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Abstract

We describe briefly the problem of partitioning a con-
tinuous curve into N parts with equal chords. (The length
of a chord may be defined by any smooth distance metric
applied on its endpoints-the Euclidean metric being one of
them.) A have proved that a decision variation of this prob-
lem is NP-complete, yet for any continuous curve and any N
there always exists at least one equipartition. In this work,
we propose an approximate algorithm and also a steepest
descent method that converges to an exact solution.

1 Introduction

The curve segmentation problem is a challenging prob-
lem of computational geometry. A huge number of appli-
cations, like object recognition and tracking, signal sum-
marization and compression, curve simplification and com-
puter graphics applications, are based on curve segmenta-
tion. Many computer graphics applications are based on
curve segmentation problem, like surface simplification and
3D modelling. Most polygonal surface simplification meth-
ods employ triangles as their approximating elements when
constructing a surface [3]. One of the most popular triangu-
lation methods is Delaunay triangulation [5], [11].

On computer vision applications the curve segmenta-
tion problem also appears. Signal summarization and key
frames detection methods using an appropriate feature set
reduce the initial problem into a curve segmentation prob-
lem [4]. Methods for non articulated motion tracking are
based on solutions of the curve equipartition problem [10].

Another example of such segmentation approach is the
2D or 3D polygonal approximation [2] or convex polygons
[7]. This problem asks for computing another polygonal
curve that approximates the original curve. The problem
can be formulated in two ways [6], [1] : The problem of
minimum error (Min−ε) and the the problem of minimum
number of line segments (Min− #).
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Symbols Definitions
C(t) The given curve, t ∈ [0, 1]
N The number of equal length chords
d(x, y) d(x, y) = |C(x) − C(y)|2
UM···K {M, M + 1, · · · , K}

Table 1: Proof symbol table.

Fig. 1: An EP example for N = 3, |AP1| = |P1P2| = |P2B|.

1.1 Problem Definition

The equipartition problem is defined as follows: Let
C(t), t ∈ [0, 1] be a 2D acyclic curve1 that starts on
A = C(0) and ends on B = C(1). We have to compute
N − 1 sequential curve points Pi, i ∈ U1···N−1, P0 = A,
PN = B under the constraint d(Pi−1, Pi) = d(Pi, Pi+1),
i ∈ U1···N−1. The problem is the curve partitioning into
N parts with equal chords, so that the first starts from A
and the last ends on B (Fig. 1). Some useful symbols are
defined on Table 1.

The solution is obvious for N = 1, as we have one chord,
AB. When N = 2, we have to locate a curve point P1, so
that |AP1| = |P1B|. This point can be given as the intersec-
tion of the curve with the AB segment bisector. When N
is higher than two, there is not a trivial method to compute
the equal length chords. The above problem can have more
than one solutions depending on curve shape and the value
of N . As N tends to infinity the problem solution (equal
length chords) will be unique and it will approximate the
curve (Fig. 2). More examples can be found in [9]. By our
analysis, the EP problem admits always a solution, thus the
decision version of EP is certainly not NP-complete. Yet, at

1We suppose that the curve is piecewise-algebraic. The problem can be
defined in the same way in any dimension (C(t) ∈ �n).
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Fig. 2: EP examples for different N. The higher the N , the better the curve approximation.

the time, we cannot give a guarantee that it admits always
a succint solution, thus we cannot assert that the functional
version of it belongs to the TFNP class. Finally consider
the following ’verification’ version of the EP: given a curve
C and a distance ρ is it possible to equipartition C into N
parts, so their N chords are all equal to ρ? For this version,
we do know something positive: we can prove that this ver-
sion of EP is NP-complete (by a reduction from Knapsack).

1.2 An Equivalent Definition of the Problem

The smooth function d(x, y) = |C(x)−C(y)|2, x, y ∈
[0, 1] gives a different view and an equivalent definition of
the problem. We can use as d(x, y) any smooth metric like
Euclidean distance. As a smooth metric distance, d(x, y) is
characterized by the following properties:

1. d(x, y) = 0 ⇔ x = y (isolation).

2. d(x, y) = d(y, x) (symmetry).

3. d(x, y) inherits continuity existence from C(t).

4. d(x, y) can be defined in any dimension (C(t) ∈ �n).

