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ABSTRACT
In this paper we address an important issue in motion analysis:
the detection of moving objects. A statistical approach is adopted
in order to formulate the problem. The inter-frame difference
is modeled by a mixture of Laplacian distributions, and a Gibbs
random field is used for describing the label set. A new method
to determine the regularization parameter is proposed, based on
a voting technique. Then two different multiscale algorithms are
evaluated, and the labeling problem is solved using either ICM
(Iterated Conditional Modes) or HCF (Highest Confidence First)
algorithms. Experimental results are provided using synthetic and
real video sequences.

1. INTRODUCTION

Detection of moving objectsin an image sequence is a crucial issue
of moving video, as well as for a variety of tasks in image analysis.
In the case of a static camera, detection is often based only on the
inter-frame difference. In many real world cases, this hypothesis
is not valid because of the existence of ego-motion (i.e., visual
motion due to the movement of the camera). This problem can
be avoided by computing this motion, and creating a compensated
sequence.

Simple approaches to motion detection consider thresholding
techniques pixel by pixel, or blockwise difference to improve ro-
bustness to noise. More sophisticatedmodelings have been consid-
ered within a statistical framework, where the inter-frame differ-
ence is modeled as a mixture of distributions. Bayesian formulation
has also been investigated.

The use of spatial Markov Random Fields (MRFs), through
Gibbs distribution have been widely used ([1], [4], [11], [15] and
[12]). These approaches are based on the construction of a global
cost function, where (possibly nonlinear) interactions are specified
between different image features (e.g., luminance, region labels).
Besides, multiscale approaches have been investigated in order
to reduce the computational complexity of the deterministic cost
minimization algorithms [12], and to get estimates of improved
quality. Finally there are models which take account of the presence
of ego-motion in which an estimation of this motion takes place,
before the change detection problem solved [12].

We propose here a motion detection method based on a MRF
model, where two Laplacian distributions are used to model the
inter-frame difference [13]. A cost function is constructed based
on the above distributions along with a regularization of the de-
tection map. The associated MAP estimator is searched by using
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multiscale techniques, in order to decrease the large computational
cost. Two deterministic relaxation algorithms, ICM and HCF are
used for the minimization of the cost function at each level. The
proposed approach can be extended to motion detection problems
in case of mobile camera.

A new votemethod to dynamically determine the regularization
parameter(s) in the cost function is proposed. The estimation of
the detection map and the estimation of optimal regularization
parameter(s) are alternated. The current solution to the one leads
to a more robust estimation for the other. Thus the current detection
map is used to provide an update of parameters’ value, while these
values hopefully lead to better detection maps at the next step.

In order to check the efficiency and the robustness of the pro-
posed method, experimental results are presented both on synthetic
and real image sequences. Sequences with stationary camera, as
well as sequences with moving camera and independent moving
objects, are used to test the method. The remainder of this paper
is organized as follows. In Section 2 we deal with the motion
detection problem, while in Section 3 the regularization parameter
estimation problem is examined. Finally, Section 4 contains the
experimental results and conclusions.

2. MOTION DETECTION

A very common difficulty in the detection of moving objects, is
the presence of ego-motion. We circumvent it by computing the
dominant motion, using a gradient-based robust estimation method
[12]. An affine six parameter model is considered to describe this
motion. A compensatedsequence can then be computed in which
the apparent motion due to the movement of the camera has been
removed.

Let S denote the set of sites s in the image grid andd = fds; s 2
Sg the inter-frame difference. The issue of motion detection is to
create a binary label field ! = f!s; s 2 Sg (detection map)
based on the observation set d, where the label of a site is in
A = fStatic; Mobileg.

Probabilities p(dsj!s = Static) and p(dsj!s = Mobile) of
the observed inter-frame difference at site s, given labeling !s,

are modeled as Laplacian laws: p(dsj!s = l) = 1p
2�l

e
�
p

2jdsj
�l .

The marginal probability of data is first modeled as a mixture of
these two density functions with proportions Ps and Pm. Using
Maximum Likelihood (ML) estimator [8], ([13]) an estimate of
parameters (Ps; Pm; �s; �m) is iteratively obtained, along with a
first estimate of the detection map.

In a second step, an MRF model is built to incorporate a smooth-
ing prior about the detection map, and a temporal coherence with
the final map estimate in the previous frame. The posterior distri-



bution p(!jd; !̃) is Gibbsian with the following energy:

U(!; d; !̃)
4
= U1(!) + U2(!; d) + U3(!; !̃) (1)

where !̃ denotes the detection map estimated at time t� 1, and:

� U1(!) is the prior term which accounts for the expected spa-
tial properties (homogeneity) of the label field:

U1(!)
4
=

X
fs;ug2C

Vs;u(!s; !u) (2)

where C is the set of two pixel cliques for the second order
neighborhood system, and clique potentials are given by:

Vs;u(!s; !u)
4
=

(
��s if !s = !u = Static

��m if !s = !u = Mobile

�diff if !s 6= !u

(3)

�diff > 0 is the cost to pay to get neighbors with different
labels, while �s > 0 and �m > 0 balances the relative
proportions of the two labels.

