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Abstract. We propose a new method for smoothing 2-D (or 3-D) images which preserves edge elements. Pixel data
contained within a moving square (or cube), centered at each point under consideration, is tested to determine if it
is homogeneous, or if a region boundary is present. If the area is homogeneous, the mean value of the whole area
gives the smoothed value for the central point. If a region boundary is detected, then the data are classi�ed into
two clusters, and the smoothed value of the central point results from the mean value of the cluster including this
point, if a context-based consistency criterion is respected. Two cases are considered: Gaussian noise and noise whose
distribution is unknown. Results are given on a synthetic image corrupted by additive Gaussian noise, illustrating the
e�ciency of our method in relation with the signal to noise ratio. Results on a 2-D MR image are also shown.

1 Introduction

Almost all natural images are corrupted by random noise
and this makes image analysis tasks, such as segmenta-
tion and edge detection, very di�cult. Moreover, bound-
ary localization accuracy is low for noisy images, and
improves with noise reduction. A better edge detec-
tion and localization may be obtained by using non-
linear and/or space-variant edge-preserving smoothing.
Among di�erent approaches, a very promising one is
that of adaptive smoothing. Methods of anisotropic dif-
fusion are proposed in [4] and [5], where the image is
iteratively convolved by a nonlinear space-variant �lter
with only a few coe�cients (3�3), which are determined
based on image gradients. This method has two e�ects:
sharpening of discontinuities and region smoothing. The
convergence to smooth regions is slow requiring many it-
erations (about 200).

Other methods are based on Markov random �eld
models using a line process representing edge elements
[3]. The weak membrane model is also suitable for ob-
taining a smoothed image. The minimization of the
resulting cost function may be obtained either by the
graduated non-convexity algorithm [1], or mean �eld an-
nealing [2].

The method proposed in this paper is based on local
statistical hypothesis testing. In a �xed relatively small
area around each point, it is assumed that there exist
only two possibilities: either it is homogeneous, or two
di�erent regions are present. Thus, the image intensity
is assumed piecewise constant corrupted by white noise.
Two cases are considered: Gaussian noise and noise of
unknown distribution. For both cases a statistical test
is used to decide if the data are homogeneous or not.
In the case of a homogeneous probability distribution
of pixel values, and in accordance with the hypothesis
of piecewise constant image intensity, the value of the

smoothed signal is the mean value of the whole area.
If the distribution of pixel values within a given area
is decided to be a mixture of two distributions, the pa-
rameters of the two distributions are estimated and a
threshold is obtained which permits the classi�cation of
the intensity value of the point under consideration to
one of the two classes. If the last decision violates a
context-based consistency criterion, it is relaxed.

In Section 2 we describe the proposed method in
greater detail, for the case of Gaussian noise, and in
Section 3 we give distribution free decision tests to carry
out the above classi�cation. In Section 4, we give results
on a synthetic image corrupted by a simulated additive
Gaussian noise and on a 2-D MR image.

2 Gaussian noise

Let us consider an area with N = (2n + 1)2 (or N =
(2n + 1)3 for the 3-D images) points, and let us, for
simplicity, denote the set of points as follows


 = f(�n;�n); : : : ; (0; 0); : : : ; (n; n)g

We limit ourselves to the 2-D case, the extension to the
3-D case being straightforward.

If the area is homogeneous, it is assumed that the
data are distributed according to a Gaussian random
variable, with mean � and known variance �2. In the
case of a mixture of two distributions, the mean of a
set C0 of points is �0, and for the complement set C1
(C0[C1 = 
, C0\C1 = ;) the mean is �1, while both have
the same known variance �2. The maximum likelihood
ratio gives the following test:

An area is homogeneous, if Ŝ2 � (1 + �)�2 (1)



where Ŝ2 is the variance of the data
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The parameter � may be determined from the admitted
error probability of �rst kind, that is

Pe = PrfŜ2 > (1 + �)�2jhomogeneous areag (3)

It can be shown that NŜ2=�2 is distributed according
to �2N�1, under the hypothesis of homogeneous data.

If it is decided that the whole area is homogeneous,
the smoothed image is

x̂(0; 0) = �̂ =
1
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If the distribution of pixel values is a mixture of two
probality laws, according to the model of piecewise con-
stant intensity corrupted by an additive white Gaussian
noise, we can write the probability density function of
the corresponding random variable as follows:
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The method of moments may be used to estimate the
parameters of this function. We have the following equa-
tions:

P0 + P1 = 1
P0�0 + P1�1 = c1 = 1
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Thus, the �rst three moments of the data are needed.
From the above equations, it follows that (�0; �1) are
solutions of an equation of second degree

�0 + �1 =
c3 � c1c2
c2 � c21

= �; �0�1 =
c1c3 � c22
c2 � c21
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Then, we have (for �1 > �0)
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and

P̂0 =
�̂1 � c1
�̂1 � �̂0

; P̂1 =
c1 � �̂0
�̂1 � �̂0

Having the estimates of the parameters of the bi-
modal probability density function, a Bayesian approach
can be used to obtain a threshold of discrimination be-
tween classes C0 and C1. The resulting threshold is

T =
�̂0 + �̂1
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+
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Thus,

if x(0; 0) > T; then x̂(0; 0) = �̂1
else, x̂(0; 0) = �̂0:

(5)

The above test treats image samples independently of
any connectivity consideration. In order to decrease the
risk of errors, the above decision is relaxed, if it is not
locally consistent. For the results presented in Section
4 the decision is considered as locally consistent, if at
least two points of the 8-point neighbourhood belong to
the same class as the central point.

