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ABSTRACT
In this paper we propose a new method for image segmen-
tation. The new algorithm is applied to the video segmenta-
tion task, where the localization of moving objects is based
on change detection. The change detection problem in the
pixel domain is formulated by two zero mean Laplacian dis-
tributions. The new method follows the concept of the well
known Seeded Region Growing technique, while is adapted
to the statistical description of change detection based seg-
mentation, using Bayesian dissimilarity criteria in a way that
leads to linear computational cost of growing.

1. INTRODUCTION

Video segmentation is a key step in determining the motion
features, as well as the position and 2D shape of the scene
objects. Such a description may be used either for coding
purposes in order to reduce storage and transmission require-
ments or for indexing and retrieval purposes in order to im-
prove the content description and storage reduction of visual
databases. The development of the corresponding interna-
tional standards MPEG-4 for coding and MPEG-7 for visual
content description, which both rely on the concept of au-
dio/visual objects, has raised the importance of these meth-
ods.

Several approaches have been proposed for spatio-
temporal video segmentation. A recent overview of segmen-
tation tools as well as the object-oriented video description
are presented in [1]. Among them, segmentation of image se-
quences is achieved using techniques such as Active Contour
Models [2], Geodesic Active Contours and Level Sets [3] as
well as Region Growing [4]. In the framework of European
Forum COST-211 [5], the so-called Analysis Model (AM) for
images and video has been proposed, in which colour based
and motion based segmentation are combined with the infor-
mation extracted by change detection. A detailed overview
of change detection algorithms is found in [6]. In [7], we
proposed an object localization algorithm in which change
detection is based on Bayesian tests that are applied on the
inter-frame difference, while object localization is achieved
using the object colour information. Change detection seg-
mentation was based on the Multi-label Fast Marching al-
gorithm, introduced in [8] and is an application of the gen-
eral segmentation framework of Bayesian Level Sets, found
in [9].

In this work, we present a new method, which follows the
algorithmic structure of Seeded Region Growing (SRG) [4]
and is adapted to the statistical properties of the features un-
der consideration, in order to speed up the segmentation task
without sacrificing the accuracy of the segmentation result.
The method is applied to change detection segmentation and
requires a map of initial decisions for each label. Initial

decisions are then propagated by the new algorithm using
Bayesian dissimilarity criteria which are based on the statis-
tical description of the change detection problem, in a way
similar to [7].

2. INTER-FRAME DIFFERENCE

The segmentation algorithm is mainly based on change de-
tection. The two classes of “changed”/“unchanged” pix-
els are modeled by two Laplacian distributions. Let D =
{d(s),s ∈ S} denote the gray level difference of each site s
in the image grid S. The change detection problem consists
of determining a binary label Θ(s) for each pixel s. We asso-
ciate the random field Θ(s) with two possible events, Θ(s) =
static (“unchanged” pixel), and Θ(s) = mobile (“changed”
pixel). Let pD|static(d|static) (resp. pD|mobile(d|mobile)) be
the probability density functions of the observed inter-frame
difference under the H0 (resp. H1) hypothesis. These prob-
ability density functions are zero-mean Laplacian for both
hypotheses (l = 0,1):

p(d(s)|Θ(s) = l) =
λl

2
e−λl |d(s)| (1)

Let P0 (resp. P1) be the a-priori probability of hypothesis H0
(resp. H1). Then, the probability density function is given by

pD(d) = P0 pD|0(d|static)+P1 pD|1(d|mobile) (2)

In this mixture distribution {Pl,λl , l ∈ {0,1}} are unknown
parameters and are estimated using an EM-like algorithm.

3. CHANGE DETECTION GROWING

3.1 Initialization

The algorithm requires some initial correctly labeled sets of
pixels. The initialization of label map is achieved by statisti-
cal tests of high confidence as it is described in detail in [7].
As in [7], pixels that may be considered “changed” with high
confidence are determined using the decision threshold:

T1 =
1
λ0

ln
1

PFA
,

where PFA is a given small false alarm probability, while a
series of tests for each of the remaining pixels is performed in
order to determine “unchanged” sites with a small probability
of non-detection.

3.2 Growing

The initial decisions are then propagated towards the space
of unlabeled image pixels. In SRG, the contour of each ini-
tial region is propagated towards the space of unlabeled im-
age pixels, according to dissimilarity criteria which are based



on the label and the segmentation features. Contour pixels
are sorted according to their dissimilarity from the regions
they adjoin and at each step, the contour pixel of minimum
dissimilarity is set to the label that most probably belongs.
Contour pixels sorting is accomplished by a data structure,
traditionally referred to as Sequentially Sorted List (SSL).

