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ABSTRACT

This paper introduces a level set methodology for the precise
boundary localization of image objects within an indicated region,
designed to be particularly robust against weak or spurious edges,
triple points or inhomogeneity of object features in the proximity
of the actual interface. The proposed technique requires a reliable
classification for a subset of the object interiors, which is prop-
agated towards the unclassified space using a competitive, statis-
tically motivated fast marching region growing algorithm. Color
and texture features are used on a locally adaptive, dynamically
updated fashion to allow for the robust discrimination of inhomo-
geneous objects and an efficient implementation. Applications are
illustrated in the context of moving object localization and semi-
automatic object extraction.

1. INTRODUCTION

Object boundary determination or, equivalently, segmentation into
regions is a fundamental image processing task. Although it is
one of the oldest problems in image processing, it still remains an
open issue, because of its difficulty and complexity. Furthermore,
in the emerging new standards of multimedia content description
(MPEG-4 [1] and MPEG-7 [2]) image/video object extraction is
an imperative step. The object localization may be implemented
interactively [3] or automatically [4, 5].

A rough object boundary is often extracted in some early stage,
for example in video segmentation, where an object might be at
first localized using change detection or motion segmentation. In
other cases the process of accurate object localization could be in-
teractively initialized and the boundary approximately determined.

For the final boundary determination methods based on energy
minimization could be used [6]. Since these methods are gradient-
based, they cannot accurately handle textured images, junctions
and other complex situations. In [7] we have also introduced a
level set algorithm searching for local maxima of image gradient
features. This approach also suffers from inherent weaknesses of
gradient descriptors.

Region merging or region growing methods appear to be more
adapted to such complex situations. Seeded region growing al-
gorithms [8] could be used, as for example in interactive object
extraction [3], where color similarity is used for advancing two
contours in opposite directions until they meet each other on the
region boundary.
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In this paper we introduce a new algorithm based on Bayesian
level set methods and multi-region fast marching algorithms [7].
Each class is densely described using combined color and texture
features. The region description is locally adaptive and sufficiently
detailed in order to handle many complex situations.

2. LEVEL SET ALGORITHMS

2.1. Fast marching algorithms for multiple interfaces

The well known fast marching algorithm [9, 10, 11] provides a
constructive finite differences solution to the Eikonal-like station-
ary level set equation

F |∇T | = 1 (1)

governing the propagation of a monotonically advancing contour
in RN under a normal velocity fieldF , given a specific level set of
the arrival time functionT (commonly the zero level set) as initial
input. The algorithmic complexity isO(n log n) over the number
of pixels swept by the algorithm.

The multi-region fast marching algorithm [7] expands upon
the basic formulation by allowing for the simultaneous propaga-
tion of several evolving contours, possibly with independently de-
fined velocity fields, competitively expanding against each other
and halting their evolution at points of contact.

An arbitrary number of propagating contours can be handled
while the execution time ofO(n log n) is preserved regardless of
the number of propagation classes present, through parallel simu-
lation of the evolution processes and dynamic limiting of the ef-
fective range for each contour class. Simultaneous evolution also
guarantees topological stability and prevents penetration of one ex-
panding region into another, which would be possible should the
propagation processes had been handled independently.

An inherent limitation of the fast marching algorithm also ap-
plicable to the multi-region extension is the difficulty of incorpo-
rating local geometric curve properties, such as normal direction
and curvature in the velocity definition. This is usually offset by
the additional benefits of an increased stability resulting from the
competitive evolution and a straightforward selection of the final
segmentation result without the need for an explicit propagation
instance selection.

2.2. Bayesian formulation and competitive region growing

Several definitions of the velocity functionF of equation (1) are
to be found in the literature for the purposes of different segmen-



tation applications, most notably the edge-detecting velocity field
F (x) = 1/(1 + |∇I(x)|N ) designed to slow down the evolu-
tion of the deforming contour in the proximity of object bound-
aries. Several problems are to be expected should the original
fast marching algorithm be used with such a velocity field in the
presence of edges with considerably different strengths since the
propagation is likely to penetrate the object boundaries at different
time instances in several parts of its outline, an issue particularly
problematic in the case of coexistence of strong, sharp edges with
smooth transitions or stealth edges coincidentally covered up by
lighting conditions or similar coloring of the background.

