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This paper presents a new general framework for image segmentation. A

level set formulation is used to model the boundaries of the image regions

and a new Multi-Label Fast Marching is introduced for the evolution of

the region contours towards the segmentation result. Statistical tests are

performed to yield an initial estimate of high-con�dence subsets of the im-

age regions. Furthermore, the velocities for the propagation of the region

contours are de�ned in accordance with the a posteriori probability of the

respective regions, leading to the Bayesian Level Set methodology de-

scribed in this paper. Typical segmentation problems are considered and

experimental results are given to illustrate the robustness of the method

against noise and its performance in precise region boundary localization.

1. INTRODUCTION

Image segmentation is a vital component of any system of image content anal-

ysis. In the MPEG-4 standard, segmentation plays an important role in coding

performance and object manipulation [23]. A continuous e�ort has been made by

the research community to solve the segmentation problem. The numerous exist-

ing approaches may be classi�ed into two main categories: boundary-based and

region-based.

Edge detection is the earliest of the boundary-based methods, based on local gra-

dients [4]. Active contours [3], based on local gradients as well, have been introduced

for tracking deformable moving objects [10], by minimizing a functional whose local

maximum is located at the object boundary. Nevertheless, active contours are rela-

tively noise sensitive. Moreover, their result depends on the initialization and they

are not su�ciently topologically adaptive. Some advance has been obtained with

the balloon model [7], where the external force applied to the curve is modi�ed in

order to make the active contour less sensitive to weak edges and spurious isolated

edge points.

In the region-based approaches, techniques such as seeded region growing [1]

or split-and-merge [17] were �rstly introduced. The labeling problem is globally

formulated using Markov random �eld modeling. The �nal solution is obtained
1



2 SIFAKIS, GARCIA AND TZIRITAS

by minimizing an energy function, where stochastic relaxation [9] may be used,

but deterministic relaxation [2, 6] is often preferred, being less computationally

expensive.

E�orts have also been made towards the uni�cation of the contour and region-

based approaches. Zhu and Yuille [28] proposed a region competition method which

combines the geometrical features of snakes/balloon models and the statistical tech-

niques of region growing. In [16], the concept of geodesic active regions is intro-

duced. The active contour evolves under the in
uence of two forces: a boundary

force, which also contains curvature constraints and a region force, which aims

to move the curve in the direction that maximizes the a posteriori segmentation

probability.

Level set theories have been used in the formulation of several region or boundary-

based approaches for image segmentation. The mapping of active contours to the

level set formulation [15, 13] has raised many of the inconveniences of active con-

tours, while the fast marching algorithm [19, 21] provides a computationally e�cient

method for the tracking of a monotonically evolving contour. Natural handling of

morphological transitions and the possibility of motivating the evolution of the

moving front on intrinsic curve properties give rise to several applications, as ex-

tensively presented in [20]. The introduction of the geodesic active contours [25] has

allowed the uni�cation of the classical active contour based on energy minimization

and the geometric active contours based on the theory of curve evolution. In this

last approach, the algorithm initialization and termination problems are solved and

more stable boundaries are obtained, by computing a level set solution using a ge-

ometric 
ow. In [5, 26] level set formulations have been used for the maximization

of a segment uniformity criterion de�ned over a given classi�cation, in conjunction

with smoothness constraints over the boundaries of the resulting segments. In addi-

tion, the latter suggests a generalization for the case of more than two segmentation

classes, although the adopted formulation in
icts dimensionality constraints over

the input features to allow for such extensions. Furthermore, in [18] the segmen-

tation of an arbitrary number of classes is addressed, using a system of coupled

partial di�erential equations, leading to the combined evolution of several level set

modeled contours. The last approach is based on the minimization of a functional

which enforces region uniformity, contour smoothing and classi�cation coherence.

In this paper, we introduce a new region-based methodology for image segmen-

tation, where statistical approaches are applied for modeling the di�erent regions

and a novel level set based algorithm is used for labeling through the evolution of

the region boundaries. Since di�erent simultaneously propagating region contours

are considered, we propose an extension of the level set approach to a multi-label

framework, while allowing the propagation speed to depend on the respective re-

gion label. The segmentation performance strongly depends on the description of

the label content and on the capacity of incorporating the label description into

the propagation velocity. For that purpose, we propose to de�ne the propagation

speed as the a posteriori probability of the respective label. A statistical approach,

where the number of labels is assumed to be known, is therefore adopted, which

requires suitable models. Pattern analysis techniques are used for the identi�cation

of the corresponding models.
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This paper is organized as follows. In Section 2, we review the level set formu-

lation and the fast marching algorithm and we describe how we extend the latter

to the multi-label case. In Section 3, we consider the very important problem of

automatic feature extraction for the description of region content, as well as the

initialization of the level sets. In Section 4, we consider di�erent problems of image

segmentation, in order to illustrate the general applicability of our framework. We

�rst consider the classical case of level sets driven by the image gradient. We show

how a multi-label propagation, i.e, the propagation of two contours in opposite

directions, determines the actual location of the region boundaries. Then, we con-

sider the case of luminance segmentation, where any di�erence in the probability

distribution of the corresponding signal provides features for content description.