Although we follow the principle of growing introduced
in SRG, a label-dependent term is set according to the a-
posteriori probability principle, as is the case in [9]. If grow-
ing is meant to be based only on the change detection statis-
tics, the dissimilarity of a site s from a label l could be mea-
sured as

DISl(s) =
∑k 6=l p(d(s)|k(s))Pr(k(s))

p(d(s)|l(s))Pr(l(s))

or equivalently

dcdl(s) = lnDISl(s)

= ln
∑k 6=l Pr(k(s)|d(s))

Pr(l(s)|d(s))

= ln(∑
k 6=l

p(d(s)|k(s))Pr(k(s)))

− ln(p(d(s)|l(s))Pr(l(s)))

In our case of change detection the metric for label 0 be-
comes

dcd0(s) = ln(p(d(s)|1)P1)− ln(p(d(s)|0)P0)

and under the assumption of Laplacian distributions this
gives

dcd0(s) = − ln
λ0P0

λ1P1
+(λ0−λ1)|d(s)| (3)

and dcd1(s) = −dcd0(s). Since Pl , (l = 0,1) are only esti-
mates and not a-priori knowledge, they have been set to 0.5
in the current implementation of criterion dcd0. Apparently,

dcd0(s) = −α +β |d(s)| (4)

where α = ln λ0
λ1

and β = λ0 −λ1. In Fig. 1, dcdl is plotted
against |d| for λ0 = 1.5 and λ1 = 0.05 respectively, for l =
0,1. As we see, for |d|= α

β we get the decision point dcd0 =

dcd1 = 0 between the two classes.
The fundamental principle of the new algorithm is that it

labels groups of yet unlabeled pixels, at each execution step.
Group labeling refers to pixels, which are placed on region
contours at an instance of the propagation progress and their
metric dcdl against label l is quite the same. This fact, im-
plies the quantization of dissimilarity metric according to the
specific characteristics of change detection driven propaga-
tion. Towards this direction, by Eq. (4) the random variable
dcd0(s) is a linear function of |d| and by Eq. (2) the proba-
bility density function p(dcd0(s)) is given by the mixture

p(dcd0(s) = y) = P0 p(dcd0(s) = y|static)+

P1 p(dcd0(s) = y|mobile) (5)

where y ≥−α . Using Eq. (1), holds that

p(dcd0(s) = y|Θ(s) = l) =
λl

β
e−

λl
β (y+α)

, y ≥−α (6)

Figure 1: Dissimilarity, change detection based, criteria.

is an exponential distribution for l = 0,1 and Eq. (5) becomes

p(dcd0(s) = y) = P0
λ0

β
e−

λ0
β (y+α)

+P1
λ1

β
e−

λ1
β (y+α) (7)

for y ≥−α . Similarly, for y = dcd1(s), we get

p(dcd1(s) = y) = P0
λ0

β
e−

λ0
β (−y+α)

+P1
λ1

β
e−

λ1
β (−y+α) (8)

for y ≤ α . However, since we refer to contour sites, Pk
(k = 0,1) vary during growing and are not the same for the
two labels. Thus, for each label l and at growing step T , Pk in
Eqs. (7), (8) are dynamically replaced by the percentage PT

l,k
of sites which are placed on the contour of regions of label l
and according to change detection statistics belong to label k,
for l,k ∈ {0,1}. This fact does not affect the statistical analy-
sis for dissimilarity criteria dcdl (l = 0,1) that follows, since
it is based only on the exponential probability density func-
tions of mixtures, without using percentages PT

l,k. In Fig. 2,
the probability density functions of the mixtures of Eq. (7)
and Eq. (8) respectively, are depicted graphically for l = 0,1
and λ0 = 1.5, λ1 = 0.1.

As a consequence, if for a contour pixel s of a “changed”
region holds that dcd1(s) < −α , then s can be labeled as
“changed” with high confidence, since unlikely belongs to
an “unchanged” region. Indeed, since

PF(t) = e−
λ0
β (t+α)

, t ≥−α

is the false alarm probability of labeling a pixel as “changed”
while it is “unchanged”, then if we set t1 = −α , for t ≥ −t1
holds that

PF(t) ≤ e
−2α λ0

β ,

which is a fairly small false alarm probability. In Fig. 1, cer-
tainty limit y =−α is depicted by the horizontal dashed line.
By analogy, a threshold t0 for labeling contour sites s of “un-
changed” regions is set, according to equation

t0 =−α −
β
λ1

ln(1−PND)



