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ABSTRACT

In this paper we propose a method for estimating
the motion parameters for a rotating camera with
a possibly changing focal length. This method is
suitable for analysing sport event videos. The esti-
mation process consists of three stages: (1) robust
estimation of the 2-D translational components, (2)
2-D block-based motion estimation and (3) robust
estimation of a parametric motion model. For more
reliability con�dence measures for 2-D motion vec-
tors are introduced. The reliability of the method is
illustrated on some di�cult real image sequences.

1 Introduction

Video content can be characterized using a camera
motion description [5]. For example, in TV sports
coverage camera panning means that a panoramic
view is shown or that an athlete moves in a speci�c
direction. When the camera zooms on a given player
this means that the intention is to �xate on this par-
ticular player. The camera's activity is related to the
most interesting action in such a video.
In many real image sequences the camera under-

goes only rotational motion with the focal length
possibly changing. This happens for example in
videos of sport events, where the camera may ro-
tate around either the horizontal, or vertical axis,
attempting to �xate on the moving athlete. In addi-
tion, the focal length may change for zooming in on
the �xated person. As seen in Section 2 this situation
leads to a 2-D parametric motion model.
The most widely used method with a parametric

motionmodel is the robust di�erential method [3] [6].
J.-L. Dugelay and H. Sanson [4] present a detailed
analysis of the di�erential techniques for parametric
motion estimation. Various parametric models are
considered, including a�ne and quadratic models.
In the case of large motion and less textured im-

ages we have experimented some problems with the
di�erential approaches. In this paper we propose a
new method which is less sensitive to the amount of
motion and the image texture. A block diagram of
our method is shown in Figure 1. In a �rst stage
only the global translational motion is estimated us-
ing a least median of absolute deviations method.
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Figure 1: The steps of the parameter estimation
method.

As we do not require a very accurate measure for
this initial estimation, we limit the search to a pre-
de�ned scheme with 1/4 pixel precision. This ini-
tial estimation constrains the second stage which is
applied at a block level. Then a sparse �eld of mo-
tion vectors is obtained with the desired accuracy,
either by a matching technique or a di�erential ap-
proach. However, all blocks are not equally reliable
for motion estimation. As our objective is to obtain
a reliable 3-D motion model, we have to measure
the con�dence of the estimated vectors. We use two
measures of con�dence, one a priori, i.e. before the
motion vector estimation, and an a posteriori based
on the displaced frame di�erence. We present in de-
tail the con�dence measures in Section 4. Finally
we use a robust estimation method for obtaining the
model parameters.

2 Motion model

Since we assume only rotational motion, the 2-D mo-
tion �eld is not dependent on depth. Therefore, a



2-D parametric model can fully describe the 2-D mo-
tion �eld. Let (X;Y; Z) be a 3-D point and a per-
spective projection to (x; y),

x = f
X

Z
and y = f

Y

Z
(1)

where f is the focal length. We assume that the focal
length may change with a rate

� =
df

fdt
; (2)

while the camera may undergo rotational motion
around the vertical and/or horizontal axes. The 3-D
velocity vector of the 3-D point will then be

dX

dt
= �Z
Y ;

dY

dt
= Z
X ;

dZ

dt
= �Y 
X +X
Y

(3)
Using Eq. (2) and (3) in the projection relations of
Eq. (1) we obtain the 2-D motion �eld

u = �f
Y + �x +

X
f

xy �

Y
f
x2 (4)

v = f
X + �y +

X
f

y2 �

Y
f
xy (5)

Four parameters, (
X ;
Y ; �; f), can be used for de-
scribing the whole 2-D motion �eld. However, in
order to obtain linear equations, we extend the pa-
rameters to the coe�cients of the above polynomials
of the image coordinates. Finally, we obtain the fol-
lowing parametric model:

u = �1 + �x + x2 + �xy (6)

v = �2 + �y + xy + �y2 (7)

with 

�1
= �

�2
> 0:

3 Global translation estimation

As presented in the introduction, the estimation pro-
cess begins with a global translation estimation; then
motion vectors are estimated at the block level; and
�nally, the motion parameters are computed. It is
very important to have a reliable and robust initial
global estimation. We are interested primarily in
scenes with a single moving person or object. There-
fore, independent moving objects should be rejected
for estimating the camera motion. We use a robust
least median of absolute deviations method for re-
jecting outliers [9]. However, the full implementa-
tion of a least median method results in an excessive
computational cost. As the accuracy requirement is
not extremely high, we limit the search to a �nite set
of possible displacement vectors. We thus obtain the
best vector and the minimum deviation as follows:

D = min med fjI(x; y; t)� I(x��1; y��2; t�1)jg;
(8)

where the median value is determined using the his-
togram method.

Figure 2: The estimated displacement vectors on a
frame of the Stefan sequence.

The displacement vector estimation at the block
level is initialized by this initial estimate. Since this
estimate is su�ciently accurate, the search is lim-
ited to a narrow window around the initial estimate.
These estimates are quite accurate for blocks taken
from the background, while those from the moving
part of the foreground are less accurate, but are gen-
erally rejected as described in the following. Esti-
mated displacement �elds are shown graphically in
Figures 2 and 3.