In that case, a model-based approach, using Gaussian assumptions and an approach

based on histogram distribution are provided. The application of our method to

the segmentation of a �eld of two chromaticity components is then considered and

described by a two-dimensional probability distribution. When this description ap-

pears to be insu�cient, segmentation based on texture features is considered. The

Discrete Wavelet Analysis is performed for the description of the texture content.

Another interesting case arises in motion detection, which is a powerful feature for

object segmentation. The detection of temporal changes of the luminance signal is

performed. The segmentation of the two-dimensional motion �eld is �nally consid-

ered using a Gaussian model. Various experimental results illustrate each of the

segmentation problems. Finally, conclusions are drawn.

2. LEVEL SET THEORY AND ALGORITHMS

2.1. Fundamental level set formulations

Level set theory provides a framework for tracking the evolution of a closed

curve of the plane given the velocity of the curve along its normal direction. The

parametric representation of the curve C(t) used in some other methods is unsuitable

for many applications since morphological changes of the moving contour, such as

splitting and merging, are extremely di�cult, if not impossible, to manipulate.

In the pioneering work by Osher and Sethian [15] the various locations of the

evolving contour are embedded as level sets of a function of higher dimensionality.

Consider a N � 1 dimensional hyper-surface �(t) and let �(s; t = 0), where s is a

point in RN , be de�ned by

�(s; t = 0) = �d (1)

where d is the distance from s to �(t = 0) and the the sign is chosen according

to the point s being outside or inside the initial hyper-surface �(t = 0). Thus the

initial location of the moving contour is given by

�(t = 0) = (sj�(s; t = 0) = 0): (2)

The derivations described in [15] yield the time-dependent level set equation for

the embedding function �

�t + F jr�j = 0 (3)
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where F is the propagation velocity in the normal direction to the moving contour

and the initial conditions are given by Equation (1). Explicit �nite di�erences may

be used in the numerical solution of the above equation using forward di�erences

for the time derivative and a suitable approximation for the spatial gradient.

In the above formulation the velocity function F is free to include terms depen-

dent on the curvature or the outward normal to the moving contour, measures that

are easily expressed by means of the evolving function �. Moreover, in [19], an ex-

tremely computationally e�cient variant of the above method was proposed. Given

the limitation of a constantly positive (or constantly negative) velocity function F ,

leading to a monotonical motion of the propagating front, an arrival time function

T (s) corresponding to the time point when the moving contour crosses over the

point s is well de�ned. Under the above formulation we have that �(s; T (s) = 0)

and the location of the moving contour at time t0 is given by

�(t = t0) = (sjT (s) = t0): (4)

The arrival time function T satis�es the stationary level set equation

F jrT j = 1 (5)

which simply states that the gradient of the arrival time function is inversely propor-

tional to the velocity of the contour at any given point. The preceding formulation

allows the constructive calculation of the arrival time function T , without resorting

to iterative methods. The tradeo� for the computational e�ciency is an inherent

di�culty in integrating local properties of the evolving contour, such as curvature,

in the velocity function F . Under those limitations the well-known Fast Marching

level set algorithm, introduced in [19], constructs a solution to Equation (5) from

initial data with a n logn execution cost.

2.2. Multiple interface extensions and Fast Marching algorithm

The original formulation of the level set technique, as given in [15], applies specif-

ically where there exists a clear distinction between an `outside' and an `inside'

region, separated by the evolving contour. Nevertheless, several applications, in-

cluding multiple object segmentation and clustering, require the consideration of

more than two regions. In the simplest of cases where the distinct regions exhibit

a smooth behavior and no triple points appear as the result of interface evolution,

boundaries between di�erent regions could be formulated as di�erent level sets of

the same function. Moreover, a technique for the proper handling of triple points

and other singularities induced by multi-interface propagation can be found in [20].

The methods mentioned apply to the time-dependent level set formulation, based

on Equation 3, allowing for the tracking of the moving region interfaces against

time. The motive of the work presented herein is that a substantial number of ap-

plications could be covered by the tracking of the monotonical evolution of distinct

regions into a special blank or unlabeled region and the observation of the �nal re-

sult of the initial regions' convergence over each other. The input to this approach

would be constituted of an initialization for the expanding regions and a rule for

their expansion into the blank region, in terms of their propagation velocity. Since

the proposed framework includes strictly monotonical (expanding) motion of the
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considered regions, the stationary level set formulation would be best suited and

the utilization of the Fast Marching algorithm would yield a favorable algorithmic

complexity.

In the original two-region context, most shape modeling, feature extraction or

segmentation applications of the Fast Marching level set algorithm involve an ini-

tialization of the arrival time map with seed regions, the calculation of arrival

times for the rest of the spatial domain considered and either an explicit selec-

tion of a proper level set or the utilization of an adequate criterion for picking the

most appropriate propagation instance as the segmentation result. In the proposed

framework the initialization consists of high con�dence representatives of the re-

gions in question, namely the outside and inside of the object(s) to be extracted.

A third region corresponding to yet undecided sites of the segmentation domain is

considered and velocities for the propagation of either region into the undecided

one are supplied. The boundaries of both propagating regions are prescribed to

freeze on contact, yielding a hard segmentation solution while discarding the need

for explicit selection of a propagation instance.

