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Abstract

In this paper, the problem of constructing the whole view of a scene background from an image sequence is

considered. First, point or block correspondence between each pair of successive frames is determined. Three

parametric motion models are used: 2-D translation with scale change, affine, and projective. Motion parameters are

estimated using either robust criteria and the Levenberg–Marquardt algorithm, or affine moment invariants. Then the

parametric models are composed and all the frames are aligned, yielding a whole view of the scene background. A new

technique is introduced for the correction of accumulated frame alignment errors.

r 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the past few decades, developments in
audiovisual technology have given rise to new
applications involving the processing and exploita-
tion of video information, such as digital libraries.
Moreover, the ever-increasing volume of data
transmitted over the World Wide Web (WWW)
has led to the need for fast on-line access to visual
information, including video. However, their
effective utilization is still limited because of
certain detracting factors, primarily the cost
of storage and the transmission time, consequences
of the large number of video frames and their size.
Furthermore, the lack of content-based indexing,
intelligent searching and querying tools lead to

partial exploitation of video information. One
solution is to find an efficient visual representation
of the video scenes, which will facilitate the search,
recognition and indexing of objects through
queries with visual attributes [5]. A video shot
could be represented by key frames [2]. A key
frame is a representative frame in a shot, typically
the first, middle or last frame or a combination of
them. In order to search and retrieve objects, the
queries could be performed only on key frames.
However, this representation is too poor, since a
single frame, the key frame, cannot always
represent the contents of all frames in a shot.
Even with rapid delivery of video and efficient

querying and indexing tools for visual content
searching and retrieval, the lack of efficient ways
of representing the video content and inefficient
interactive manipulation and video editing may
still inhibit the widespread use of video informa-
tion. The video editing process involves the
insertion and removal of objects into the video
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sequence. The video manipulation process may
call for the synthesis of some new views of the
scene, corresponding to a desired viewing position.
Currently these processes are very tedious, as they
are done manually frame-by-frame.
There has been a growing interest in the use of

panoramic images, called ‘‘mosaics’’, as an effi-
cient way of representing video shots [12]. The
mosaic image is constructed from all frames
comprising a video shot, giving a panoramic view
of the whole background. The mosaic image
construction is based on successive frames which
overlap usually by a substantial amount. This
image may be used for querying based on static
image features, like colour, texture and shape of
surfaces or objects. Furthermore, video editing can
be performed on the constructed mosaic image
rather than on all the frames in the video sequence.
Benefits of this approach are the increased
efficiency and the reduced temporal cost of the
process.
The mosaic construction involves two steps: (1)

the alignment of the frames in the sequence and (2)
the composition of these frames in order to create
the mosaic image. Frame alignment is achieved by
motion estimation between successive frames of
the sequence or between each frame and the
mosaic image incrementally constructed from the
previous frames.
Irani et al. [6] defined and described various

types of mosaic representations, in particular the
static mosaic considered in our work, which
operates in batch mode by aligning all frames to
a fixed coordinate system. Two 2-D motion
models are used, the affine and the eight-para-
meter quadratic, wherein frame alignment is
obtained by direct frame registration. 3-D align-
ment is also considered. Various temporal filtering
techniques are employed for the frame integration
leading to the mosaic construction. In [12], a
method for model-based robust dominant motion
estimation is presented using direct image registra-
tion. A 3-D model is also considered, defined by a
12-parameter transformation and a point-wise
projective depth. In addition, the simultaneous
estimation of multiple motions is addressed using
an appropriate mixture model. The experimental
results of parametric motion estimation are illu-

strated in video mosaic constructions. In [13], the
global consistency of the successive frame-to-
frame alignments is obtained using the frame
topology. The topology is determined after local
coarse image registration. Szeliski [15] uses a
projective transformation which is identified by
direct image registration. The Levenberg–Mar-
quardt iterative minimization algorithm is em-
ployed in order to identify the motion model and
construct either a planar or a cylindrical view of
the scene. In [14], a technique for long-term global
motion estimation is proposed and a hierarchical
strategy is applied for parameter estimation. In
addition, a closed-loop prediction is adopted
for avoiding error accumulation. A method for
dynamic mosaicking has been proposed by
Nicolas [8].
The remainder of the paper is organized as

follows. Section 2 presents the models used for
characterizing camera motion, the techniques
employed for estimating 2-D displacement vectors
and methods for robust motion parameter estima-
tion. We first extract a sparse but validated 2-D
displacement vector field for achieving the re-
quired robustness in parametric camera motion
estimation. Our approach is particularly well-
suited to the case of large motion between
successive frames or to the case of less textured
images. The presence of independently moving
objects does not influence the accuracy of camera
motion estimation. In addition, we introduce an
affine model estimation based on moment invar-
iants. In Section 3, the relations for the frame
alignment and the mosaic construction are pre-
sented. Two models are considered: the affine and
the projective model. The problem of accumulat-
ing errors leading to a possible misalignment is
also addressed, and a technique is introduced for
halting the error propagation and correcting errors
of this type. Finally in Section 4, results are shown
for four real video sequences and conclusions
based on the experiments are given.

