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ABSTRACT
Many applications are concerned by human action recogni-
tion notably in multimedia and more particularly for video
retrieval and archival. Usual approaches focus on proba-
bilistic methods and assume a still camera. In this pa-
per, a method based on the Transferable Belief Model fu-
sion process and considering a moving camera is proposed.
In this framework, the affine camera motion estimation and
temporal variations of three major human points are com-
bined. The method is tested on videos of athletics meetings
in which running, jumping and falling actions have to be
recognized. Results show the validity of the method for ac-
tion recognition.

1. INTRODUCTION

Human motion analysis [1] is of key importance in many
applications like video retrieval and archival, security surveil-
lance, medical diagnosis, sports analysis and smart rooms.
It involves human motion detection/estimation [2], coarse or
fine body limbs tracking [3] and behaviour understanding [4].
This paper especially focuses on the last point.

Behaviour understanding consists in the recognition and
description of human actions and activities: an action is de-
fined as a significant change in the human behaviour whereas
an activity describes an ordered sequence of actions. A
recognition process is usually performed by comparing ob-
servations to examples. Many methods exist like Tem-
plates Matching [5], Hidden Markov Models [6] and Dynamic
Bayesian Networks [7]. The methods provided by the litera-
ture are often based on the probability theory [8] benefiting
from a well-founded and granted theoretical framework.

Inherently to a probability-based description, the recog-
nition rate highly depends on the learning data set that has
to be close enough to what has to be recognized. Further-
more, the time granularity has an important impact on the
recognition and problems of time-shift and scale are difficult
to overcome. These problems can be encountered when the
disparity between humans performing actions and activities
is important. For real applications, it is hard to imagine that
actions and activities are performed with the same manner
by several humans.

Features usually used by the previous methods reflect hu-
man body parts motion and are generally provided by track-
ing algorithms [3] either active [9] or passive [10]. The num-
ber of tracked points depends on the limbs involved in the
actions, i.e. the level of detail. Intrinsic properties of these
sensors are taken into account in probability-based methods
by representing and handling data imprecision.

The Transferable Belief Model (TBM) [11] is another
data representation which is well adapted when statistics are
lacking and when description can be made by expert knowl-
edge. This model manages imprecision but also explicitly
expresses doubt and conflict between sources of data.

An original method is described for action recognition
and based on the combination of tracked points and cam-
era motion within the TBM framework. The estimation of

Figure 1: A bottom-up architecture to recognize action.

the camera motion is used as a complementary information
of tracking, assuming that the camera roughly follows the
human whose actions are analyzed.

A general action recognition architecture is presented in
section 2. Low and mid level modules, namely motion esti-
mation and human points detection-tracking, are described
in section 3. Section 4 is devoted to the higher level, namely
action recognition. Videos of athletics meetings are used for
testing: in this generic application, the purpose is to recog-
nize running, jumping and falling actions in different jumps.
Experimental results are shown in section 5 followed by the
conclusion and future work.

2. ACTION RECOGNITION ARCHITECTURE

The synoptic of the system is presented in figure 1. It is
based on two assumptions: first, the camera roughly follows
the human and second, the evolution of head, trunk and end
of legs positions give information on actions. Three levels of
abstraction of the handled information are considered:

• low level: a camera motion estimation algorithm pro-
vides (i) six parameters, corresponding to the affine
model of the camera motion, and (ii) an image whose
pixel value depends on its belonging to the dominant mo-
tion. Figure 2(b) depicts an illustration.

• mid level: the dominant motion image represents the in-
put of the segmentation module consisting of morpholog-
ical operations and the resulting silhouette is used by a
tracking algorithm to detect and trace three major points
of the human body. A result is illustrated in figure 2(c).

• high level: affine motion parameters and tracking results
are combined for increasing reliability and accuracy of ac-
tion recognition. This combination is based on the Trans-
ferable Belief Model providing a degree of belief on each
action and expressing conflict and doubt between data.

3. ACTION PARAMETERS

This section aims at describing the low and mid levels, i.e.
modules providing temporal parameters used for recognition.