Figure 2: Probability density functions for dcd0, dcd1.

where PND is a given small probability of not detecting a
“changed” pixel. Thus, contour sites s, which are placed on
the border of an “unchanged” region, with dcd0(s) < t0, can
be labeled as “unchanged” with high confidence. However,
a memory term has to be introduced in the dissimilarity cri-
terion of the “changed” class, to cope with the disadvantages
in propagating “changed” regions contours, due to possible
uniform areas and imperceptible motion of moving objects.
After all, the dissimilarity metric of contour pixel s against
the “changed” class becomes

δ1(s) = dcd1(s)−ρ(s) (9)

where ρ(s) is a non-decreasing function of the distance of
point s from the border of the previous “changed” mask,
computed as in [8]. For clarity, we also set δ0(s) = dcd0(s).

In the implementation of the algorithm, pixels s that sat-
isfy inequalities δl(s) < tl (l = 0,1) are inserted in high pri-
ority simply connected lists (HPLl) once they are scanned.
By contrary, the rest of contour pixels are inserted in normal
priority simply connected lists, denoted as NPLl,i (l = 0,1),
each one corresponding to the i-th quantization interval of
dissimilarity criteria values, according to a given quantiza-
tion step tq:

i = Q(δl) = b
δl −min{δl}

tq
c (10)

At each step, first the items of HPLl for l = 0,1 (if any)
are popped and assigned to the corresponding label. Other-
wise, if high priority lists are empty, the items of lists NPLl,i
of minimum i are popped and get labeled.

The description of the new algorithm in pseudo-code is
as follows:
S1 Label the initial pixels of classes 0 and 1 in order to form

spatially connected labeled regions of pixels R (initializa-
tion stage).

S2 Insert all the unlabeled spatial neighbors s of initial re-
gions R into HPLl(R) or NPLl(R),i according to their dis-
similarity value δl(R)(s), where l(R) denotes the label of

Figure 3: Minimum initial labeling map (up) and propagation
result (down) for frame 26 of “erik” sequence.

region R. Insert s in HPLl(R) if δl(R)(s) < tl , otherwise
insert it into NPLl(R),i, where i = Q(δl(R)(s)).

S3 While HPLl or NPLl,i, (l = 0,1) are not empty:
S3.1 if HPLl are not empty remove (pop) all of their

items, otherwise remove (pop) the items of lists
NPLl,i of minimum i.

S3.2 For all the popped items y:
S3.2.1 if y is still unlabeled, assign y to the corre-

sponding label k.
S3.3 For all the popped items y:

S3.3.1 add to HPLk or to NPLk,i pixels s which
are neighbors of y and are not already labeled,
according to their value of dissimilarity metric
δk(s): if δk(s) < tk, add s to HPLk, otherwise add
it to NPLk,i, where i = Q(δk(s)).

3.3 Analysis of Growing

The computational cost of the new algorithm is (subject to a
constant factor)

C = ((1−ξ )I +ξ )n,

where n is the number of initially unlabeled pixels, I is the
number of quantization intervals and ξ is the percentage of
initially unlabeled pixels that are inserted in high priority
lists. From Eq. (10) I is a function of tq and since by Eq. (4)
the quantization of dcdl according to tq = β is equivalent to
the quantization of |d| in integer steps, a reasonable choice is
to set tq equal to β . By keeping I fixed, the growing time C
becomes a linear function of n only. Hence, the cost strongly
relates to the decisions made for the high priority thresholds
tl , which in turn, as it is evident from the analysis given in
the previous subsection, are adjusted according to the ability
of change detection statistics to discriminate the two classes.



Figure 4: Initialization (up) and propagation result (down)
for frame 26 of “erik” sequence.

Since, as it is argued at the end of this entity, the memory
term ρ , used in metric δ1, improves the discrimination ability
of growing, ξ relates to the memory term ρ too. In practice,
ξ ranges from 0.2 up to 0.7 leading to an extremely rapid
classification method. On the contrary, the cost of SRG does
not depend at all on the segmentation task and when SSL is
implemented using the optimum choice of Priority Queues
(or that of AVL trees) is O(N log2 N), where N is the number
of image pixels.

Furthermore, an admirable property of the new algorithm
is that it is robust against the portion of pixels that have
been initialized by the label initialization stage. This fact
is demonstrated in Figs. 3 and 4, for frame 26 of sequence
“erik”. The upper images of the figures, represent the initial
label map, while the propagation result is shown in the cor-
responding bottom image of each figure. In those images,
black colour depicts the pixels of “unchanged” class, white
colour represents the “changed” pixels and the unlabeled pix-
els are shown in gray. As we see, although initialization maps
differ a lot in the number of pixels that have been initially la-
beled to one of the classes, the segmentation result is almost
identical.