Figure 1: The minimumSNR for a bimodal distribution
as a function of the ratio of a priori probabilities.

The test of eq.(1) is more e�cient if the probability
density function is bimodal. We give hereafter the con-
dition to have a bimodal distribution in the case of a
mixture of two Gaussians. Let � = �1��0

�
be the sig-

nal to noise ratio; then the condition of bimodality is as
follows
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Figure 1 shows the minimumvalue of the signal to noise
ratio satisfying the bimodality condition as a function
of the ratio of the two a priori probabilities.

3 Unsupervised classi�cation

For cases where the Gaussian distribution hypothesis
does not hold, the same approach may be used by au-
tomatic clustering of the data. In this case the variance
should be �rstly estimated on the basis of homogeneous
data. Then, the test of eq.(1) is used with �̂2 the es-
timated variance. If an area is detected as being non
homogeneous, the mean values of the two classes are



estimated. A squared reconstruction error criterion is
used for the parameter estimation. The following cost
function must be minimized

E =
X
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2 +
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The minimization of E gives �̂0, �̂1 and T . The well
known ISODATA iterative algorithm is used for mini-
mizing E . Smoothing is obtained in exactly the same
way as for the Gaussian case (eq.(5)).

4 Results

Firstly we present results obtained with our method for
the Gaussian case on a synthetic image of concentric
disks with additive simulated Gaussian noise. Four val-
ues of n are considered, namely f3, 4, 5, 6g, and two
values of �, namely f10, 20g, to be compared to the
gray levels of the disks f90, 120, 140, 180g. The value
of parameter � is obtained from tables of probabilities
for the �2 distribution and for Pe = 0:05 (see eq.(3)).

Figure 2 shows the noisy image (� = 20), the smoo-
thed image with (bottom-left) and without (top-right)
local classi�cation, and also the pixels where a mixture
distribution is detected when a local classi�er is used.
In both cases n = 5, that is an area of 121 pixels is
considered. The localization of central points of non
homogeneous areas (bottom-right image) illustrates well
the role of the signal to noise ratio, which is 1.5 for the
exterior circle, 1.0 for the middle circle and 2.0 for the
interior circle.

Figure 2: Result on a synthetic image

In Table 1, the enhancement factor

F =
KL�2PK

k=1

PL

l=1 (x(k; l)� x̂(k; l))2

is given for the di�erent values of parameters n and �
(KL being the number of image points) for the method
here proposed (\a" in the Table) and for a moving av-
erage �lter with equal coe�cients (\b" in the Table).

� n = 3 n = 4 n = 5 n = 6

a 10 18.98 24.21 28.52 33.04
b 10 9.51 8.23 7.06 6.11
a 20 19.33 23.28 25.40 26.77
b 20 24.19 25.36 24.10 22.07

Table 1: The enhancement factor for di�erent values of
the area size and noise variance.

Figure 3: Pixel values along the middle row of the orig-
inal, noisy and smoothed images.

In Figure 3, we plot the pixel values along the middle
row of the initial, noisy (� = 20), and smoothed (n = 5)
images.

Figure 4 shows an original MR image (top-left), the
smoothed image using our method under the Gaussian
hypothesis (top-right), the smoothed image using the
method presented in Section 3 (bottom-left), and the
smoothed image using the method presented in [4]. Fi-
gure 5 shows a row of the original MR image, and the
same row smoothed using the unsupervised clustering
algorithm.



Figure 4: Result on a MR image

5 Conclusion

We have presented a statistical image enhancement me-
thod, which is very e�ective in both preserving edges
and smoothing the intensity function, when the data are
locally bimodal. For the case of an additive Gaussian
noise a condition on the signal to noise ratio is given for
having a bimodal distribution.

Results on synthetic images illustrate well the above
statement. As the number of modes is at most two,
the larger is the locally considered area, the better is
the obtained enhancement factor. From this conclusion
we would expect that the presented method could be
improved with an adaptive variable-size local area in
order to obtain at each point the more largest area with
at most two modes.

As illustrated by the results obtained with real im-
ages, our method gives at least as good results as meth-
ods using anisotropic di�usion [4], but requires less com-
putations.
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