3.1 Camera motion estimation

It is assumed that the camera roughly follows the global mo-
tion of the human whose actions are analyzed. The algorithm
presented in [12] is exploited to extract the camera motion.
It consists in an iterative and robust multi-resolution esti-
mation of parametric motion models between two successive
frames. The affine motion model provides six parameters
that are generally sufficient for most applications:

(
vx = a0 + a2 · x + a3 · y

vy = a1 + a4 · x + a5 · y
(1)

The parameters ai represent the camera motion: hor-
izontal and vertical translations (a0 and a1), rotation (a4

and a3) and divergence (a5 and a2). According to the previ-
ous assumption, these parameters correspond to the global
motion of the human. Thus, if a0 > 0 then the human hor-
izontally translates towards the left. These parameters are
then filtered to reduce noise (gaussian filter). A gray level
image is also generated by the algorithm whose pixel value
gives a piece of information on their belonging to the dom-
inant motion, generally the motion of the background. In
figure 2(b), the more a pixel is black, the less it belongs to
the dominant motion and consequently, the more it belongs
to the human.

3.2 Human points detection and tracking

Three major points are tracked by an adaptation of [13]:
head, center of mass and end of leg. They are sufficient to
help in the recognition of global actions such as running,
jumping and falling.

3.2.1 Silhouette segmentation

The tracking method needs a binary silhouette. The segmen-
tation is based on the dominant image motion. A median
filter and an opening are applied on the dominant image
motion. The binary silhouette image is obtained by thresh-
olding the previous result (the threshold is fixed empirically
to 0.1). An illustration is given in figure 2(c) where the three
major points appear.

3.2.2 Detection

The center of mass (xc, yc) of foreground pixels (F ) is first
computed. Then, the orientation Θ of the major human
body axis passing through the mass center point is computed
thanks to central moments C1,1, C2,0, C0,2 defined as:

Cp,q =
X

(x,y)∈F

(x− xc)
p(y − yc)

q

Θ = arctan

�
2C1,1

C2,0 − C0,2

�

It is assumed that the human stands in the first frame so
that the head point (xh, yh) and the end of the leg (xl, yl) can
be found. Both points represent extremities of the silhouette.

3.2.3 Tracking

The three major human points are then tracked. This proce-
dure is executed in each frame of the sequence by considering
the current frame and its previous. The current position of
the points are first estimated as above and a reclassification
of pixels of the binary silhouette image is performed in two
steps. First, the minimum distance of each foreground pixel
from the previous position of the three points is computed
and if it is higher than a threshold (adaptive to image data
and defined as a percentage of the human height), the fore-
ground pixel is classified as the background. In the second

step, background pixels belonging to human silhouette holes
are classified as the foreground class. Afterwards, the three
major human points are recalculated. An example is given
in figure 2(c).

Figure 2: Results for a high jump sequence: (a) original
frames for running, jumping and falling actions, (b) images
of corresponding dominant motion and (c) silhouette seg-
mentation the three major points.

4. FUSION AND RECOGNITION

The Transferable Belief Model (TBM) is a framework for
the combination of sources of evidence. It was introduced
by Smets and Kennes in [11] and comes from Dempster and
Shafer’s theory of evidence [14]. It is a mathematical model
used to represent belief held by an agent about the value of
the actual world. It seems well-adapted for action recogni-
tion because it explicitly expresses doubt and conflict : doubt
expresses gradualism between actions and conflict reflects
the need of improving the modeling and performing adap-
tations. The TBM is used as an alternative of probability-
based methods for the fusion of the numerical parameters to
find out actions in videos.

4.1 The Transferable Belief Model

The frame of discernment defines the possible hypothesis of
the actual world. For instance, ΩA = {RA, FA} is the frame
of discernment of an action A, where RA corresponds to “A
is Right”, i.e. the current action is A, whereas FA stands
for “A is False” and means that the current action is not
A. Hypotheses are exclusive and the frame of discernment
is exhaustive.

For each frame, sensors give information concerning the
real state of A. Each sensor S can be considered as a source
of information about A. This information can be formalized
as a Basic Belief Assignment (BBA) defined on 2ΩA by an

application mΩA
S from X ∈ 2ΩA to mΩA

S (X) ∈ [0, 1]. In the

case concerned, X takes value in 2ΩA = {RA, FA, RA ∪ FA}
where RA ∪FA means “A is Right or False”, i.e. the actual

value of A is uncertain. The value mΩA
S (X) represents the

degree of evidential support that a specific element of ΩA

belongs to the set X, but not to a particular subset of X.

4.2 Definition of the basic belief assignments

A BBA is defined for each sensor providing raw parameters.
For that, a priori knowledge is used by expert observation of
points’ trajectories and camera parameters. These features
are recalled in table 1.

