close to 1 and the D(i)

will be small. The system is designed to extract any important change from music to voice, and

vice versa, or very large changes in volume, as for example from silence to an audible sound.

These changes locally maximize the D(i) and can be detected with a suitable threshold.

However, some �ltering or normalization is needed. One reason is that relatively large distances

are also expected in the neighbouring frames of a change frame. Furthermore an adaptation of

the threshold should be introduced since the audio signal activity is time-variant. The latter is

more relevant for voice signals. In any case the nonstationarity of the audio signals should be

taken into consideration. We introduce the locally normalized distance as follows:

Dn(i) =
D(i)V (i)

DM(i)
; (10)

where V (i) measures the (positive) di�erence of D(i) from the mean value of the neighbouring

frames. If the di�erence is negative, it is set to zero. DM(i) is the maximal value of distances
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in the same neighborhood of the examined frame. In the current implementation we use a

neighborhood of two frames before and two frames after the current one. The comparison of the

distance D(i) and the normalized distance is illustrated for two examples in Figures 7 and 8. The

local maxima of Dn(i) are determined provided that they exceed some threshold. The threshold

on Dn(i) is set according to the local variation of the similarity measure. If the similarity

variation is small, the detector is more sensitive, while in the case of large similarity variation,

the threshold is larger. At the end of this procedure we have the change candidate frames.

B. Change instant detection

The next step is detecting the change within an accuracy of 20 msec, the maximal accuracy

of our method. For each of the frames we �nd the time instant where two successive frames,

located before and after this instant, have the maximum distance. The duration of the two

frames is always 1 sec and the distance measure is that of Equation (9). At the end of the

segmentation stage homogeneous segments of RMS have been obtained. Our aim was to �nd all

possible audible changes, even those based only on volume or other features. An oversegmenta-

tion is very probable, if we are interested only on the main discrimination between speech and

music. The �nal segmentation is completed by a classi�cation stage, which could also be used

independently for the characterization of audio signals. In Figures 9 and 10 we show the instant

change detections for two frames.

C. Segmentation results

In our experiments we obtained reliable detection results. Because in our scheme segmentation

is completed by the classi�cation, false detections can be corrected by the classi�cation module.

Thus the detection probability is the appropriate quality evaluation measure. We have tested

our technique extensively, and obtained a 97% detection probability, i.e., only 3% of real changes

have been missed. Accuracy in the determination of the change instant was very good, almost

always within an interval of 0.2 sec. Some examples of segmenation results are shown in Figures

7, 8 and 11.
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III. Classification

A. Features

For each segment extracted by the segmentation stage some features are computed and used

for classifying the segment. We call these features the actual features, which are obtained from

the basic characteristics, i.e., the signal amplitude and the zero-crossings. We will de�ne some

tests which will be implemented in sequential order, taking into consideration that the basic

characteristics are nearly independent. The discrimination is based mainly on the pauses which

occur in speech signals due to syllables and word separation.

A.1 Normalized RMS variance

The normalized RMS variance is de�ned as the ratio of the RMS variance to the square of

RMS mean. It is therefore equal to the inverse of parameter a + 1. This feature is volume

invariant. In Figure 12 we show two typical histograms of the normalized variance for speech

and music signals. We observe that the two distributions are almost non-overlapping, and thus

the normalized variance discriminates very well the two classes. In our experiments 88% of speech

segments have a value of normalized RMS variance greater than a separation threshold of 0.24,

while 84% of music segments have a value less than the same threshold. In addition the two

distributions can be approximated by the generalized �2 distribution, and using the maximum

likelihood principle we obtain the aforementioned separating threshold. The normalized variance

of RMS is used as the �nal test in our algorithm.

A.2 The probability of null zero-crossings

The zero-crossing rate is related to the mean frequency for a given segment. In the case of

a silent interval the number of zero-crossings is null. In speech there are always some silent

intervals, thus the occurence of null zero-crossings is a relevant feature for identifying speech.

Thus if this feature exceeds a certain threshold, the tested segment almost certainly contains

a voice signal. In our work the threshold is set to 0.1. Our experiments showed that about

40% of speech veri�es this criterion, while we have not found any music segment exceeding the

threshold. Comparing the histograms in Figures 3 and 4, we see the discriminating capability of

the null zero-crossings feature.
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A.3 Joint RMS/ZC measure

Together with the RMS and null zero-crossings features we exploit the fact that RMS and ZC

are somewhat correlated for speech signals, while essentially independent for music signals. Thus

we de�ne a feature related to the product of RMS and ZC,

CZ = e� C ; 1 �  � 5; (11)

where

C =

PN
i=1A(i)z(i)

2Ax � An �Am

with Ax = maxfA(i) : 1 � i � Ng, An = minfA(i) : 1 � i � Ng and Am = medianfA(i) : 1 �

i � Ng. The normalization by 2Ax�An�Am is used because in speech signals the denominator

usually takes on large values, as the median and the minimum values are small for such a signal.