An equivalent problem definition can be derived using
d(x, y). A problem solution {0, t1, t2, · · · , tN−1, 1} of
curve C(t), corresponds to the surface d(x, y) as a point
sequence, (0, t1), (t1, t2), · · · , (tN−1, 1). The length r of
each chord is given by the following equation:

r = d(0, t1) = d(t1, t2) = · · · = d(tN−1, 1) (1)

An alternative problem definition will be the determination
of {t1, t2, · · · , tN−1}, so that Equation (1) will be satisfied.
Under this definition we prove that the problem has at least
one solution.

The rest of the paper is organized as follows: A brief
description of the proof of solution existence for each chord
number is presented in Section 2. The proposed algorithms
that solve the problem are presented in Sections 3 and 4.
Conclusions and discussion are provided in Section 5.

2 Existence Proof

In this section we are going to give a brief description of
the proof that there exists at least one solution for each N .

We are going to analyze the case of N = 3. The cases of
N > 3 are faced with a generalization of the used method-
ology for N = 3 and their proof can be done inductively.
The proof is presented with more details in [8].

The function f2(x, y) = d(x, y) − d(x, 0), x ∈
[0, 1], y ≥ x, is continuous and partially monotonous func-
tion. The null plane curves2 of f2(x, y) will be continu-
ous and partially monotonous. The total solutions of equal
length chords for N = 2 are given by the points (x, y) of
these curves, because d(x, 0) = d(x, y) and y ≥ x. Let
h2(s) = [a2(s), b2(s)], s ∈ [0, 1] be the curve of f2(x, y)
null plane, that starts from [0, 0] (h2(0) = [0, 0]). Then
a2(s) ≤ b2(s), because the points of h2(s) are points of f2

domain. This curve exists as f2(0, 0) = 0. It can be proved
that h2(s) ends on y = 1, equivalently b2(1) = 1. We con-
sider the continuous function q(s) (Equation (2)). Using
this function, we will find {t1, t2} with t2 ≥ t1 satisfying
Equation (1) and the proposition will have been proved for
N = 3.

q(s) = d(a2(s), b2(s)) − d(1, b2(s)), s ∈ [0, 1] (2)

It holds that,

• q(0) = d(0, 0) − d(1, 0) = −d(1, 0) < 0 and

• q(1) = d(a2(s), 1) − d(1, 1) = d(a2(s), 1) > 0

At least a s2 ∈ (0, 1) exists (applying the Bolzano theo-
rem) so that q(s2) = 0. This means d(a2(s2), b2(s2)) =
d(1, b2(s2)). Let t2 = b2(s2) and t1 = a2(s2), ⇒ t2 ≥ t1
and d(t1, t2) = d(t2, 1). The (t1, t2) is a point of h2 ⇒
d(t1, t2) = d(0, t1). Thus we have found {t1, t2} with
t2 ≥ t1 satisfying the equation (1). Finally, the problem
has been proved for N = 3.

3 Iso-Level Algorithm (ILA)

The iso-level algorithm is based on the equivalent prob-
lem definition. It computes at least one solution or all the
solutions (greedy version). It is inductive. Thus, when it
is executed for N , it solves the problem for any number of
parts (with equal chords) less than N .

2The null plane curves of f(x, y) are defined by the equation
f(x, y) = 0.



The major hypothesis of the method is that the func-
tion d(x, y), x, y ∈ [0, 1] can be approximated by a polyg-
onal surface d̂(x, y). Thus, the d̂(x, y) is determined by
d(mk, ml), k, l ∈ {1, 2, · · · , M}. Let

Dij = [xi, xi+1] × [yj , yj+1] ⊂ [0, 1]2

with xi = yi = mi, i, j ∈ {1, 2, · · · , M}. The segment
Dij can be separated into two triangles: D1

ij where x−xi ≥
y − yj and D2

ij where x − xi < y − yj . Under our major

hypothesis, we have considered that d̂(x, y), x, y ∈ D1
ij or

x, y ∈ D2
ij is a part of plane.

In each iteration step l, the algorithm computes the
curves Ll so that if the point (u, v) ∈ Ll−1, u > v, then,
it holds that (z, u), z > u ∈ Ll ⇔ d(u, v) = d(z, u). These
curves consist of line segments defined on D1

ij , D2
ij , so they

can be computed from the line segments end points. For
l = 1, it holds that,

L1 = [(0, 0), (m1, 0)] ∪ · · · ∪ [(mM−1, 0), (1, 0)].