2. Camera motion estimation

The frame alignment is based on camera motion
estimation. The camera is also called a dynamic
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observer, since it does not remain stationary
during its capture, but rather moves unrestrictedly
in a 3-D space. This motion is well known as
‘‘egomotion’’. One of the most difficult tasks in
motion analysis is to estimate the camera motion.
Various camera movements have to be considered.
The camera may pan, translate parallel to the
image plane, tilt in a certain direction, zoom,
rotate around one of the three axes or undergo any
combination of these motion types. Numerous
parametric models have been introduced to
describe some of the above motions, as they are
projected into 2-D space, like the image plane. The
parametric motion, which is estimated using a
parametric model, represents the motion of a
dominant surface in the scene, usually the back-
ground scene.

2.1. Parametric models

Mann and Picard [7] present, describe and
qualitatively compare various 2-D motion para-
metric models. They conclude that using a small
number of parameters the projective model is the
most accurate. From all of these in our imple-
mentation three different parametric models are
used. Each of the models represents a different
kind of camera motion. The parametric models
express a coordinate transformation which maps
the image coordinates p ¼ ðx; yÞ to a new set of
coordinates p0 ¼ ðx0; y0Þ: The set of the implemen-
ted transformations is represented in Table 1.
In the simplest motion parametric model, it is

assumed that the camera translates parallel to the
image plane. Although translation is the least
constraining and simplest of all the motion types

to implement, it is poor at capturing large changes
due to camera zoom, rotation, pan, and tilt.
After the simple 2-D translation, the next

simplest transformation is the zooming-translation
model. In this form of transformation, the camera
zooms and translates parallel to the image plane.
The scale in each of the image coordinates x and y

is isotropic, meaning that the magnification in the
x and y directions is the same. The isotropic scale
is described by parameter q; while the translation
in the x and y directions is described by vector b:
The affine model is more general and involves

six scalar parameters. It assumes a planar surface
and an orthographic projection into the image
plane. The affine model accurately describes zoom,
translation in the x and y directions and pure
shear. The scale in the two directions ðx and yÞ
may be anisotropic. The parameter b expresses the
two-dimensional translation vector and the A

matrix describes the anisotropic scale and shear
in the two directions.
The projective model is the most general used in

our work and sometimes the most efficient model.
It involves eight scalar parameters, and it describes
many possible camera motions for a planar scene
with perspective projection. The projective model
describes all possible camera motions (3-D trans-
lation and rotation) for a planar scene. Therefore,
it can be used for any 3-D surface provided the
objects in the scene are sufficiently far away from
the camera. It can be also used for any 3-D object,
if the camera movement is restricted to rotation
and zoom.
Comparing the above three parametric models,

we conclude that the most complicated is not
always the most efficient. The parametric model
with the largest number of parameters is usually
prone to less precise computation of the para-
meters, when compared with other models invol-
ving fewer parameters. Each of the models
however is sufficient and also efficient for certain
kinds of camera motions.
The parametric model estimation is based on the

accurate computation of a displacement vector for
a number of image points. The estimated displace-
ment vector field usually contains errors. On the
other hand, the reliability of the resulted para-
meters depends on the number of points in which

Table 1

Coordinates transformations

Model Coordinates

transformation

Parameters

Translation p0 ¼ pþ b bAR2

Zoom and

translation

p0 ¼ qpþ b qAR; bAR2

Affine p0 ¼ Apþ b AAR2�2; bAR2

Projective
p0 ¼

Apþ b

cTpþ 1
AAR2�2; b; cAR2
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the displacement vector field is accurate. The total
number of point correspondences must be suffi-
ciently large.
The erroneous data in a displacement vector

field are called outliers. These are image points
which are not consistent with the dominant
camera motion, and are usually due to noisy
measurements or are points belonging to indepen-
dently moving objects. Using these data in
parametric model estimation leads to an incorrect
camera motion estimation. Therefore, the discri-
mination and removal of these data from the set of
data used for the estimation are necessary. The
correct data in a displacement vector field are
called inliers. These are points which are consistent
with the dominant motion.
We approach the problem of correct motion

field estimation by implementing two methods
with appropriate criteria in order to separate and
remove the outliers. We formulate the problem of
dominant motion estimation as that of model-
based robust maximum likelihood estimation (M-
estimation) with direct methods or using affine
moment invariants.

2.2. 2-D motion field estimation

In this section, we shall present two methods for
displacement vector field estimation. We shall also
refer to the set of criteria that are used in order to
discriminate the outliers from inliers. Both meth-
ods are based on spatio-temporal variation of
intensity.

2.2.1. Block matching method

The first method for displacement vector esti-
mation is the well-known block matching method
with sub-pixel accuracy. The criterion to be
minimized is the average absolute value of the
displaced frame difference, and a typical value for
the block size is 16. In order to reduce the

computational complexity required by the block
matching method, a technique called ‘‘increasing
accuracy search’’ is implemented [18]. At first the
algorithm searches in an area with low accuracy.
The algorithm is iterated with successively increas-
ing accuracy until sub-pixel (equal to 1

2
pixel in our

implementation) accuracy is obtained. Since the
displacement vector has sub-pixel accuracy,
the intensity involved in the criterion has to be
interpolated. For this purpose, the bi-linear inter-
polation from the four nearest points is used.
A number of extra criteria are used in order to

achieve correct displacement vector estimation.
The role of these criteria is to separate outliers
from inliers and remove the outliers. The set of
criteria is:

* Removal of blocks with uniform intensity
values (typically with variance less than 30).
As the displacement vector estimation is based
on the difference of intensity values, the motion
estimation within these blocks may be wrong.