The multi-region extension has been illustrated [7] to exhibit
significantly increased robustness in such cases, due to the simul-
taneous expansion of competing contours, typically corresponding
to other objects to be segmented, counterbalancing the protrusion
of the evolving interface through weak edges with the convergence
onto a competing contour, in the fashion of other region-growing
algorithms. Nevertheless, the shortcomings of a simple gradient-
based velocity definition are often beyond any remedy in the pres-
ence of texture or noise in the interior of the objects to be discrim-
inated. A velocity definition designed specifically to address such
issues is based on the statistical modeling of the regions to be seg-
mented and motivates the evolution of the deforming contours on
the a posterioriprobability of the intended classification. Using
Bayes’ rule this can be rewritten as a function of the individual
region distributions

Fl(x) = Pr{x ∈ Ul|o(x)} =
Pr{Ul}p(o(x)|Ul)∑
k

Pr{Uk}p(o(x)|Uk)
(2)

whereFl is the expansion velocity for the boundary of regionUl

and o(x) is the actual feature-dependent observation at the im-
age sitex. Evidently, this formulation is particularly suited to the
multi-region level set framework described in subsection 2.1 with
an independent velocity definition for each class.

The generality of this formulation illustrated by equation (2)
allows for the utilization of the described framework in every ap-
plication where a reliable modeling of the image features is fea-
sible and an initialization for the region-growing process, specifi-
cally a confidently classified subset of the image regions, is obtain-
able through statistical analysis or user interaction. Documented
applications include unsupervised static segmentation on color and
texture features [7], change detection and moving object localiza-
tion/tracking [4] and motion field segmentation.

3. ALGORITHM DESCRIPTION

We introduce a new algorithmic framework aiming to broaden the
range of applications of the multi-region fast marching algorithms
to a class of more delicate problems. As mentioned in subsection
2.2 the applicability of the Bayesian framework is highly depen-
dent on the feasibility of a single statistical model consistently de-
scribing each of the regions to be segmented. This is not always
the case when the object to be extracted exhibits substantial inho-
mogeneity due to its consisting of several regions of distinct con-
tent. Furthermore, in several cases the sub-object components of
each region might exhibit some particular common feature, such
as temporal variability or independent motion in video segmenta-
tion, which greatly facilitates the initialization process of selecting
a reliably classified image subset.

The key observation is that on a local scale a consistent model
is almost always feasible, provided that enough data are present to

guarantee a robust model estimation, a limitation having obvious
repercussions on the minimum size and shape regularity of the ob-
jects to be extracted. In particular this method is aimed towards
the extraction of sufficiently large objects (commonly at least 10-
15 pixels wide) without extremely thin and narrow components.
Several descriptors are used for a single region with the applica-
ble at each occasion being selected through criteria of geometric
proximity. The rest of this section provides a description of the
utilized features, the statistical models adopted and the core level
set algorithm for the region-growing process.

3.1. Feature definition

Edge features often have limited usability when an object to be
segmented is highly textured or when there is no consistent edge
strength throughout the extent of the image boundary. Moreover,
in the case of an object consisting of distinct components their
boundaries commonly form triple points near the outline of the
whole object which are often poorly handled by edge-based seg-
mentation techniques.

The proposed approach uses a combination of color and tex-
ture features in order to provide a robust feature descriptor for the
proper manipulation of such situations. Color features are derived
from the CIE Lab color space, selected for its near-linear per-
ceptual behavior. Color intensity of an image region is modeled
through the empirical distribution of intensity values. Chromatic-
ity features are independently modeled as well using the histogram
of (a, b) pairs in the considered region. For the purposes of ef-
ficient discretization, both intensity and chromaticity values are
quantized prior to further processing. The likelihood of the ob-
served color at a given pixel is used directly in equation (2).