A trivial way of achieving the described functionality is to use the initialization

of every region as the zero level set of an independent propagation, using the Fast

Marching algorithm. Upon completion of all distinct propagations the �rst region

managing to arrive at each site would be selected to specify its label and arrival

time. This approach allows for the independent de�nition of propagation velocity

for each expanding region, a property greatly exploited in the range of applications

presented in this paper. Nevertheless, the execution cost for this algorithm scales

with the number of independent regions and it can be shown that it is also subject

to morphological instability, e.g. two regions that are separable with a single curve

upon initialization are not bound to converge onto a single interface.

2.3. The Multi-Label Fast Marching algorithm

The new Multi-Label Fast Marching algorithm presented in this paper is an

extension of the well-known Fast Marching algorithm introduced by Sethian [19],

capable of manipulating in parallel multiple propagating contours that correspond

to the boundaries of competitively expanding regions. The computational com-

plexity of the classical Fast Marching algorithm is maintained since it is e�ectively

made independent of the number of distinct regions present in the initialization.

The limitations of the original Fast Marching algorithm, namely the requirement

of a constant sign velocity and the absence of a contour smoothness term, are also

present in the Multi-Label variant. The new algorithm targets applications of static

segmentation as well as labeling and clustering problems.

The Multi-Label Fast Marching algorithm computes a constructive solution to

the stationary level set Equation (5) given initial conditions in terms of the zero

level set of the arrival time function T (s). Initializations may be provided for

multiple non-intersecting regions for which the propagation velocity is allowed to

follow an independent de�nition. All distinct regions (or labels) are propagated

simultaneously according to their respective velocity de�nitions with the limitation

of one region being unable to in�ltrate a region having been swept by another. The

propagating regions evolve in a competitive fashion, with the algorithm reaching a

deterministic halt once all sites of the considered domain have been labeled.



6 SIFAKIS, GARCIA AND TZIRITAS

For this presentation we shall limit the description of the new algorithm to the

case of a two-dimensional image, although the algorithm trivially expands to three

or more dimensions. All image pixels are either idle or carry a number of candi-

dacies for di�erent labels. Candidacies can be either trial, alive or �nalized. Trial

candidacies for a certain label are introduced in a speci�c pixel lacking a �nalized

candidacy when a neighboring pixel acquires an alive candidacy for the same la-

bel. Trial candidacies carry an arrival time estimate which is subject to adjustment

according to the process of its neighboring candidacies for the same label. Alive

candidacies are selected from the set of trial candidacies according to a minimum

arrival time criterion and have their arrival time estimate �xated. The �rst trial

candidacy to be turned alive per pixel is considered a �nalized candidacy and is

used in specifying the pixel label and arrival time in the �nal propagation result.

A comparative symbolic description of the classical Fast Marching algorithm [19]

and the Multi-Label extension introduced herein can be seen in �gure 1.

InitTValues()

InitNarrowBand()

while (ExistTrialPixels()) f

pxl = FindLeastTValue()

MarkPixelAlive(pxl)

AddFarawayNeighbors(pxl)

UpdateNeighbourTValues(pxl)

g

InitTValueMap()

InitTrialLists()

while (ExistTrialPixels()) f

pxl = FindLeastTValue()

MarkPixelAlive(pxl)

UpdateLabelMap(pxl)

AddNeighboursToTrialLists(pxl)

UpdateNeighbourTValues(pxl)

g

FIG. 1. Pseudo-code for the single and multi label fast marching algorithms

The Multi-Label Fast Marching algorithm is supplied with a label map partially

�lled with decisions. The arrival time for the initially labeled pixels is set to zero,

while for all others it is set to in�nity. A map of pointers to linked lists of candi-

dacies is also maintained. Candidacy lists are initially empty, with the exception

of unlabeled pixels being next neighbors to initial decisions, for which a trial can-

didacy is introduced carrying the label of the neighboring decision and an arrival

time estimate is allocated. All trial candidacies are also contained in a common

priority queue.

Until no more trial candidacies exist, the trial candidacy with the smallest arrival

time is selected and turned alive. If no other alive candidacies exist for this pixel,

the candidacy is considered �nalized and copied to the �nal label map. For all

neighbors of this pixel lacking an alive candidacy, a trial candidacy for the same

label is introduced. Finally, all neighboring trial candidates update their arrival

times according to the revised condition. The re-estimation of the arrival times is

performed with the utilization of the stationary level set Equation (5). Under the

most common gradient approximation used, the equation is written

1=F 2
ij = max(max(D�x

ij T; 0);�min(D+x
ij T; 0))2 +

max(max(D�y
ij T; 0);�min(D+y

ij T; 0))2: (6)
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Equation (5) is solved for the value of the function T at the speci�ed pixel. If the

quadratic equation yields more than one solution, the greatest is used.

Although it seems possible that candidacies for all available labels may occur

in a single site, it should be noted that a trial candidacy is only introduced by a

neighboring candidacy being �nalized, bringing the number of possible candidacies

per pixel to a maximum of four. In practice, trial pixels of di�erent labels coexist

only in region boundaries, giving an average of label candidacies per pixel of two

at most. Even in the worst case, though, it is evident that the time and space

complexity of the algorithm is independent of the number of di�erent labels. Ex-

periments have illustrated a running time no more than twice the time required by

the single contour fast marching algorithm.