� U2(!; d) expresses the adequacy between observed temporal
variations and current labels according to p(dsj!s) likeli-
hoods:

U2(!; d)
4
=
X
s2S

� ln[p(dsj!s)]| {z }
4
=�(!s ;ds)

(4)

� Finally U3(!; !̃) has a conservative role and expresses a
temporal coherence with respect to the labeling at time t� 1:

U3(!; !̃)
4
=
X
s2S

�(!s; !̃s) (5)

where

�(!s; !̃s)
4
=

�
�� if !s = !̃s
0 if !s 6= !̃s

(6)

We consider the Maximum A Posteriori (MAP) estimation prob-
lem, i.e. the maximization of the a posterioridistribution of the
labels given the observations, which is equivalent to the minimiza-
tion of the energy function U(!; d; !̃).

The necessity of real time detection leads to multiscale tech-
niques, in order to decrease the computational cost by a significant
ratio. Two different types of multiscale models are proposed (Fig-
ure 1). In the first one, a Gaussian pyramid of images is built upon
the full resolution image and similar cost functions to be mini-
mized are defined through the different levels. This multiresolu-
tion structure is then utilized according to a coarse-to-fine strategy
(�). Another more sophisticated approach consists in defining a
consistent multigrid label model by using detection maps which
are constrained to be piecewise constant over smaller and smaller
pixel subsets [10]. The cost function which is considered at each
level is then automatically derived from the original finest scale
energy function. Also full observation space is used at each label
level and there is no necessity of constructing a multiresolution
pyramid (�).

The minimization of the cost function is achieved using two
different deterministic relaxation algorithms, namely ICM [3] and
HCF [5].
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Figure 1: Multiscale Techniques: (�) Multiresolution, (�) Multi-
grid

3. REGULARIZATION PARAMETER ESTIMATION

In this section we consider a simpler model with the smoothing
prior U1 only depending on a single regularizationparameter �
(�s = �m = �diff = �) and without temporal coherence term
U3.

During the last decade, many researchers have investigated the
problem of regularization parameter determination, often for prob-
lems of image restoration [2]. A common conclusion is that � may
have significant influence on the MAP estimate of label field [7].
Simple approaches for � estimation use statistical analysis, where
the optimal solution is derived through a pseudo-likelihood crite-
rion [6]. Cross-validation methods have been investigated [14] as
well. Finally an error analysis based on an objective mean square
error criterion have also been used to motivate the regularization
[9]. In [9] two methods for choosing the regularization parameter
are proposed, based on the absence or not of knowledge for the
noise model. All the above methods attempt to solve the label
field estimation simultaneously with the regularization parameter
estimation. Their main drawback is their high computational cost.
Another significant drawback is that, in some cases, a prior knowl-
edge of the noise model is required. In this paper, a different method
for regularization parameter estimation is proposed. The general
idea is to use the detection map computed for a given parameter
value, together with the observations set, in order to extract, with a
voting technique, a new � value which increases the “optimality”
of the current map which, in turn, is re-estimated.

Let Ul(!s; !gs ; ds) be the local energy for label !s in the pixel
location s, given labels in its neighborhood gs and the data ds
associated with this location:

Ul(!s; !gs ; ds; �)
4
= �(!s; ds) +

X
u2gs

Vs;u(!s; !u) (7)

where

Vs;u(!s; !u) =

�
��; if !s = !u
+�; if !s 6= !u

(8)

The current label field estimate ! is a sitewise local minimum of
the global energy function with the previous value of regularization



parameter. We look at � values for which this still holds, i.e.:

Ul(!s; !gs ; ds; �) � Ul(!s; !gs ; ds; �) � 0 (9)

where !s is the opposite label to !s. Let Ns be the number of
neighbors of s, and let ns(!s) be the number of those neighbors
with the same label !s as s. Using the above notation, the local
energy is:

Ul(!s; !gs ; ds; �) = �(!s; ds) + �[Ns � 2ns(!s)] (10)

Since ns(!s) = Ns � ns(!s), constraint (9) becomes:

�(!s; ds) � �(ws; ds) + 2�[Ns � 2ns(!s)] � 0 (11)