The test consists of comparing this feature to some threshold. If CZ is close to 1, then the

segment is classi�ed as speech.

A.4 Void intervals frequency

The void intervals frequency, Fv , can discriminate music from speech, as it is in general greater

for speech than for music. It is intended to measure the frequency of syllables. For music this

feature almost always takes on a small value. Firstly, void intervals are detected. A test is de�ned

on RMS and ZC, as follows:

(RMS < T1) or (RMS < 0:1max(RMS) and RMS < T2) or (ZC = 0) (12)

This test is applied over intervals of 20 msec. The max(RMS) is determined for the whole

segment. After detecting the void intervals, neighbouring silent intervals are grouped, as well

as successive audible intervals. The number of void intervals reported over the whole segment

de�nes the so-called void intervals frequency. In our experiments we found that almost always

for speech signals Fv > 0:6, while for at least 65% of music segments, Fv < 0:6. Figure 13 shows

a transition from music to speech, very well discriminated by the described feature.

A.5 Maximal mean frequency

One of the basic characteristics of speech waveforms is that they are bandlimited to about 3.2

kHz. The mean frequency is therefore smaller than this limit, and the maximal mean frequency

can be used for taking advantage of this property. This feature can be estimated using the
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zero-crossing rate. In order to reduce noise e�ects, only intervals with a large RMS value are

considered. For speech signals the maximal mean frequency is almost always less than 2.4 kHz,

while for music segments it can be much greater.

B. Classi�cation algorithm

Each segment is classi�ed into one of three classes: silence, speech or music. First it is decided

whether a signal is present and if so, the speech/music discrimination takes place.

B.1 Silent segments recognition

A measure of signal amplitude for a given segment is used for testing the signal presence

E = 0:7Am +
0:3

N

NX
i=1

A(i) (13)

This is a robust estimate of signal amplitude as a weighted sum of mean and median of the RMS.

A threshold is set for detecting the e�ective signal presence.

B.2 Speech/music discrimination

When the presence of a signal is veri�ed, the discrimination in speech or music follows. The

speech/music discriminator consists of a sequence of tests based on the above features. The tests

performed are the following:

Void intervals frequency If Fv < 0:6, the segment is classi�ed as music. This test classi�es

about 50% of music segments.

RMS*ZC product If the feature CZ exceeds an empirically preset threshold, the segment is

classi�ed as speech.

Probability of null zero-crossings If this probability is greater than 0.1, the segment is classi�ed

as speech.

Maximal mean frequency If this frequency exceeds 2.4 kHz, the segment is classi�ed as music.

Normalized RMS variance If the normalized RMS variance is greater than 0.24, the segment

is classi�ed as speech, otherwise it is classi�ed as music.

The �rst four tests are positive classi�cation criteria, i.e., if satis�ed they indicate a particular

class, otherwise we proceed to the next test for classi�cation. Their thresholds are selected in

order to obtain a decision with near certainty. In our experiments the �rst four tests classi�ed

roughly 60% of the music segments and 40% of speech. The �nal test must decide the remaining
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Features Performance Performance

in music in speech

ZC0 90% 60%

�2A 84% 88%

CZ 90% 60%

�2A, ZC0 80% 97%

�2A, CZ 82% 97%

CZ , �
2
A 80% 97%

ZC0, �2A 70% 97%

Fv , �
2
A 88% 92%

Fv , CZ , max(ZC), ZC0, �2A 92% 97%

TABLE I

The performance of the various features individually and in conjuction.

segments, and here classi�cation errors may occur. These results are presented in the following

section.

IV. Results

We have tested the proposed algorithms on a data set containing audio input through a com-

puter's soundcard (15%), audio �les from the WWW (15%) and recordings obtained from various

archival audio CDs (70%). The sampling frequency ranged from 11025 Hz to 44100 Hz. The total

speech duration was 11328 sec (3 h, 9 min) which was subdivided by the segmentation algorithm

into about 800 segments. 97% of these segments were correctly classi�ed as speech. The total

music duration was 3131 sec (52 min) which was subdivided by the segmentation algorithm into

about 400 segments. 92% of these segments were correctly classi�ed as music.