* Removal of corresponding blocks with a large
displaced frame difference. A typical value for
the threshold on the average of the absolute
value of the displaced frame difference is 15.

* Removal of blocks with a displacement vector
that differs excessively from the average value
of displacement vectors of all blocks. These
blocks usually belong to independently moving
objects. The threshold depends on the amount
of zoom and is typically set for both displace-
ment components to 3 for taking into account
the zoom component, or to 1 in case of pure
translation or panning.

* Smoothing the difference of the displacement
vector of each block according to neighbouring
displacement vectors of other blocks. The
process of smoothing is achieved by applying
a filter with weights in a neighbourhood of eight
blocks. The filter that is used is

usðm; nÞ

¼
P1

k¼�1

P1
l¼�1Fðuðm � k; n � lÞ � uðm; nÞÞhðjkj þ jljÞuðm � k; n � lÞP1
k¼�1

P1
l¼�1Fðuðm � k; n � lÞ � uðm; nÞÞhðjkj þ jljÞ

; ð1Þ
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where hð0Þ ¼ 4; hð1Þ ¼ 2; hð2Þ ¼ 1; and Fð	Þ ¼ 0;
if the block has no measure, or the difference is
more than 1 pixel, and Fð	Þ ¼ 1; if the difference
is at most one pixel. In Eq. (1), uðm; nÞ is the
initial value of one displacement component at
pixel ðm; nÞ; while the smoothed value is
usðm; nÞ:

In order to achieve correct motion field estima-
tion, we use the neighbouring motion estimation
as an initial value for the current block motion
estimation. The initial value is corrected by
applying the block matching method in a smaller
search area. This criterion is intended to prevent
the neighbouring blocks from having large differ-
ence with the estimated displacement vector. In
any neighbourhood of blocks, the displacement
vectors usually have similar values.

2.2.2. Corner correspondence

A corner detector is first applied to each image
to extract feature points of high curvature. A
correlation technique is then used to establish
candidate correspondences between two images. In
our implementation, we use the corner detector
described in [16]. Consider a generic image point p

and a matrix C; defined as

C ¼

P
I2x

P
IxIyP

IxIy

P
I2y

" #
; ð2Þ

where the summations on the two components
ðIx; IyÞ of the image gradient are performed on a
local window, typically of size 7� 7; around the
considered point p: A corner is identified by two
strong edges, which are characterized by the
eigenvalues l1 and l2: A corner is a location where
both eigenvalues are large enough (typical values
range from 1000 to 3000 for the above window
size).
The matching of feature points which are

already extracted is established through a correla-
tion technique that differs somewhat from the
method described in [19]. For each feature point p1
of the first image, we use a correlation window of
size ð2M þ 1Þ � ð2N þ 1Þ centred at point p1: A
rectangular search area of size ð2du þ 1Þ � ð2dv þ 1Þ
is also used, centred at the same point ðp1Þ in the

second image. The correlation process is applied
between the correlation window of point p1 and
the corresponding window of each feature point
lying within the search area in the second image.
The distance criterion used in the correlation
process is the squared intensities difference be-
tween the corresponding windows of two feature
points,

Dðp1; p2Þ

¼
1

ð2M þ 1Þ � ð2N þ 1Þ

XM
m¼�M

XN

n¼�N

� ðI1ðx1 þ m; y1 þ nÞ � I2ðx2 þ m; y2 þ nÞ2:

ð3Þ

If Dðp1; p2Þ does not exceed a threshold, typically
about 25, the corresponding feature points are
defined as candidates matches. In order to estab-
lish correct feature points correspondence, we
apply an extra criterion such as the one given in
[19]. The correlation coefficient is the second
criterion that is used. In our application, we
accept the candidates’ corresponding feature
points only if the correlation coefficient is very
close to 1.
After this process, it is possible for a feature

point in the first image to have more than one
candidate match in the second image and vice
versa. In order to avoid the many-to-one corre-
spondence between two images we apply the
following process. If several points in the first
image are found to correspond to a single point in
the second image, we accept as candidate corre-
sponding feature point the point in the first image
and the point in the second image which give the
largest value of correlation coefficient. It is also
clear that, if we reverse the image roles, taking the
first image as the second and vice versa, the same
pair of points will be selected. Therefore, the most
similar feature points in two images are accepted
as corresponding features.

2.3. Parametric model estimation

After the block or corner matching process,
a number of correspondences between the two
images is obtained. Some of these correspondences
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are correct, without being consistent with domi-
nant motion. Our goal is to estimate the para-
meters of the motion model, which describe the
dominant motion of the scene, using the pre-
viously computed point correspondences. One of
the most popular methods which recover the
structure that best fits the majority of the data,
while identifying and rejecting ‘‘outliers’’ or
‘‘deviating substructures’’, is the robust estimation
method. In our work, we use the M-estimation
technique as the most suitable among all robust
techniques for solving this form of problem [4].
The second method proposed in our work, which
achieves motion model estimation, is based only
on moment invariants. The presentation and
analysis of these methods follows.