Finally, in Fig. 5 we see the effect of the memory term
introduced in metric δ1, in order to improve the change de-
tection based, segmentation result. Results refer to frame 40
of “erik” sequence, where the change detection statistics are
not enough to discriminate all the parts of the moving ob-
ject from its stationary background, due to low motion ac-
tivity. The upper image of Fig. 5 depicts the segmentation
result which is obtained by setting δl = dcdl for the two la-
bels, while the bottom image shows the correction that is in-
troduced to the propagation result when Eq. (9) is used for
δ1. Hence, memory term permits the correct classification of
pixels to the “changed” class with high confidence, by track-
ing the “changed” mask of the previous segmentation map
and using this information as prior knowledge in the current

Figure 5: Change detection based propagation result (up) and
memory term improvement (down) for frame 40 of “erik”.

growing process.

4. EXPERIMENTAL RESULTS

In what follows, we present change detection segmentation
results for well known test image sequences, which are in-
cluded in the COST [5] data set for testing video segmenta-
tion algorithms. However, it should be noticed that the results
given hereafter, may contain errors due to occlusions caused
by objects motion, or because of shadows. These errors can
be corrected by the color based segmentation process which
is described in [7] and is applied on the output map of the
change detection based segmentation. All the label growing
results were extracted using t1 =−α and tq = β . Background
is painted in light blue in the images of results, while moving
objects appear in their physical color.

In the upper image of Fig. 6 we see the result that has
been obtained for frame 26 of sequence “erik”. Change
detection statistics give λ0 = 1.57, λ1 = 0.12 and we set
PND = 0.01 in the computation of t0, while the memory term
is used in δ1. Propagation refers to the initial map shown in
Fig. 3. In that, only 56 pixels are initially labeled and thus,
more than 99.9% of the pixels are initially unlabeled. During
the execution of the growing algorithm 41% of the initially
unlabeled pixels were inserted in one of the two high priority
lists (ξ = 0.41), while the remaining 59% were labeled after
their insertion to one of the lists of normal priority, accord-
ing to their dissimilarity value. However, if t0 is increased by
setting PND = 0.05, we get ξ = 0.57, since high priority list
HPL0 is used by more contour pixels of regions belonging to
label 0. Thus the computational cost of growing decreases,
while the segmentation result remains the same. In the bot-
tom image of Fig. 6, we see the result of growing for frame
40 of “erik”, using PND = 0.05 and the memory term ρ in
δ1. Change detection statistics for this frame, give λ0 = 1.43
and λ1 = 0.085. As for the results of frame 26, only 189
sites are initially labeled and thus more than 99.9% of image



Figure 6: Change detection based segmentation result for
frames 26 (up), 40 (down) of sequence “erik”.

pixels are unlabeled. High priority lists are used by the 60%
of initially unlabeled pixels. On the contrary, when memory
term is not used, the result is getting worse, as it is shown in
the upper image of Fig. 5, while ξ drops to 45% and conse-
quently the cost of growing increases.

Finally, in images of Fig. 7 we see the results of change
detection based growing for sequences “road1”, “road2” re-
spectively, of COST data set. Although, compared to “erik”,
for these sequences holds that λ0 < 0.7, the change detec-
tion growing results remain satisfactory, without the need of
further tuning of algorithm ’s parameters. The results shown
here, were extracted using PND = 0.05 and the memory term
in δ1, i.e using the growing parameters that were used for
the results of “erik”. The average time that is consumed by
the growing process for the 300 images of each sequence, is
less than 0.1 sec. per frame, on an Intel Centrino 1.6GHz
machine with 1GB RAM, running under Linux 2.6.12 OS.

5. CONCLUSION

A new method for image segmentation has been proposed.
The new algorithm has been applied to the task of video
segmentation. The detection and localization of moving ob-
jects was based on change detection. The change detection
problem in the pixel domain was formulated by two zero
mean Laplacian distributions. The new algorithm is adapted
to the statistical description of the change detection problem
by introducing the usage of Bayesian dissimilarity criteria in
the well known Seeded Region Growing method, in a way
that leads to linear computational cost.

Demonstration: The new method is demonstrated at
www.csd.uoc.gr/∼grinias/DEMOS/bhprg chd/index.html.
Acknowledgement: This work is funded under Greek
PENED-2003 project.

Figure 7: Growing results for frames 195 (up), 240 (down)
of sequences “road1” and “road2” respectively.
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