2.4. Label propagation

The multi-label fast marching level set algorithm, presented in the previous sub-

section, is applied for all sets of points initially labeled. The contour of each region

propagates according to a velocity �eld, which depends on the label and on the

distance of the considered point from the candidate class. The label-dependent

propagation speed is de�ned according to the maximum a posteriori probability

principle. The candidate label is ideally propagated with a speed in the interval

[0, 1], which is equal to the a posteriori probability of the candidate label at the

considered point. Let us de�ne at a site s, for a candidate label l(s) and for a data

vector x(s) the propagation speed as

Fl(s) = Prfl(s)jx(s)g:

Then we can write

Fl(s) =
p(x(s)jl(s))Prfl(s)gP
k p(x(s)jk(s))Prfk(s)g

=
1

1 +
P

k 6=l
p(x(s)jk(s))
p(x(s)jl(s))

Prfk(s)g
Prfl(s)g

: (7)

Therefore, the propagation speed depends on the likelihood ratios and on the a

priori probabilities. The likelihood ratios can be evaluated according to the as-

sumptions on the data and the a priori probabilities could be estimated or assumed

all equal.

Very often the probability density function is an exponential function of a distance

measure of the data

p(x(s)jl(s)) = e�dl(x(s)):

If we assume that the a priori probabilities are all equal, we obtain

Fl(s) =
1

1 +
P

k 6=l e
dl(s)�dk(s)

: (8)

This expression of the propagation speed illustrates that when the propagated label

is the right one, all the exponents of the sum are negative and the speed is close to

unity. In the opposite case, when the propagated label is not correct, at least one

exponent is positive and, therefore, the speed is biased towards zero.

For measuring the di�erence of the two speeds, let us now consider the case of

two equiprobable labels. The mean time for advancing one unit length, if the curve
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evolves with a force corresponding to the region properties (say, without loss of

generality, with label 0), is

EfjrT (s)j; 0g = 1 +

Z
p(xj1)

p(xj0)
p(xj0)dx = 2:

If the curve evolves in the opposite labeled region, we have

EfjrT (s)j; 1g = 1 +

Z
p(xj1)

p(xj0)
p(xj1)dx > 2 +

Z
p(xj1) ln

p(xj1)

p(xj0)
dx:

The right-hand term is the Kullback distance D between the two distributions, and

it is always positive. Therefore the ratio of the two mean times is

EfjrT (s)j; 1g

EfjrT (s)j; 0g
= 1 +

D(p(xj1); p(xj0))

2
> 1: (9)

The more discriminating the two probability distributions, the more important is

the ratio of the two propagation speeds, making more con�dent that the evolving

curves are trapped by the boundary.

For illustrating the above using an example, let us suppose that the data is scalar

distributed according to the Gauss law, with identical variance and two di�erent

mean values (�0 and �1). It is straightforward to show that

D(p(xj1); p(xj0)) = exp(
(�1 � �0)

2

�2
):

Clearly, the evolution of the curve in a region which is di�erently labeled is decel-

erated, and the amount of deceleration depends in average on the signal-to-noise

ratio. It su�ces a SNR of 10 for stopping the evolution in practice.

We use the fast marching algorithm for advancing the contours towards the unla-

beled space. The dependence of the propagation speed only on the pixel properties,

and not on contour curvature measures, is not a disadvantage here, because the

propagation speed takes into account the region properties.

3. SEED REGIONS AND FEATURE EXTRACTION

An essential step of the whole framework consists of estimating the features

associated to the di�erent labels and in determining the initial seed regions. The

only assumption we make is that the number of labels is known. We describe

hereafter the stages of automatic feature extraction and of determination of the

zero level sets.

3.1. Automatic feature extraction

As the number of labels is assumed to be known, two approaches are possible

for their discrimination: mixture analysis and unsupervised clustering. In section

3 presenting image segmentation applications, both approaches are used according

to the particular problem to be solved.

If the adoption of a model is reliable and, in particular, if this model is tractable,

the mixture analysis is preferred. This is often the case of luminance segmentation
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where a Gaussian distribution is plausible. This is also the case for change detection

where a generalized Gaussian or a Laplacian model are often adopted. Furthermore,

the motion vectors resulting from optical 
ow computation are assumed to be Gaus-

sian variables. The distribution mixture is expressed as the weighted sum of the

individual distributions of the di�erent labels. Mixture analysis aims at determin-

ing the a priori probabilities of the labels and the parameters of the probability

density functions of the data given the labels. The most frequently used method

for parameter estimation uses the Maximum Likelihood principle, which results in

an iterative algorithm ([8, 14]).

Nevertheless, there exist interesting applications where the use of an a priori

model might be di�cult, if not arbitrary. For example, in texture segmentation,

after a multi-channel analysis, the Gaussian model is plausible but it would be

di�cult to obtain accurate parameters using a mixture analysis because the distri-

butions may be all zero-mean (see section 4.4). In addition, there are cases where

no general model is applicable and luminance or chromaticity only may be su�cient

for the segmentation. Therefore, when the model estimation is practically impos-

sible using mixture analysis or when the adoption of a model is not plausible, a

clustering technique could lead to the discrimination of the labels and to the estima-

tion of their description. For that purpose, we use a hierarchical clustering method

([8, 12]). Any other clustering algorithm may be used as well. The clustering is

applied on blocks resulting from a systematic division of the image. The blocks are

hierarchically clustered using the Bhattacharya distance, as a dissimilarity measure.