2.3.1. Robust estimation of a motion model

The M-estimator addresses the problem of
finding the values for parameters ðyÞ of one of
the motion models (Table 1) that best fits the
majority of the data. The data set is the result of
motion field estimation. Therefore, the data are
the pairs of corresponding points of the two
images ðp0

i; piÞ: Given two images I1 and I2; after
the 2-D motion field estimation method a set of
vectors ðp0

i; piÞ is obtained, where pi is a 2-D vector
of image I1 coordinates and p0

i is the corresponding
2-D vector of image I2 coordinates. It is assumed
that the camera motion is modeled according to
one of the transformations ðTÞ already presented.
Then the point correspondence of the two images

according to transformation T is

p0
iðyÞ ¼ TðpiÞ;

where p0
iðyÞ is the point in image I2 corresponding

to pi as determined by the transformation T ; while
p0

i is the point in image I2 as already determined by
the displacement vector estimation method.
In the M-estimation formulation, the unknown

parameters of the transformation T are estimated
by solving a minimization problem where the
objective function is a weighted sum of the residual
errors. In particular, the following minimization
problem is solved:

min
y

f ðyÞ ¼ min
y

X
i

rðri;sÞ; ri ¼ p0
iðyÞ � p0

i; ð4Þ

where rðr;sÞ is the objective function defined over
residual r and scale factor s: The residual error r is
based only on the geometric position of points in
the plane. The scale factor s ¼ c0 medianfjrijg;
where c0 ¼ 1:4826 [11]. In this work, we use the
Geman–McClure function [1]

rðr;sÞ ¼
r2

r2 þ s2
:

In the case of an affine model, the minimization
is achieved using an iterated least-squares method.
In Fig. 1, we plot the global horizontal displace-
ment as computed from the affine model para-
meters for our method (dashed line) and for the
robust differential method of Black and Anandan
[1] applied to the whole Stefan sequence. In view of
these results, the two methods are equivalent, both
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Fig. 1. The estimated global horizontal displacement for the Stefan sequence using the robust differential method and our method

(dashed line).
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are robust, rejecting the independent movement
and accurately estimating large motions.
In the case of a projective model, the Geman–

McClure function is used, leading to a non-linear
system for resolving the resulting minimization
problem. To solve this system, we use the
Levenberg–Marquardt iterative non-linear mini-
mization algorithm. The Levenberg–Marquardt
algorithm computes an approximate Hessian
matrix H and the weighted gradient vector g with
components

gk ¼
X

i

@r
@ri

@ri

@yk

; Hkl ¼
X

i

@2r
@r2i

@ri

@yl

@ri

@yk

:

Then the motion model parameters y are updated
by an amount dy according to the equation

ðH þ mHdÞdy ¼ �g; ð5Þ

where Hd is the diagonal of H; and m is a
stabilization parameter.
The steps of the Levenberg–Marquardt method

are:

1. Compute the error f ðyÞ:
2. Initialize m ¼ 0:001:
3. Solve system of equations (5). Compute the
estimation error with the updated parameters.

4. Compare with the previous error value. If the
error has increased, the parameter m is increased
by a factor of 10, otherwise the parameter m is
decreased by a factor of 10 and the parameters
y are updated y’yþ dy: We then return to
Step 3.

These steps are iterated until the relative error
difference between successive iterations is less
than a threshold that in practice may be roughly
0.001.

2.3.2. Motion estimation based on affine moment

invariants

The second method for estimating motion
model parameters is based on affine moment
invariants. The moments are generally features
that describe succinctly an object shape or a
surface. In this work, we use the moments in
order to estimate an affine transformation between

two image regions. The moments are defined by

mkl ¼
X

x

X
y

xkyl :

In our work, the moment evaluation is limited
only on the boundary points of the corresponding
regions in the two images. It is obviously necessary
to determine the corresponding regions in the two
images. The affine transformation is then obtained
by estimating appropriate moments in these
regions. This method is faster than that of the
previous section, and it is sufficiently accurate if
the initial correspondences are correct. The
moments computed on polygons can take in
consideration the fact that under affine transfor-
mations polygon regions are maintained. In
addition, the summation on the region boundaries
make the estimated moments less noise-sensitive.
Region correspondence results from point cor-

respondence. In particular, after 2-D motion field
estimation, which gives correspondences between
points in the two images, points that are not
consistent with dominant motion are rejected. We
select some points in the set of corresponding
points in two images, using criteria that are based
on the position of these points in the images. Then
the selected points are used to construct the
contours of the corresponding regions in the two
images. The corresponding contours in two images
are described by using moments. Without loss of
generality, we assume that the origin is placed at
the centre of region in the initial view before the
transformation. Therefore, the translation vector
results from the first-order moments of the region
in the second view.
For estimating the transformation matrix A we

use affine invariants. There are several functions of
moments, which are invariant features in affine
transformations. The method that is usually used
to derive moment invariant features is the normal-
ization method [10], in which a standard position
is defined. The standard position of an object or a
region uniquely characterizes the object and it is
the same for all affine transformations. Using this
standard position the affine transformation, and
therefore an affine motion model, between two
views of the same object or image region can be
determined. The normalization transformations
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are calculated separately for the two views of the
object or image region. Let s denote the standard
position and let T1; T2 be the two affine
transformations, from the object position to the
standard position. The following relations hold
true:

p2 ¼ Ap1; p1 ¼ T1s and p2 ¼ T2s:

The affine transformation between the two views is
estimated by composing the two evaluated affine
transformations between each view and the
standard position

A ¼ T2T
�1
1 : ð6Þ

The steps of the whole algorithm for estimating the
affine model parameters are shown in Fig. 2.
The transformation matrix Ti ði ¼ 1; 2Þ is de-

composed in x-shear, anisotropic scaling and
rotation,

T ¼
cos f sin f

�sin f cos f

" #
a 0

0 d

" #
1 b

0 1

" #
: ð7Þ

For simplicity, the index i is suppressed in the
above equation. By using this decomposition, we
calculate the decomposition parameters f; a; d;b

[10,17] for T1 and T2 and use them to calculate the
decomposition parameters for A (the affine trans-
formation between the two views). The decom-
position parameters are calculated by successively
obtaining invariants for each of the decomposition
steps.
In this section, we focus on contour construc-

tion from a set of selected points in the two images.
After applying the displacement vector field
estimation and M-estimation a number of corre-
sponding points has been selected. The contour
construction procedure is first applied to the
selected points in the first image. After construct-
ing the first contour, the second is obtained from
the points of the second image which correspond
to the points of the first image contour. Usually
the number of selected points is too large,
rendering the computational cost of contour
construction unacceptable. In order to avoid the
large cost of contour construction, we select a fixed
number of corresponding points in the two images.
This limitation does not influence the parameter
estimation accuracy, because under affine trans-
formations a polygon remains a polygon.
We select the points so that the surface built by

concatenating them covers a large enough area of
the scene plane. Therefore, the affine transforma-
tion, which will be estimated by the affine
invariant method, will better represent the real
camera motion. If the selected points cover a small
surface of the image plane, then the estimated
camera motion could differ from the real one, as it
is only projected in this portion of the scene. The
problem is more pronounced in the case of images
with more than one motion planes. For this
reason, the selection procedure chooses the most
distant points. The algorithm used for the selection
of points is as follows:

1. If N is the number of points in each image, after
applying the method of point correspondence
and the method of inliers detection, there are
NðN � 1Þ=2 possible point pairs. For each pair
of points ðp1; p2Þ their euclidian distance d is
computed.

2. The pair ðp1; p2Þ with the largest distance taken
from the set of all possible point pairs is

Fig. 2. The steps of the estimation method based on the affine

invariants.
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selected. These points are inserted in the list of
selected points L:

3. The selected pair is removed from the set of
possible pairs. We also remove from the set of
possible point pairs those pairs for which at
least one point is a neighbour of one of the
points that define the selected pair. The
neighbourhood is a square area with size taken
to be 10 pixels around of each point of the
selected pair.

4. If the number of selected points of the list L is
smaller than K ; we return to Step 2, otherwise
the algorithm terminates.

K is the preset number of contour points. One of
the most obvious solutions is constructing the
convex hull circumscribing all points. The possi-
bility of constructing a uniform convex hull is not
dismissed; however, the use of a non-convex hull
helps to better estimate the camera motion because
the complex shape passing through all selected
points contains more information about the
motion in the scene.
A non-convex hull is constructed as a solution

to the well-known traveling salesman problem
(TSP), that of identifying the shortest tour which a
traveling salesman will follow in order to visit K

cities exactly once. In our application, this
problem is to find the shortest tour visiting all
the points provided there are no edge sections.
This algorithm is a tour construction procedure
which builds an approximately optimal tour
starting from the original distance matrix. For
the solution of this problem there is no fast
accurate algorithm. Fortunately, there are some
heuristics which give good approximations. One of
these, the convex hull insertion procedure [3], is
used in our work. This algorithm uses the convex
hull as an initial sub-tour. It then successively adds
the other points not belonging to the convex hull,
following some distance-related criterion. Gra-
ham’s scan [9] is used in order to construct the
convex hull. The steps of the convex hull insertion
procedure, known as the Stewart algorithm, are:

Step 1: Form the convex hull of the set of
points. The hull gives an initial sub-tour.

Step 2 (Insertion): For each point pk not yet
contained in the sub-tour, decide between which

points pi and pj on the sub-tour to insert point pk:
That is, for each such pk; find fpi; pjg; such that
dik þ dkj � dij is minimal.

Step 3 (Selection): From all ðpi; pk; pjÞ found in
Step 2, determine the ðpn

i ; p
n
k; p

n
j Þ; such that ðdinkn þ

dknjn Þ=dinjn is minimal.
Step 4: Insert point pn

k in sub-tour between
points pn

i and pn
j :

Step 5: Repeat Steps 2–4 until a Hamiltonian
cycle is obtained.