Let (x, y) ∈ Ll, x > y. Under the above definition, the
equipartition of curve C(t), t ∈ [0, x] into l chords can be
done using the precomputed curves L l, Ll−1, · · · , L1 (see
Fig. 3). The equipartition of curve C(t), t ∈ [0, 1] into l+1
chords can be done using the curves L l, Ll−1, · · · , L1. Let
ql(u, v) = d(u, v) − d(u, 1), (u, v) ∈ Ll, u > v. This
function is piecewise linear. The roots of this function will
give the last two points (ṫl−1, ṫl) of the equipartition. The
other points are estimated using the rule of Fig. 3.

It can be proved that for each step there is a continu-
ous curve hl ⊂ Ll starting from [0, 0] and ending on axis
x = 1 or y = 1 (see Fig. 3). We can compute at least one
solution of the problem using these curves. The computa-
tion cost of hl curves is O(M · N), because we can track
them starting from their known end point [0, 0]. We can
estimate a normalized error (NE) of an estimated equipar-
tition of length chords by getting the standard deviation of
the estimated length chords of this equipartition divided by
the mean length chord of this equipartition ( [8]). NE is
decreased as M increases. It can be proved that NE is de-
creased by the factor O( 1

M2 ).
Figure 4 illustrates the results of this proposed algorithm

for different curves and values of N . The null plane curves
converge to the diagonal (y = x), as N increases (see Fig.
4(e)), and there exist exactly one solution. At least one so-
lution belongs on the hN (s) null plane curve. However,
in some cases, more solutions appear on other null plane
curves (see Fig. 4(a), 4(c)).

4. Steepest Descent based Method

The steepest descent based method (SDM) converges
to the closest solution to an initial equipartition, given this

Fig. 3: An example of curve equipartition into 4 chords. It is
shown the recursive computation of {ṫ1, ṫ2, ṫ3} and L2, L3 curves.

initial equipartition. The major advantage of this method
is that the computed chords will have exactly the same
length, as the end of the last chord is converging to B. In
some cases the algorithm can not converge as there may
appear local minima or jumps (loops) between different
solutions. These phenomena are increased, when the
initialization is far enough from an existing solution. But,
when the problem has a unique solution, which is usually
observed for high N , then the algorithm will converge. A
pseudocode of this procedure is given hereafter.

Steepest Descent based Algorithm
s = r0

P0 = A
Repeat

for i=1:N
Pi = C(ti) : (ti > ti−1) ∧ (|Pi−1Pi| = s)

end

s =

{
s + λ |B−PN |

N , PN ∈ inside of curve C(t)
s − λ |B−PN |

N , PN ∈ ouside of curve C(t)
Until |PN − B| < T

The learning rate λ determines the number of steps
which are needed for convergence. However, when λ is
set to a high value (λ > 0.5), it can cause instability and
not convergence. For better convergence, we can start the
method with λ ≈ 0.5 and we decrease it to λ ≈ 0.05.
Conclusively, if we want to solve the problem for lower
N , where there are possibly many solutions and local min-
ima, it is better to execute first the approximate algorithm,
getting a good initialization for the steepest descent based
algorithm. For higher N , where the problem might have a
unique solution, the proposed method will converge towards
the exact solution, even if the initialization is not close to the
solution. The time complexity of the algorithm is O(N ·S),
where S denotes the number of steps that are needed for
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Fig. 4: Results of greedy version of ILA. The estimated solutions are projected on d(x, y) (left) with black cycles and on input curve C(t)
(right) with the same color points belonging to the same equipartition. The null plane curves are projected on d(x, y), with gray colors, at
both sides of diagonal x = y.
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Fig. 5: Steepest descent based algorithm results.

convergence. S depends on curve shape and how close to
the final solution the initialization is. Results of the steepest
descent based algorithm are shown in Fig. 5.

5 Conclusions

In this paper, we have discussed the curve equipartition
problem (EP). If the chord length is part of the instance then
the problem becomes NP-complete, but if the chord-length
can be chosen at will it can be proved that there always ex-
ists at least one solution for any piecewise linear curve and
thus for any continuous curve. An equivalent definition of
the problem (using a distance metric on [0..1]× [0..1]) leads
also to an existence proof and to an approximate algorithm.
The ILA can compute at least one solution or all the solu-
tions using a greedy version of the algorithm. The output
of this algorithm can be used to initialize a steepest descent
based algorithm that converges to an exact solution.
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