The continuous de�nition of this measure is

dB = � ln(

Z
x

p
p1(x)p2(x)dx) (10)

where p1 and p2 are probability density functions of a feature vector x of any

dimension. The discrete version of the Bhattacharya distance is

dB = � ln(
X
i

p
p1(i)p2(i)) (11)

where pj(i) is the probability of i
th feature of class j. This measure has the advan-

tage of being designed to compare features for the two-class case. In addition, it

corresponds to the Cherno� bound of error probability [27].

If a model of the distribution is known, a simpler expression of the Bhattacharya

distance can be deduced. In this work, we assume that some features follow the

generalized Gaussian distribution

p(x) =
c

2� �( 1c )
e
�
�

jxj
�

�
c

(12)

where the parameter � is the standard deviation and c re
ects the sharpness of

the probability density function. For c = 2, we obtain the Gaussian distribution

and for c = 1, the Laplacian distribution. The extracted features may often be

assumed uncorrelated. The simpli�ed expression assuming Gaussian distribution



10 SIFAKIS, GARCIA AND TZIRITAS

and uncorrelated features is

dB =
1

c

NX
i=1

ln
�ci;1 + �ci;2
2
p
�ci;1�

c
i;2

(13)

where �i;n corresponds to the standard deviation of the ith feature of class n.

When the clustering is complete, the description of the labels is determined. If

a parametric model is used, then the parameters are estimated. In absence of a

parametric model, equation (11) is used for computing distances. In both cases the

estimation is performed on the clustered blocks.

In order to estimate the feature vectors of the di�erent classes present in the

image, a hierarchical clustering algorithm [8] is applied to the blocks. All the

di�erent blocks in the image are used as the initial clusters. Each step of the

algorithm, merges the two clusters with the nearest feature vectors and the features

of the new cluster are updated accordingly. The procedure terminates when the

number of clusters becomes equal to the number of the di�erent classes in the image

to be segmented.

3.2. Initial level sets

An initial map of labeled sites is obtained using statistical tests. These tests

classify points with high con�dence. The probability of classi�cation error is set

to a small value. At �rst, all pixels are classi�ed according to their distance from

the di�erent labels. The distribution of the data in a window centered at each

site is approximated. Then, the Bhattacharya distances from this distribution to

the features of each label are computed and assigned to the site. The distances

at each site are subsequently averaged in a series of windows Dw of dimension

(2w+1) � (2w+1); (w = 1; : : : ; P ). The mean distance in each window is used for

classifying the central site to one of the possible labels. The candidate label k(s)

of site s is selected in the following way

k(s) = argmin
l

X
p2Dw

dBl (s+ p) (14)

by �nding the label l which minimizes the sum of its distances from the neighbor

sites p in window Dw.

The con�dence criterion for classi�cation of site s into the candidate label k(s)

results from the comparison of the distance of the considered site from the candidate

label against the distance from the nearest label among all the others, as described

in Equation 15.

X
p2Dw

�
min
l6=k(s)

dBl (s+ p)� dBk(s)(s+ p)

�
(15)

Sites are then sorted according to their con�dence measure and a speci�c per-

centage of the sites with highest con�dence are retained and labeled. A small

percentage, a typical value being 5%, is generally su�cient. Sites which are re-

tained for each of these P window sizes are considered as forming the initial sets of

labeled points. Parameter P ranges from 3 to 6 in most applications.
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4. SEGMENTATION

In this section, we describe the application of our general framework to typical

segmentation problems, such as luminance, chromaticity, texture and motion seg-

mentation. In each case, statistical approaches are used for obtaining an initial

high-con�dence set of pixel labels constituting the initial regions. The propagation

velocities for the expanding regions are de�ned according to the considered segmen-

tation problem. The multi-label fast marching level set algorithm is subsequently

applied to give the segmentation solution.

4.1. Gradient-based segmentation

Boundary-based segmentation methods often rely on the gradient of the image,

where local maxima are expected to de�ne object boundaries. It should be noted

that the gradient may be computed from intensity images, color images or more

generally from multi-dimensional images. In some applications where no speci�c

descriptors of object region are available, users may roughly de�ne the area of in-

terest, by de�ning two contours, one being contained inside the object (referred

to as inner contour) and the other one containing the object (referred to as outer

contour). A labeled map is therefore built: pixels belonging to the inner area are

assigned to one label and pixels belonging to the outer area are assigned to another

label. The algorithm propagates the user initialized two contours, in opposite di-

rections, the inner outside and the outer inside, towards locations demonstrating

high spatial contrast, which correspond to the edges of the object to be segmented.

The algorithm uses a velocity �eld calculated from the gradient image to march

the contours in the allowed direction, and build the arrival map of each contour.

The object boundary is recovered as the place of contact of the two contours. It

therefore provides an automatic stopping criterion for the propagation since the two

contours converge over each other. The propagation speed of the evolving contours

FIG. 2. Gradient, initial contours and several propagation instances for the Olaf image.

should be maximum for zero-value gradient and close to zero for important gradient

values. A suitable propagation speed F , being a generalization of the one used in

[20], has been chosen for each contour.