From the above relation we can extract some restrictions about ad-
missible �. In addition there are values of � for which the current
map ! is a “better” energy minimum, i.e., the above local ener-
gies differences are larger in average than those with the previous
parameter value. To determine the new �, a weighted vote tech-
nique is adopted in order to take into account this fact. First, the
computational cost of the vote technique is reduced by quantizing
the parameter search space. Then, according to the above relation
at each site, a vote is given to each admissible value of the finite
search space. The votes are weighted, according to their contribu-
tion in minimizing local energies, i.e. in maximizing differences
in left-hand side of (11). Also, in order to avoid over-smoothing
that too large � values would favor, a method for balancing the
two terms of the energy function is required. For this purpose, the
spatial mean value (E(.)) and variance (�2(:)) of the energy term
�(!s; ds), s 2 S, are used, in the vote weighting. For each s 2 S,
each admissible � value receives a vote weighted according to:

�(!s; ds)� �(!s; ds)� 2�[Ns � 2ns(!s)]

�2(�(!; d)) +
hP

u2gs Vs;u(!s; !u) + E(�(!; d))
i2

where the mean value and the variance of �(w; d) are computed
on the image grid, according to the current detection map. The
value with larger votes sum, is taken to be the center of the new
reduced search space with finer quantization. This hierarchical
quantization search procedure allows to get fast a robust estimate
of �.

This method can easily be extended to problems with state spaces
A with more than two states. In such a case, a section of relations
is used, in order to extract restrictions for admissible � values:

� 2
\

"2A�f!sg
f�i : Ul(!s; !gs ; ds; �i) � Ul("; !gs ; ds; �i)g

This method can also be used for regularization models with more
than one parameter. In such cases the candidates are vectors.
In order to avoid the large computational cost, the quantization in
each parameter can be done differently, according to its importance.
Thus for parameters of vital importance, one can use a fine step
quantization, and a larger one for parameters of less relevance.

4. EXPERIMENTAL RESULTS - CONCLUSIONS

In order to check the efficiency of the automatic estimation of �,
in the motion detection problem, we first choose �s = �m =
�diff = �, as already mentioned. In spite of this simplification,
the adaptive determination of � allows to obtain very satisfactory
motion detection maps (Figure 3).
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Figure 2: Computational cost: (a) Single Scale – (b) Multiscale

However, the method seems to fail for Spheresequence (Figure
4). This can be explained by the fact that the initial ML labeling (left
image) exhibits a very large and compact static region. Thus a large
� value arises, which results in the removing the isolated mobile
labels. The best result for Sphere(Figures 3) is obtained by using
the complete model (1), with an reinforcement of mobile labeling
through �m. For Trevor Whitesequence a very satisfactory result
is obtained with the simplified model.

4.1. ICM versus HCF

According to the experiments, ICM and HCF exhibit different be-
haviors. Three different aspects are examined: the computational
cost, the sensitivity with respect to the regularization parameter,
and the dependency on the initial labeling. As for the computa-
tional cost, ICM appears lighter than HCF (Figure 2), due to the
use of a sorted “instability stack” by the later. However, in multi-
scale approaches, the cost for HCF reduces significantly. Indeed,
at the coarse levels the required cost for creating and maintaining
the HCF stack is very small, and by the time the finer levels are
reached, the stack operations become very few. On the contrary,
the cost of ICM remains about the same, even with multiscale
approach.

Another interesting aspect of the behavior of HCF, is the sensi-
tivity with respect to the regularization parameter. It turns out that
it is quite high in the single-scale approach, especially around the
“optimal” value, where small variations can produce completely
different results. This can be explained by the fact that for many
sites (especially at the beginning), the labeling decision is taken
with an incomplete neighborhood labeling. On the other hand,
ICM has the opposite behavior: large variations on the regulariza-
tion parameter do not influence much the estimation. Finally, HCF
seems to be more independent on the initial labeling. It produces
estimates than can be significantly different from the initial ML
labeling. On the other hand ICM has a significant dependency on
the initial labeling.

A concluding comment is that, although ICM has less compu-
tational cost, it is not flexible, and it cannot avoid strong noise
influence (as it appears on the initial labeling). For cases with low
noise level, however it can provide fast a good detection map. HCF
is more flexible, thus compensating its significant computational
cost. Especially in high level noise cases, it can produce a better
result than ICM.

4.2. Multigrid versus Multiresolution

As for the comparison between the two hierarchical approaches,
the one using a pyramid of images appears more flexible since pa-
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Figure 3: Detection of Moving Objects. Multigrid approach: (b)
Trevor White, ICM – (d) Sphere, HCF. Multiresolution approach:
(a) Highway, ICM – (c) Interview, HCF – (e) Kollnig, HCF – (f)
Van, ICM. Automatic � determination: a (1.0125), c (0.8125), e
(0.8625) and f (0.9875)

rameters can be tuned independentlyat different resolutions. At the
same time, this can be perceived as an increase of the model com-
plexity in terms of parameter estimation. The second approach, is
by contrast simpler and proves to be less sensitive to noise influ-
ence, since at the coarsest level blockwise data likelihoods are used.
Both methods of multiscaling provide the same computational cost.
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