In Table I we present the experimental results. The various features are considered alone

and in conjunction with others. The results with the complete above described algorithm are

summarized in the last row of the table. The features are given in sequential order as processed.

The normalized RMS variance alone has a success rate of about 86%. When it is combined

with frequency measures, the correct classi�cation rate reaches about 95%. Since all features are

derived from the basic characteristics of signal amplitude and zero-crossing rate, the combined
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use of the �ve features does not signi�cantly increase the computation time.

Further results are given in Figures 14, 15 and 16. Each of these Figures contains three

plots: (a) the segmentation result, (b) the classi�cation result, where 1 corresponds to music,

2 corresponds to speech and 3 corresponds to silence, and (c) the signal amplitude which alone

determines the changes. The classi�cation is always correct in these three �les. Sometimes

the signal is over-segmented, but the classi�er retains only speech-to-music or music-to-speech

transitions. We also present two results with erroneous classi�cations in Figures 17 and 18.

In both cases music with frequent instantaneous pauses and signi�cant amplitude variations is

falsely classi�ed as speech.

The comparison with other methods could be unfair due to the variety of the data sets used. In

the review of other methods presented in the Introduction, it appears that the correct classi�ca-

tion percentage reported may vary from 80% to 99%, depending on the duration of the segments

and of course on the data set. It should also depend on the features selected and the method

applied, but no benchmark is available in order to have a de�nitive and reliable assessement of

the di�erent features and methods. Taking that into consideration, we can claim that we have

proposed a new method which is simultaneously e�cient, i.e., computable in real-time, and very

e�ective.

V. Conclusions

In this paper we have proposed a fast and e�ective algorithm for audio segmentation and

classi�cation as speech, music or silence. The energy distribution seems to su�ce for segmenting

the signal, with only about 3% transition loss. The segmentation is completed by the classi�cation

of the resulting segments. Some changes are veri�ed by the classi�er, and other segments are

fused for retaining only the speech/music transitions. The classi�cation needs the use of the

central frequency, which is estimated e�ciently by the zero-crossing rate. The fact that the

signal amplitude and the zero-crossing rate are almost independent is appropriately exploited in

the design of the implemented sequential tests.

One possible application of the developed methods, which can be implemented in real-time, is

in content-based indexing and retreival of audio signals. The algorithms could also be used for

broadcast radio monitoring, or as a pre-processing stage for speech recognition.

In the future the methods introduced here could be extended to a more detailed characterization

and description of audio. They may be used at the �rst hierarchical level of a classi�er, and then
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continue by classifying into more speci�c categories, for example, classifying the music genre or

identifying the speaker. The segmentation stage could be combined with video shot detection in

audio-visual analysis.
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Fig. 7. An example of segmentation with four transitions. Are shown: the distance D(i), the normalized

distance Dn(i), the change detection result, and the RMS data.
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Fig. 8. Another example of segmentation with many transitions. Shown are: the distance D(i), the

normalized distance Dn(i), the change detection result, and the RMS data
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Fig. 9. Shown on the left is the distance D(i) for the RMS shown in the right plot. The accuracy is

excellent for this transition from speech to music.
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Fig. 10. Shown on the left is the distance D(i) for the RMS shown in the right plot. The accuracy is

very good for this transition from music to speech.



ARTICLE SUBMITTED TO IEEE TRANS. ON MULTIMEDIA 19

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1
Segmentation

0 10 20 30 40 50 60
0

1

2

3

4

5

6
RMS

Fig. 11. The change detection is illustrated and the signal amplitude shown. No transition loss occurs

but some segments are over-segmented.
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Fig. 12. Histograms of the normalized RMS variance for music (left) and voice (right).
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Fig. 13. Transition from speech to music. In the bottom the RMS is shown, and in the top the detected

void intervals. Void intervals are more frequent in speech than in music.
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Fig. 14. A result of classi�cation after the change detection. The second and the fourth segment are

music, while the others are speech.
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Fig. 15. An over-segmented signal for which all segments were correctly classi�ed. 1: speech, 2: music,

3: silence.
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Fig. 16. An example of correct classi�cation.
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Fig. 17. An example of correct segmentation and erroneous classi�cation.
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Fig. 18. False classi�cations due to a highly variant amplitude and to the presence of pauses in a music

signal.