F =
1

1 +
�
(jrIj)

�

�
 (16)

The parameter � may be interpreted as a threshold, de�ning the lowest gradi-

ent value that may in
uence the contour propagation. The parameter 
 may be

considered as controlling the sensibility of the front propagation with regards to

normalized gradient values. Figure 2 illustrates the gradient-based results of the

multi-label fast marching algorithm applied on the color image Olaf, where the gra-



12 SIFAKIS, GARCIA AND TZIRITAS

dient magnitude image computed in Lab color space, the original image with the

initial inner and outer contours, some intermediate instances of propagation and

the �nal segmented image, are presented.

4.2. Luminance segmentation

A grey scale image may be segmented using its intensity value distribution. Each

region content may be described by either modeling the luminance distribution,

using for instance a Gauss probability density function, or estimating the empirical

probability density function. Both approaches are considered here.

In the a priori model-based approach, without loss of generality and for purpose

of illustration, we consider the case of two labels l 2 f0; 1g, with respective dis-

tributions assumed to be Gaussian with the same variance (�2), and two di�erent

mean values (�0 and �1). The propagation speed according to Equation (7) is

Fl(s) =
1

1 + exp
�
(�k��l)(2x(s)��0��1)

2�2

� k 6= l; k 2 f0; 1g ; l 2 f0; 1g ; (17)

in the case of equiprobable labels. It may be noticed that both propagation speeds

depend on the signal to noise ratio ( j�0��1j� ). They are drawn in Figure 3 for a signal

to noise ratio equal to one, as functions of the normalized distance (x(s)�(�0+�1)=2� )

to the global mean value. A synthetic example, built to illustrate the e�ciency
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FIG. 3. The propagation speeds of the two labels for a signal to noise ratio equal to one
(dashed line for label 0 and solid line for label 1)

of our approach, is presented in Figure 4, where a light disk is drawn on a darker

background. Pixels of the disk follow a Gaussian distribution of mean �0 = 170

and standard deviation � = 30, while pixels of the background follow a Gaussian

distribution of mean �1 = 140 and standard deviation � = 30. The signal to noise

ratio is 1, corresponding to a very poor image quality. From top-left to bottom-

right, Figure 4 shows the original noisy image, the initial label map, some instances

of the propagation and the �nal segmentation result. One may notice that, even in

a case of a very noisy image, with a few initial labeled sites, the algorithm performs

very well.

In the general case where no a priori model is known, only luminance histograms

are used for segmentation, with hl(i) being the histogram concerning the label l.

The label is propagated with the following speed:

Fl(s) =
1

1 +
P

k 6=l
hk(x(s))
hl(x(s))

: (18)
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FIG. 4. Luminance-based segmentation of the disk image

The luminance histogram-based segmentation of the real textured image zebra is

presented in Figure 5, where two classes (the zebra and the grass) are considered,

leading to a segmentation with precise border estimation.

FIG. 5. Luminance histogram-based segmentation of the zebra image

4.3. Chromaticity segmentation

As the luminance component is considered in the previous paragraph, only chro-

maticity components are taken into account here. The Lab color space is used

for feature extraction. In our approach, the extracted features are the local 2-D

histograms of the (a; b) components in a squared block centered at each site. No

modeling of the distribution of the (a; b) histograms is performed (e.g. Gauss),

because in most blocks, histograms do not follow the same distribution. The prop-

agation speed is the same as in the luminance histogram-based case (see (18)) .

FIG. 6. Chromaticity histogram-based segmentation of the GrassPlants image

Figure 6 presents our results on the natural scene of GrassPlants (MIT Media

Vistex data set), with some intermediate instances of propagation and the �nal

segmented image. In this case, the approach performs well by using only the his-

tograms of the chromaticity components (a; b).
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4.4. Texture segmentation

Segmenting images according to textural information may overcome some limi-

tations of the previous luminance or chromaticity-based approaches. Our method

for texture segmentation is based on the Discrete Wavelet Analysis for describing

the texture content, as presented in detail in [12].

4.4.1. Texture analysis and characterization

The features for texture segmentation are derived from the discrete wavelet

frames analysis [24]. The input signal is split into components corresponding to

disjoint frequency ranges via recursive bisection of the low-frequency component.

The resulting wavelet frames carry important textural characteristics of the origi-

nal signal such as periodicity and translation invariance, with respect to di�erent

scales. The formulation can trivially be extended to 2-D by forming the correspond-

ing �lter bank from the 1-D �lters using separability. The application of the 2-D

�lter bank on a given image yields three high-frequency detail components per each

analysis level plus the low-frequency approximation component at the last level. All

components can be shown to be uncorrelated in the case of ideal �lters.

The chosen feature vectors for texture description are the variances of the N � 1

high frequency components and the mean of the low frequency approximation,

calculated over the distinct texture classes present in the image. The low frequency

approximation is used only if it is su�ciently discriminating. An initial estimate of

the texture classes is obtained by the hierarchical clustering algorithm described in

section 3.1. The block sets obtained by the algorithm are used for the calculation

of the prototype feature vectors, used in initial labeling and label propagation.