3. Mosaic construction

As mentioned above, the mosaic image is
constructed from information from all frames in
the sequence. The mosaic construction is per-
formed in two steps: frame alignment and frame

composition. Frame alignment is based on motion
estimation, while frame composition uses the
frame alignment in order to compose all frames
into a single image. Both of these steps depend on
the mosaic’s representation.
In our implementation, we have focused on the

static mosaic representation, which is constructed
from each shot of the sequence and represents the
view of the scene background over the whole
sequence. The frames of the shots are aligned to a
fixed coordinate system, which can be chosen by
the user and is nominally the coordinate system of
the first frame of the shot. The aligned frames are
then composed in two ways: by using some type of
temporal filter or by simply adding the informa-
tion of each new frame to the mosaic without
filtering. The mosaic image constructed in the first
method reveals a sharp background scene and
ghost-like moving objects, while the image con-
structed in the second way reveals a sharp back-
ground and the moving objects in their position in
the frame whose coordinate system is used (the
reference frame). The most important residuals are
simply computed as the difference which results by
comparing each frame with the static mosaic. The
most important residuals usually represent indivi-
dual moving objects or changes in the scene that
occur over the elapsed time. The static mosaic is a
compact scene representation. It is well suited to
video storage and to rapid browsing in large digital
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video libraries. It is also used to obtain efficient
access to individual frames of interest.

3.1. Frame alignment

The alignment of all sequence frames is gen-
erally achieved by estimating the camera motion.
The ways of alignment vary according to the
chosen coordinate systems and the images which
take part in motion estimation. Each different
coordinate system defines a different representa-
tion that requires a different alignment. Images
are selected in such a way as to obtain motion
estimation as accurate as possible and, there-
fore, to establish correct alignment between all
the frames in the sequence. In what follows we
describe in detail the frame-to-frame alignment,
and we mention briefly the frame-to-mosaic

alignment.
Frame-to-frame: The alignment parameters are

first computed between successive frames for the
whole sequence. The result of motion estimation
between successive frames are the alignment
parameters themselves. These parameters are
composed to compute the global frame-to-mosaic
alignment parameters. The mosaic image is created
by warping each frame to a reference coordinate
system using the computed parameters. When
constructing a static mosaic, all the frames are
aligned to a fixed coordinate system. This can
be the system of one particular frame called the
reference frame or can be a virtual coordinate
system. In the second case, it is necessary to use
the transformation between the virtual coordi-
nate system and each one of the input frames.
The alignment process requires one pass over the
sequence in order to compose all the successive
transformations.
If camera motion is described by the affine

parametric model, then the alignment between
successive frames is given by the following rela-
tion:

ptþ1 ¼ Atpt þ bt; ð8Þ

where ptþ1 and pt are the 2-D real pixel coordi-
nates of the successive frames t þ 1 and t: At and bt

are the transformation and translation matrices of
frame t þ 1 in order that it be aligned in the

coordinate system of the frame t: Generally, the
alignment of each frame t in the coordinate system
of reference frame s is obtained by the following
relations:

ps ¼As�1?Atpt þ
Xs�2
i¼t

As�1?Aiþ1bi þ bs�1

if tos; ð9Þ

ps ¼ ðAt�1?AsÞ
�1 pt �

Xt�2
i¼s

At�2?Aiþ1bi � bt�1

 !

if t > s; ð10Þ

where ps are the coordinates of the points in frame
t according to the coordinate system of reference
frame s: The above relations hold if the mosaic
coordinate system is exactly the coordinate system
of frame s: In the case that we select a virtual
coordinate system as the mosaic coordinate
system, the above coordinates ps are transformed
to the virtual coordinate system

pV ¼ AVps þ bV; ð11Þ

where AV and bV express the transformation and
the translation of each frame in order to be
projected into the virtual coordinate system, while
pV corresponds to the coordinates of each frame in
the virtual coordinate system.
If camera motion is described by the projective

parametric model, the alignment of the successive
frames corresponds to the relation

Ptþ1 ¼ MtPt;

where Ptþ1 and Pt are the projective coordinates
of frames t þ 1 and t: Mt corresponds to the
projective transformation of frame t in the
coordinate system of frame t þ 1: The projective
transformation corresponds to the matrix

M ¼

a1 a2 a3

a4 a5 a6

a7 a8 1

2
64

3
75;

where ai are the parameters of the projective
parametric model. The alignment of each frame t

according to coordinate system of frame s
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corresponds to the relations

Ps ¼
Yt

i¼s�1
tos�1

Mi

0
B@

1
CAPt if tos; ð12Þ

Ps ¼
Ys

i¼t�1
sot�1

Mi

0
B@

1
CA

�1

Pt if t > s; ð13Þ

where Ps are the projective coordinates of t frame
in the coordinate system of s frame. The product
of the above relations expresses the composition of
successive projective transformations and also
corresponds to a projective transformation ðMtsÞ:
The inversion of the product of the projective
transformations is given by

M0
ts ¼ jMtsjM�1

ts ;

where jMtsj is the determinant of Mts and M�1
ts

is its multiplicative inverse. In the case where
the chosen coordinate system is a virtual one, the
alignment of each frame corresponds to the
relation

PV ¼ MVPs;

where the Ps coordinates of frame t are trans-
formed to the virtual coordinate system according
to the projective transformation MV: PV are the
new coordinates of frame t projected into the
virtual coordinate system.

Frame-to-mosaic: Frame-to-mosaic alignment
requires motion estimation between the current
mosaic image and the current frame of the
sequence. To handle the problem of large dis-
placements between the current mosaic image and
new frames, the alignment parameters are com-
puted between the mosaic image and the new
frame using the alignment of the previous frame as
the initial value for the displacement.