Figure 3: The estimated displacement vectors on a
frame of the Tennis table sequence

4 Con�dence measure

In the past work has been done on the reliability
of the estimated displacement vector using matching
techniques. Anandan [1] uses the curvature of the
matching criterion, the sum of squared di�erences,
for measuring the con�dence of the correspondence.
Patras [8] expresses the con�dence measure in terms
of the a posteriori probability of the motion vectors,
the whole estimation framework being probabilistic.
In our work we use two con�dence measures for

weighting the estimated motion vectors. The �rst is
related to the block texture and is independent of the
estimation method and result. The second is based



on the matching criterion.
In [11] it is proven that a unique displacement

vector does not exist if the intensity function de-
pends on only one orientation. More precisely, let
I(x; y) be the intensity function. It will be not pos-
sible to obtain a unique motion vector if I(x; y) =
f(c0 + c1x + c2y). In this singular case all the gra-
dient vectors are parallel. This totally ambiguous
situation happens when only one gradient orienta-
tion exists. For de�ning a con�dence measure let us
consider the following gradient matrix:

G =

� P
I2x(x; y)

P
Ix(x; y)Iy(x; y)P

Ix(x; y)Iy(x; y)
P

I2y (x; y)

�

(9)
The smaller of the two eigenvalue of matrix G can be
used as the index of the block capacity for estimating
the displacement. If the smaller eigenvalue is 0, the
measure con�dence is taken to be null. This measure
is also suggested in [2]. We de�ne the range [0,1] as
being the interval of possible values for the con�-
dence measure. On the other hand, the con�dence
measure should only de�ne the relative con�dence of
the di�erent blocks. Therefore, it is not necessary
to have a unique mapping of the eigenvalues to the
con�dence measures. For this reason we assign the
value 0.5 to the eigenvalue ranked at 1/3 of the to-
tal number of blocks, say �m. Finally, we propose a
sigmoid function for measuring the con�dence,

C0 =
1

1 + e�(1�
�

�m
)

(10)

After the estimation the quality can be measured
using the resulting displaced frame di�erence. Let �
be the average displaced frame di�erence for a given
block. A sigmoid function is also used for measuring
the con�dence,

C1 =
1

1 + e���M
; (11)

where �M is a reference level for the displaced frame
di�erence. It could be possible to compute an adap-
tive reference level based on the observation of the
whole result on a given frame. However, it will be
faster to give a generic rule for determining the ref-
erence level.
The reference level for the absolute value of the

displaced frame di�erence will be �xed as being the
maximal expected. This means that even in the case
of maximum expected deviation the con�dence re-
mains at 0.5. Thus blocks well compensated are
taken into consideration with con�dence measure
very close to 1. Let us now consider the expected
value of the absolute displaced frame di�erence,

Efjdjg = EfjI(x; y; t)� I(x � û; y � v̂; t� 1)jg =

EfjI(x; y; t)� I(x � u; y � v; t � 1)g

+(u � û)Ix + (v � v̂)Iyjg

� EfjI(x; y; t)� I(x� u; y � v; t� 1)jg

+Efju� ûjgjIxj+Efjv � v̂jgjIyj

where (u; v) is the real motion vector and (û; v̂) is
the estimated motion vector. The estimation error
on the motion vector is assumed to be proportional to
the real motion vector, which is unknown and for this
reason replaced by the estimated one. We propose
to use the following inequalities

EfjI(x; y; t)� I(x � u; y � v; t� 1)jg � 3D;

where D is taken fromEquation (8). Finally, we have

Efjdjg � 3D + r(ujIxj+ vjIyj):

Concerning a block, we use the averages of the two
absolute gradient components on the whole block.
We obtain then

�M = 3D + r(ûjIxj+ v̂jIyj) (12)

The �nal con�dence measure results from the
product of the two above de�ned measures. The
equations for parameter motion estimation are
weighted by

W = C0C1 (13)

In Figure 4 the results of con�dence measure on
frames of the Stefan and Tennis table sequences are
shown. The darker a block is, the stronger the con-
�dence value is for this block. The more transpar-
ent a block is, the lower the con�dence measure is
for this block. It is seen that homogeneous blocks,
or blocks with colinear gradient vectors, or indepen-
dently moving blocks are not taken into considera-
tion for the motion parameters estimation.

5 Motion parameter estimation

We now propose to use a robust M-estimator [7] for
estimating the model parameters. The M-estimation
criterion which should be minimised isX

Wk�
�
(ûk � uk(�))

2 + (v̂k � vk(�))
2
�
;

where �(�) is de�ned as

�(x) =

�
1; jxj � T

0; jxj > T

The threshold T is set proportional to the motion pa-
rameters. The summation is taken over all estimated
motion vectors, while � contains all the unknown pa-
rameters. An iterative least squares method is em-
ployed for solving the above minimisation problem,
leading to iterations of linear systems of equations.
In Figure 5 the resulting horizontal (or panning)
global displacement for the Stefan sequence is shown.
Only 3 parameters (�1; �2; �) were considered for ob-
taining the global alignement. A comparison is also
shown (dashed line) with a global displacement re-
sulting from an estimated a�ne parametric model
[10].
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Figure 4: The con�dence measures on blocks.

6 Conclusions

In this paper we have proposed a new technique for
estimating the motion parameters in the case where
the camera undergoes panning and tilting, while the
focal length may change. As the camera does not
translate, a pure parametric model must be esti-
mated, not depending on depth. We have developed
and tested a fast and robust method based on block
matching, con�dence measure computation and M-
estimation. We have obtained very good results on
di�cult sport image sequences.
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Figure 5: The global horizontal diasplacement for
the Stefan sequence.
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