4.4.2. Label propagation

Assuming that the probability density function of the texture images is Gaussian,

and given that the high frequency components are zero-mean, the distance of a site

s represented by the vector x(s) from a texture class l with variances �2i;l and mean

value �l of the approximation component is determined as follows:

dl(x(s)) =
1

2

 
N�1X
i=1

 
x2i (s)

�2i;l
+ log�2i;l

!
+

(xN (s)� �l)
2

�2N;l

+ log�2N;l

!
(19)

where �2N;l is the variance of the low frequency approximation of class l.

The multi-label fast marching level set algorithm is then applied to all sets of

points initially labeled. The contour of each region propagates according to a

velocity �eld which depends on the label and on the distance of the considered

point from the candidate label. The exact propagation velocity for a given label is

Fl(s) =
Pr(l)P

k 6=l Pr(k)e
dl(x(s))�dk(x(s))

(20)

where the a priori probabilities Pr(k) are estimated from the Maximum Likelihood

classi�cation of the sites against the prototype feature classes. The distance of each

site from the prototype feature classes is computed using the Bhattacharya measure

with the variances for a considered site being calculated in a window centered at it.
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The top row of Figure 7 shows the original four-regions image, the block-set im-

age for prototype vector calculation and the preliminary pixel classi�cation images

according to the Bhattacharya distance and the maximum likelihood. The bot-

tom row shows some intermediate instances of propagation and the �nal segmented

image. The percentage of classi�cation error has been found to be about 2.1%.

FIG. 7. Texture segmentation of the four-regions image

Figure 8 illustrates the results obtained on the natural scene GrassPlants (MIT

Media Vistex data set), showing the original image, the block-set image, the initially

labeled image, and the �nal segmented image.

FIG. 8. Texture segmentation of the GrassPlants image

4.5. Change detection

Change detection in a video sequence is an important issue in object tracking,

video-conferencing and tra�c-monitoring among other applications. The change

detection problem consists of labeling each pixel s of one frame t of a video sequence

into static pixel (�(s) = static) or moving pixel (�(s) = mobile).

4.5.1. Problem modeling

In our approach, the simple inter-frame grey level di�erence x(s) is considered:

x(s) = I(s; t+ 1)� I(s; t): (21)

Therefore, a pixel is an unchanged pixel if the observed di�erence x(s) supports the

hypothesis for static pixel, and a changed pixel, if the observed di�erence supports

the alternative hypothesis, for mobile pixel. Let p0(xjstatic) (resp. p1(xjmobile))

be the probability density function of the observed inter-frame di�erence under

the respective hypothesis. These probability density functions are assumed to be
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homogeneous, i.e. independent of the pixel location, and usually they are under

Laplacian or Gaussian law. A zero-mean Laplacian distribution function is used

here to describe the statistical behavior of the pixels under both hypotheses. Thus

the conditional probability density function of the observed temporal di�erence

values is given by

p(x(s)j�(s) = l) =
�l
2

e��ljx(s)j: (22)

If Pstatic and Pmobile are the two a priori probabilities, the probability density

function of the di�erence is given by

pX(x) = Pstatic p0 (xjstatic) + Pmobile p1(xjmobile): (23)

In this mixture distribution, Pl and �l (l 2 fstatic;mobileg) are unknown param-

eters. As stated in section 3.1, the principle of Maximum Likelihood is used to

obtain an estimate of these parameters.

4.5.2. Initial labeling

An initial map of labeled sites is obtained using statistical tests. The �rst test

detects changed sites with high con�dence, using a threshold T1. Then, tests are

performed for �nding unchanged sites with high con�dence, that is, with small

probability of non-detection. For these tests, a series of six windows of dimension

(2w + 1)2; (w = 1; : : : ; 6), are considered and the corresponding thresholds are

prede�ned as a function of �1. The level set initialization is given in Figure 10

for one couple of frame of the White Trevor image sequence, where \black" color

means \unchanged" site, \white" color means \changed" site, and \grey" color

means \unlabeled" site.

4.5.3. Label propagation

The Multi-Label Fast Marching level set algorithm is then applied for all sets

of points initially labeled. The contour of each region propagates according to a

velocity �eld, which depends on the label and on the absolute inter-frame di�erence.

In the case of a decision between the \changed" and the \unchanged" labels,

according to the assumption of Laplacian distributions, the likelihood ratios are

exponential functions of the absolute value of the inter-frame di�erence. At a pixel

scale, the decision process is highly noisy, and could be made robust by taking into

account the known labels in the neighborhood of the considered pixel. Finally, the

exact propagation velocity for the \unchanged" label is

F0(s) =
1

1 + e�0(jx(s)j�n���0)
(24)

and for the \changed" label

F1(s) =
1

1 + e�1(�1�jx(s)j�(n+�)�)
(25)

where n is the number of the neighboring pixels already labeled with the same

candidate label, and � takes a positive value if the pixel at the same site of the
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previous label map is an interior point of a \changed" region, otherwise it takes a

zero value. The parameters �0; �1; �0; �1 and � are adapted according to the initial

label map and the features characterizing the data (Pl; �l). More details about the

setting of these parameters are given in [22].

Figure 9 presents the two speeds as functions of the absolute inter-frame di�er-

ence for typical parameter values. Figure 10 shows the initial labeled map, some
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FIG. 9. The propagation speeds of the two labels (dashed line for label static and solid line
for label mobile)

instances of propagation and the �nal labeled image.