3.2. Frame composition

When the frames have been aligned, they must
be composed. This is the last step in the construc-
tion of the mosaic image. In our implementation,
different ways of frame composition are consid-
ered. These are separated into two categories,

depending on whether they use temporal filtering
or simply ‘‘stick’’ the further information of each
frame onto the current mosaic image. The filters
that are used in the first category are the median
and the average intensity value. To reduce visual
misalignments occurring in the mosaic image area
containing the borders of the frames, we use the
average intensity value filter in a zone around the
borders of each frame.

3.3. The frame misalignment problem

One of the previous approaches to the problem
of frame alignment, as we have already seen, was
the frame-to-frame alignment. In this approach,
the parameters of the transformations between
successive frames are composed to compute the
global frame-to-mosaic alignment parameters.
The main problem with this approach is that the
parameters of the transformation between succes-
sive frames are not accurate enough to guarantee
the construction of a correctly aligned mosaic
image. Small errors in parameter estimation of
successive frames or small deviations of the
supposed parametric model from the real motion
accumulate. Therefore, global frame-to-mosaic
alignment parameter computation is susceptible
to accumulating errors. The extent to which errors
accumulate depends significantly on the duration
of the video shot that the mosaic image represents.
When the length of a video shot is large enough,
the errors in each of the frame-to-frame alignment
parameters are large as well, because the number
of frames is increasing.
An improvement over frame-to-frame alignment

is the frame-to-mosaic alignment. In this ap-
proach, accumulating errors do not exist. The
results are better under some conditions. Con-
structing the mosaic image with the entire infor-
mation of the previous frame and the additional
information of each new frame leads to misalign-
ment. This problem is the result of the great
difference of the information between each of the
new frames and the area of the mosaic image that
corresponds to the same information. The infor-
mation difference appears because of the changes
in the scene in these areas. These changes result
either from the presence of a moving object or
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from changes in illumination. If mosaic images are
constructed in the same way, problems are caused
by previous misalignments. The areas in which
misalignments occur take part in the process of
motion estimation between the mosaic image and
the new frame. Consequently, mosaic-to-new-
frame alignment parameters are incorrectly com-
puted. Also, the misalignment problem appears
when the difference in resolution between the
mosaic image and the new frame is large enough.
The large difference in resolution leads to incorrect
mosaic-to-frame alignment parameters, when the
parametric model is not general enough to describe
it. There is no direct solution to the above
problems. Therefore, in order to construct a well-
aligned mosaic image we use the previous frame
alignment approach and try to find techniques for
correcting possible misalignments. In our imple-
mentation, we propose the local fine correction of
the already-computed global frame-to-mosaic
alignment parameters.

3.4. Local fine correction of the frame alignment

In order to construct a well-aligned mosaic
image, we use a local fine correction technique.
Assuming that frame-to-frame alignment para-
meters have already been computed, the local fine
correction technique takes place during the mosaic
image construction. The process of mosaic con-
struction involves the frames’ transformation ac-
cording to global frame-to-mosaic alignment
parameters, which are obtained by composing the
frame-to-frame alignment parameters. The frame
transformation is achieved using the bi-linear
interpolation method. The fine correction technique
is applied to a subset of previously transformed
frames. The obtained parameters are exactly the
camera motion correction. For obtaining the
correction parameters we use the M-estimator on
corresponding corners of the transformed frames
according to the initial estimation. Composing the
directly new parameters with the global frame-to-
mosaic alignment parameters of the corresponding
frame, the corrected global frame-to-mosaic align-
ment is generated. The new global frame-to-mosaic
alignment parameters approximate better the real
camera motion parameters. The two basic issues for

the local fine correction technique implementation
are the following:

1. the frequency determination of the motion
parameters correction,

2. the choice of the images which take part in the
correction process.

The local fine correction could be active in each
pair of successive frames of the sequence. As this
has a high computational cost, its frequent
utilization should be avoided. The correction
frequency is inversely proportional to the quality
of the mosaic image construction, and also to the
cost of its construction. Therefore, we must choose
a reasonable trade-off in the value of the correc-
tion frequency.
In our implementation, we propose the use of the

frames topology of a shot in order to determine the
correction frequency and select the frames which
take place in this process. The topology describes
the relative position of each frame in the mosaic
image. This depends on the direction of the camera
motion. In Fig. 3, a frame topology is depicted. The
camera first pans to the right of the scene and then
returns again to the left, capturing a larger portion
of the scene than before. The problem of misalign-
ments in the mosaic image construction appears
when the camera returns to areas which have been
already captured. The frames which are captured
during the return of the camera are wrongly placed
in the mosaic image, and intense misalignments are
the result of this frame location. Therefore, in
sequences where the camera changes motion direc-
tion, we propose the local fine correction applica-
tion to one of the new direction frames.
It is also necessary to apply the correction

process to frames that are topologically neigh-
bours of the reference frame. The misalignments
express the deviation of each transformed frame
from the coordinate system of the reference frame.
Therefore, the correction of motion estimation
between each of the frame of the sequence and the
reference frame is required. Because of differences
in the visual information of each frame with that
of the reference frame, the correction will not be
trustworthy.
The neighbouring frames depend on the se-

quence topology and they are not necessarily
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temporally successive frames. In the above figure,
neighbours of frame A1 are considered to be
frames A2, A13, A14 and A19. A solution to the
problem of misalignments caused by accumulating
errors during the camera motion estimation of
successive frames would be the application of the
local fine correction each the time the camera is
translated by T pixels. This translation is mea-
sured by the displacement of image centres, as
shown for example in Fig. 1 for the Stefan
sequence. This means that the whole parametric
model is taken into account.
In brief, we propose the application of local fine

correction:

* in the frames in which the camera changes
motion direction,

* in the frames which are topologically neigh-
bours of the reference frame,

* each time the accumulated camera translation
exceeds T pixels.