The definition of the BBAs is drawn from fuzzy rules:
when a raw parameter becomes available, inputs of the
recognition module are updated by undergoing a numeric-
to-symbolic conversion such as illustrated in figure 3. The



Camera motion (affine motion parameters)
a0 horizontal translation
a1 vertical translation

a2, a5 divergence
a3, a4 rotation

tracking (coordinates)
(xc, yc) center of gravity
(xh, yh) head
(xl, yl) end of leg

Table 1: Raw parameters.

usual problem is to define the thresholds. They are currently
set by expert knowledge but this point should be improved
in future work.

Figure 3: An example of a basic belief assignment based
on fuzzy rules for the numeric-to-symbolic conversion of the
horizontal motion parameter a0.

For instance, consider figure 3 describing the conversion
of the parameter of horizontal motion, noted a0 in the sequel,
for action A = running. If a0 = 7 (the unit is the number of

pixels/frame), then all belief is given to RA (mΩA
a0 (RA) = 1)

meaning that ”A = running” is true. As a second example,

if a0 = 2.3, mΩA
a0 (RA ∪ FA) = 0.33 and mΩA

a0 (FA) = 0.67. If

mΩA
a0 (RA ∪ FA) > 0, there exists a doubt between both

”Right” and ”False” proposals according to a0.

4.3 Fusion process

When several distinct sensors Si give information about ac-

tion A, the corresponding BBAs, mΩA
Si

, all defined on the
same frame of discernment ΩA, give a confidence on the re-
ality of A. They can be combined by the conjunctive com-
bination rule, noted ∩©, defined for two sensors such as:

(mΩA
S1

∩©mΩA
S2

)(X) =
X

X,Y,Z⊆ΩA
Y ∩Z=X

mΩA
S1

(Y ).mΩA
S2

(Z) (2)

When n distinct sensors Si are available, the commu-
tative and associative ∩©-rule provides a new BBA with

mΩA
S1,2...n

= mΩA
S1

∩©mΩA
S2

. . . ∩©mΩA
Sn

. The ∩©-rule is used when

several sensors have to agree about the reality of A. When
sources are in conflict, a belief mass appears on the empty

set, i.e. mΩA
S1,2...n

(∅) > 0. The conflict must be managed by

analyzing inherent problems.

4.4 Action recognition

The recognition of running, jumping and falling actions is
split into four steps. First, meta-parameters (table 2) are
built. They represent relevant features for action recogni-
tion and they elucidate the description of actions. They are
actually a function of the raw parameters. One of them is the
human swing that describes how is positioned the main axis
of the human compared to the horizontal axis of the frame.
It is computed from the major points coordinates and brings
information on the orientation of the human in the space (its
value varies in [0, 360] degrees). An illustration of an angle
variation for a high jump sequence is given in figure 4.

Raw parameters Meta-parameters

a0, a2 Horizontal motion
a1 Vertical motion

(xc, yc), (xh, yh), (xl, yl) Swing
(xc, yc), (xh, yh), (xl, yl) Alternation of legs

yc Vertical variation

Table 2: Meta-parameters.
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Figure 4: Evolution of the angle between human and hori-
zontal axis computed with coordinates of the major points.

During the second step, BBAs are computed for all meta-
parameters of table 2. The thresholds of the numeric-to-
symbolic conversions are set once for each action and accord-
ing to each jump. All frames of discernment correspond to
ΩA = {RA, FA}, with A the action to recognize. In the third
step, data fusion is performed from the BBAs expressed by
each sensor. In the last step, temporal constraints on the re-
ality of actions are added: if an action A is detected as Right

after combination, i.e. mΩA
S1,2...n

(RA) > 0, then a potential

change in the human behaviour appears. If its duration is at
least ∆A then the action is validated. Otherwise the belief is
transferred into RA ∪FA, assuming that the range of frames
concerned is uncertain. This process acts as a low-pass filter.

The actions are supposed to be completely independent
of each other, i.e. the reality of one action gives no infor-
mation about another one: one says that actions are not
exclusive and therefore, they can happen at the same time.
This phenomenon reflects a transition between actions, well-
modeled within the TBM framework by the union of hy-
pothesis. It can be noticed that new information concerning
actions, e.g. a priori knowledge, can be easily taken into
account into BBAs’ computation by the TBM.