Texture features are derived from the Discrete Wavelet Frames
analysis [12] implementing an iterative frequency band bisection
without subsampling the original image. In the case of optimal fil-
ters for the frequency band decomposition the wavelet components
can be shown to be zero mean and uncorrelated. For the current
implementation the fourth order binominal lowpass and its conju-
gate highpass filter are used for the iterative creation of the wavelet
frame range. The lowest frequency component is discarded while
the higher frequency components are assumed to follow a gener-
alized zero-mean Gaussian distribution for the individual frames,
combined under the hypothesis of independence. It should be
noted that for modeling an entire, only piecewise-homogeneous
region a standard Gaussian distribution is often tractable by virtue
of the central limit theorem. Nevertheless, experimental data illus-
trated the suitability of a Laplacian distribution for features derived
on a very local basis, which is the model used in the current im-
plementation. Thea priori probabilities are assumed all equal in
lack of other evidence. Likelihood values due to color and texture
are combined additively under the hypothesis of independence.

3.2. Dynamic local features

In order to properly handle objects consisting of unlike compo-
nents, feature description for a given region is performed in a lo-
cally adaptive fashion. Each region boundary pixel on the initial
user-supplied or statistically derived classification constitutes a lo-
cal node utilized in the above process. The node used to provide
the distribution parameters required in equation (2) is selected for
each pair of image site and region as the node belonging to the
same region having the minimal geometric distance from the im-



age site in question. The feature descriptor for each node is ob-
tained from statistics derived in a window centered at the node
location masked by the pixels already classified into the node’s
host region (figure 1). Additionally, the local node features are dy-
namically updated in the process of the propagation as new pixels
are classified against the region owning the specific node, in effect
causing a change in the mask used to derive the node statistics.

3.3. Implementation

The algorithm consists of a preprocessing stage and a propaga-
tion/update stage

Preprocess(){
BuildFeaturePrimitives();
BuildNodes();{
CalcClosestPoint();
BuildNodeFeatures();
BuildUpdateLists();}

PropagateAndUpdate()
while (UnclassifiedExists){
pxl = PropagateOnePoint();
Update(ClosestNode(pxl));}

The preprocessing stage includes the preparation of the raw
features, such as colorspace quantization and the Discrete Wavelet
Frames analysis. Subsequently, the feature nodes are selected on
the boundary of the initially classified regions of each propaga-
tion class. The closest node of each region to each of the ini-
tially unclassified points is calculated afterwards, an operation per-
formed offline to allow for optimized computation. Finally, the ini-
tial node features are calculated using their local square neighbor-
hoods masked by the initial classifications. All points in the range
of each node which were initially masked out are put in separate
update lists arranged per image pixel, in order to facilitate the up-
date process during the propagation. Each pixel is associated with
a list of pointers to nodes whose values should be updated when
the specific region’s contour sweeps through the particular point.

Fig. 1. Local feature descriptors densely placed on the initial
boundaries and dynamic update of the effective feature data

The propagation stage is the regular fast marching loop, aug-
mented by an update operation each time a new classification is
carried out or, in fast marching terminology, when a narrow band
pixel is turned into an alive pixel. It should be noted that this up-
date for the feature descriptor used is no more than a single bin
increment in the node intensity/chromaticity histograms, a simple
addition of the square of the wavelet frame coefficients into the
respective variances and a renormalization.

3.4. Performance

Standard execution tests indicated a processing time of less than
one second for 300x400 pixel with 20% overall unclassified space
images on a 1.2 GHz Pentium III Unix machine, with a 60% of
the execution time being attributed to the preprocessing stage and
only 40% to the propagation/update algorithm itself. It should be

noted that complex operations such as the closest point estimation
could be performed through sub-optimal but very fast heuristics
(the closest point according to thel1 metric is within a factor of

√
2

of the distance from thel2 optimal closest point, a well acceptable
compromise, yet admits a fastO(n) implementation).

4. APPLICATIONS AND RESULTS

4.1. Object extraction

The proposed framework can address applications of static seg-
mentation and object extraction in the context of a user-assisted
interactive editing environment. The zone containing the region
boundary could be input by the user through a brush tool or a free-
hand outline of the object’s interior and exterior. Figure 2 illus-
trates the application of the introduced framework for the semi-
automatic segmentation of natural scenes exhibiting hard to deter-
mine region boundaries due to excessive texture, massively inho-
mogeneous content or several unlike sub-object components. Ini-
tialization is user supplied in the form of wide zones surrounding
the actual boundaries. The process is applicable to any number of
image regions as demonstrated in the final example.