The frames to place in the correction process are
determined by the frame topology. The first frame
ðF Þ is selected by the frequency of correction, while

the second frame ðGÞ is determined by the
following criteria:

* Frame G must belong to the neighbourhood
of Frame F : The neighbourhood is also
determined by the topology. The neighbour-
hood is an area around the frame F of size
K � K : The correctional process is per-
formed only if G belongs to the neighbour-
hood of F ; because then the amount of
common information between the two frames
is significant.

* Frame G must be the temporal oldest of all
frames in the neighbourhood. This choice helps
to decrease cumulative errors.

4. Experimental results and conclusions

We have implemented and compared all the
techniques described above on simulated and real
image sequences. The comparison between the
block-matching and the corner correspondence
techniques shows that the first could fail in case of

Α1 Α2 Α3 Α4 Α5 Α6 Α7

Α8Α9Α10Α11Α12Α13Α14Α16 Α15

Α17 Α19Α18

Fig. 3. Topology of an image sequence.

Fig. 4. Three frames of the Stefan sequence.
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substantial scale factor changes, as in the case of a
significant zoom-in or zoom-out. When the geo-
metric deformation is not very pronounced, the

block-matching method appears to exhibit better
results and greater efficiency than the corner
correspondence. This comparison was done on

(a) (b) (c)

Fig. 5. Panoramic view of the Stefan sequence using: (a) an affine motion model; (b) a projective motion model and (c) the correction

procedure.
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a sequence with synthetic 2-D translation, rotation
and zoom.
Comparing the M-estimation method to the

invariant moment method, we conclude that the
first is less sensitive to 2-D motion field errors. In
the case of a sufficiently good initial point
correspondence, the moment invariant method
gives better camera motion estimation. In any
case, the M-estimator is robust to various kinds of
outliers, while the moment invariance method has
a lower computational cost. The moment invar-
iance method is also limited to the affine or any
simpler model, since projective moment invariants
are not known to exist.
We have observed the results of our algorithmic

approaches mainly on the Stefan sequence
(Fig. 4), which presents many different kinds of

motion: zoom-in, zoom-out, rotation around the
vertical or the horizontal axis. In addition, in a
large portion of the viewed scene the image
intensity is uniform, and so no block or corner
correspondences could be found in these regions.
Thus, the estimated motion model is mainly
valid on the upper part of the scene. It should
also be noted that the displacement between
successive frames is up to 25 pixels for a resolu-
tion of 350 pixels per line, while the scale change
may be as much as 5%. For this complex sequence
we have compared two motion models: the
affine and the projective. The 2-D motion field
was obtained by corner correspondence, and the
model parameters were robustly estimated using
the Geman–McClure M-estimator. The two
panoramic views obtained from 300 frames are

(a) (b) (c)

Fig. 6. Panoramic view of the: (a) Almaden; (b) Princeton and (c) Yosemite sequences.
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shown in Figs. 5(a) and (b), respectively. Clearly,
the projective model gives better results and
captures well the whole camera movement, pro-
vided the local fine correction technique is used for
limiting the propagation of image registration
errors, as shown in Fig. 5(c). The correction
technique was used after a change in the direction
of panning and after 40 pixels of image centre
displacement.
Globally, we have experimented with three

motion parametric models: (a) translation with
isotropic scaling, (b) affine and (c) projective. In all
cases, the best results are achieved by the model
most closely approximating the real 3-D motion.
An example of the first model is given in Fig. 6(a)
for the Almaden sequence, where the movement is
mainly translational. The block-matching techni-
que was used for estimating the displacement
vectors, and the M-estimator for obtaining the
three model parameters, for the whole sequence of
1000 frames. For the construction of the panora-
mic view, the frame-to-mosaic alignment was used,
while the frame-to-frame alignment gave a similar
result.
The affine model was used for the construction

of the panoramic view from the 350 frames of the
Princeton sequence (Fig. 6b). Here the camera
undergoes 3-D translation, rotation around the
vertical axis and zooming. Corner correspondence
was used for estimating the 2-D motion field, and
the M-estimator provided values for the model
parameters.
An example of the projective model is shown in

Fig. 6(c). In the Yosemite sequence of 1000 frames,
the camera motion is 3-D translational and
rotational around the vertical axis with some
zooming. As in the previous case, corner corre-
spondence and M-estimation are used for obtain-
ing the eight motion parameters.
A possible solution to the model selection

problem is a hierarchical model estimation and
the choice of the more reduced model with
sufficient accuracy. As the models employed are
mostly good approximations for planar scene
surfaces, in case of a scene composed from distinct
planar surfaces, the best approach should be the
motion-based image segmentation, in order to
obtain a better image registration.

Applications which could be foreseen with the
constructed static mosaic are: background storage,
video compression, scene summary, video indexing
and video retrieval.
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