5. EXPERIMENTS

The proposed system is used to distinguish between run-
ning, jumping and falling actions in four different types of
jump, namely high jump, long jump, pole vault and triple
jump. The database consists in 33 videos and the number of
frames concerning each action is given in table 3. Each video
sequence is a 290×292 color avi video sequence of 25fps. The
videos have been acquired under an unknown view angle and
the most important movements of the camera are pan, tilt
and zoom. It is assumed that only one people is moving
however, the videos tested sometimes contain more people
because athletes take part to a meeting. All the parameters
are directly dependant of the camera motion estimation so,
the quality of the videos is supposed to be sufficient enough
to ensure its efficiency, notably concerning texture in image.

The setting of the numeric-to-symbolic conversions’
thresholds are set once for each action and one setting is
provided for each type of jump. Furthermore, the recogni-
tion is carried out frame by frame and independently.

The recognition results have been kept as belief masses
because the real purpose of the proposed action recognition
is to go on with activities so, the entire information has to
be kept (a decision can annihilate precious details). How-
ever, it is necessary to know whether an action is true or
not to assess the method. Decision – For that purpose, a



Jump/Action NV Running Jumping Falling Total

High jump 9 604 351 205 1160

Long jump 8 632 220 213 1065

Pole vault 8 598 417 243 1258

Triple jump 8 576 505 377 1458

Total 33 2410 1493 1038 4941

Table 3: Description of the database: Running, Jumping and
Falling actions and their corresponding number of frames
(col. 3-5). NV is the total number of videos for each jump.

Jump/Action
Running Jumping Falling

R P R P R P
High jump 96.4% 79.6% 75.4% 73.3% 74.1% 91.6%

Long jump 90.0% 80.6% 58.2% 52.9% 64.8% 70.8%

Pole vault 81.9% 75.6% 74.5% 70.9% 72.8% 75.6%

Triple jump 85.9% 70.6% 55.6% 63.3% 62.9% 52.1%

Total 88.6% 76.7% 59.6% 66.1% 67.8% 64.0%

Table 4: Recall and precision of the recognition based on the
credibility of Running, Jumping and Falling actions.

criteria based on the credibility of an action A, noted CrA,
is tested. It considers A as true if mΩA(RA) > 0. Other
criteria can be chosen, for instance based on the plausibil-
ity or on the pignistic probability. However, CrA is chosen
because it is a hard decision reflecting the quality of the
recognition with a severe degree by focusing on the specific
element RA. Evaluation – Recall and precision indexes,
noted R and P respectively, are used for the evaluation and
are computed as follows: R= C∩R

C
and P= C∩R

R
, where C is

the reference set obtained by expert annotations, R is the set
of retrieved frames provided by the recognition module by
using the credibility-based criteria, and C ∩R is the number
of correctly retrieved frames.

Table 4 gathers the recall and precision indexes for each
action and according to each type of jump. The last line
represents their mean over all videos. Description – The
running action is almost the same for each jump account-
ing for a high overall recognition rate. Jumping and falling
recognition rates are less good than for running: confusing
recall and precision, results are between 70.9% and 91.6% for
the pole vault and the high jump, and between 52.9% and
70.8% for the long jump and the triple jump. Analysis –
(i) Other moving people or objects used by the athlete like
the perch for a pole vault disrupt the tracking and penal-
ize the evaluation indexes: an automatic detection of the
moving objects different to the athlete or a tracking coupled
with a Kalman filter are possible solutions. (ii) An improve-
ment of the recognition could be reached by a more detailed
decomposition of these actions raising the problem of gran-
ularity. (iii) Actions have been described in a static way and
the dynamic recognition is more relevant and challenging im-
plying to take into account time and the chaining of events.

Figure 5 illustrates the evolution of the credibility of the
three actions for a high jump sequence. The second jumping
is due to the athlete expressing his happiness because he
succeeded its attempt.

Figure 5: Actions recognition for a high jump sequence.

6. CONCLUSION

An original method based on the Transferable Belief Model
was proposed. The data fusion took into account the cam-
era motion and the trajectories of three major points of the
human silhouette preliminarily segmented by image process-
ing. These parameters were translated into basic belief as-
signments based on fuzzy rules. The database consisted in
33 athletics videos where the purpose was to recognize run-
ning, jumping and falling actions in four jumps namely high
jump, long jump, pole vault and triple jump. An evaluation
process based the credibility was applied and recall and pre-
cision indexes validated the method.

Work is under progress to integrate activity recognition
into the proposed architecture, still based on the Transfer-
able Belief Model. Adaptations by feedbacks between mod-
ules and the learning of the numeric-to-symbolic conversions’
thresholds are foreseen.
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