4.2. Moving object localization

Partial classification maps for a given video frame can arise from a
change detection algorithm operating onto an image sequence. Re-
liable decisions for the mobility of certain image sites may result
from statistical analysis of video stream features, such as inter-
frame difference or optical flow, where hard to decide image sites
appear on the neighborhood of the moving objects as outliers of
the motion model estimation. Different texture and distinct motion
often force the boundaries of the unclassified region dangerously
close to the object boundary, possibly compromising the effective-
ness of region-growing algorithms. In figure 3 a multi-region fast
marching algorithm [4] is used to implement a change detector
with limited accuracy, followed by a relaxation stage aiming to
frame the actual moving object boundary between two extremal
curves. The illustrated examples are among the most problematic
in that one of the boundary outlines detected often lie too close to
the actual boundary, inducing serious problems with the operation
of traditional region-growing algorithms such as SRG [8].

5. CONCLUSION

This paper presents a new fast level set algorithm for the precise
localization of an object boundary given a highly confident partial
classification of the object interiors. Statistical formulations are
utilized to motivate the level set evolution. Color histograms and
wavelet analysis are used to provide the image features used in a
dynamic, locally adaptive region-growing scheme in order to ro-
bustly describe inhomogeneous and noisy objects, while preserv-
ing a favorable algorithmic complexity. Favorable performance is
demonstrated in applications of user–assisted object extraction and
fully autonomous moving object detection and localization.

6. REFERENCES

[1] T. Sikora, “The MPEG-4 video standard verification model,”
IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 7, no. 1, pp. 19–31, Feb 1997.



Fig. 2. Region boundary determination for a user provided (grey outlines) classification into two (left, middle) or three (right) segments

Fig. 3. Comparison of SRG (middle) and Locally adaptive Multi-region Fast Marching (right) for moving object localization.

[2] P. Salembier, “Overview of the MPEG-7 standard and of
future challenges for visual information analysis,”EURASIP
Journal on Applied Signal Processing, vol. 4, pp. 343–353,
Apr 2002.

[3] P. Daras et. al., “MPEG-4 authoring tool using moving ob-
ject segmentation and tracking in video shots,”EURASIP
Journal on Applied Signal Processing, 2003 (to appear).

[4] E. Sifakis, I. Grinias, and G. Tziritas, “Video segmenta-
tion using fast marching and region growing algorithms,”
EURASIP Journal on Applied Signal Processing, vol. 4, pp.
379–388, Apr 2002.

[5] Y. Tsaig and A. Averbuch, “Automatic segmentation of mov-
ing objects in video sequences: a region labeling approach,”
IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 12, pp. 597–612, Jul 2002.

[6] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active
contour models,”International Journal of Computer Vision,
vol. 1, no. 4, pp. 321–331, 1987.

[7] E. Sifakis, C. Garcia, and G. Tziritas, “Bayesian level sets
for image segmentation,”Journal of Visual Communication
and Image Representation, vol. 13, no. 1, pp. 44–64, Mar
2002.

[8] R. Adams and L. Bischof, “Seeded region growing,”IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 16, no. 6, pp. 641–647, Jun 1994.

[9] J. N. Tsitsiklis, “Efficient algorithms for globally optimal
trajectories,” IEEE Transactions on Automatic Control, vol.
40, no. 9, pp. 1528–1538, Sep 1995.

[10] J. Sethian, “A fast marching level set method for mono-
tonically advancing fronts,” Proceedings of the National
Academy of Sciences, vol. 93, no. 4, pp. 1951–1955, 1996.

[11] S. Osher and R. Fedkiw,Level Set Methods and Dynamic
Implicit Surfaces, Springer-Verlag, Nov 2002.

[12] M. Unser, “Texture classification and segmentation using
wavelet frames,” IEEE Transactions on Image Processing,
vol. 4, no. 11, pp. 1549–1560, Nov 1995.