FIG. 10. The �rst frame, the initialization image and several propagation instances for two
frames of the White Trevor sequence

4.6. Motion �eld segmentation

The segmentation of motion �elds in video sequences is another interesting way

of extracting scene content. In the case of a static camera or after camera motion

compensation, segmenting motion �elds leads to mobile objects extraction. In the

case of a moving camera, it may provide an approximation of the 3D structure of

a static scene, by extracting depth layers. In our approach, some restrictions are

made on the camera motion, for segmenting mobile objects (considered as planar),

or constant depth layers from motion �elds. The motion �eld components u and v

are constant, for a constant depth or for a moving surface, if the camera motion is

assumed to be translational only, in a direction parallel to the image plane [11]. In

that particular case, �nding depth layers or moving objects is equivalent to segment

the motion �eld into regions of constant values. The task is made di�cult by the

important noise contained in the computed optical 
ow, which is a crude approxi-

mation of the real motion �eld. As stated in 3.1, we assume that components u and

v of the optical 
ow can be decomposed into mixtures of n Gaussian distributions.
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The parameters of the Gaussian distribution are determined by analysis of the 2-D

optical 
ow histogram. The Multi-Label Fast Marching level set algorithm, is then

FIG. 11. Mobile object segmentation from the interview optical 
ow.

FIG. 12. Depth-layer segmentation from the 
ower-garden optical 
ow.

applied for all sets of points initially labeled. The propagation velocity for a given

label is the one given in equation (8), assuming the a priori probability to be equal

to the distance from the site s to class l, which is de�ned by

dl(s) =
(u(s)� u(l))2

2�21l
+

1

2
ln�21l +

(v(s)� v(l))2

2�22l
+

1

2
ln�22l (26)

where �il is the standard deviation of ith feature in class l. Figure 11 illustrates

the segmentation results of the multi-label fast marching algorithm on an optical


ow image extracted from the interview sequence. In this part of the sequence,

the interviewed person is the only moving entity. Even if parts of the body exhibit

di�erent motions, our goal is to segment the moving section of the image as a

whole. The �rst row of Figure 11 presents an image of the sequence, the computed

optical 
ow, whereas the second row shows the initial label map, some intermediate

instances of propagation and the �nal segmented image, containing the segmented

moving object. An example of depth layering is also considered in the di�cult

case of the 
ower-garden sequence. Before applying the algorithm to this image

sequence, the existence of a \panning" motion was con�rmed through the use of

the motion estimation algorithm presented in [11]. It should be noted that the

lack of texture in the sky part leads to the erroneous estimation of optical 
ow

components. The �rst row of Figure 12 presents an image of the sequence, the

computed optical 
ow, whereas the second row shows the initial label map, some
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intermediate instances of propagation and the �nal segmented image, containing

three depth layers.

5. CONCLUSION

A new level set based framework for image segmentation was presented in this

paper. The Multi-Label Fast Marching algorithm has been introduced for the prop-

agation of high con�dence classi�cation decisions in accordance with the a posteriori

probability of the competing classes. Several speci�c segmentation applications are

addressed in order to illustrate the usability of this new algorithm as a fast, precise

and generic technique for unsupervised segmentation or labeling.

The proposed approach shares the objective of maximization of the a posteriori

probability with other techniques, like deterministic relaxation. Such approaches

utilize the notion of an objective function whose global minimum yields the optimal

segmentation solution and guarantee spatial coherence by the consideration of pixel

neighborhoods or cliques, over which a certain degree of uniformity is enforced. The

absence of an objective function can be considered as a theoretical weakness of the

proposed algorithm, yet the dependence of the propagation velocities on the a pos-

teriori probabilities of the competing regions clearly biases the segmentation result

towards the same goal, while allowing for an extremely e�cient non-iterative imple-

mentation. Furthermore, deterministic relaxation algorithms are often trapped in

local minima while the proposed methodology has been shown to be highly robust

against locally optimal solutions. A comparative survey of the Multi-Label Fast

Marching algorithm and the deterministic relaxation ICM algorithm for labeling

can be found in [12].

In comparison with existing level set implementations of active contours the

Multi-Label Fast Marching algorithm clearly lacks the capability of incorporating

a smoothness constraint into the propagation process, thus often resulting to noisy

expansion of the moving contours. Nevertheless, the competition of the expanding

regions and their convergence over each other signi�cantly reduce the amount of

noise in the �nal region boundaries, while retaining a high level of localization

precision. In addition, the new level set algorithm can handle multiple segmentation

classes with an algorithmic complexity that outperforms most existing multi-class

level set methods.

Inherent limitations and shortcomings of the proposed framework include the

strong dependence of the segmentation quality on the extracted features, which

must be both su�cient and discriminative. Additionally, the initial high con�dence

classi�cation decisions impose strict constraints on the morphology and shape of

the �nal regions. Subsequently, narrow or small and isolated parts of a given region

exhibit an inherent di�culty of detection. Finally, future extensions of our work

may spawn from the combined use of several pattern features, such as texture and

chromaticity information, for solving a given segmentation problem. This can easily

be performed using the same general framework by incorporating these distinct

features into the velocity �eld de�nition.
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