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Abstract

This paper explores image retrieval mechanisms based on a combination of texture and colour

features. Texture features are extracted using the Discrete Wavelet Frame analysis, which is an

over-complete decomposition in scale and orientation. 2-D or 1-D histograms of the CIE Lab

chromaticity coordinates are used as colour features. The 1-D histograms of the a; b coordinates

were also modeled according to the generalized Gaussian distribution. The similarity measure

is de�ned on the features distribution and is based on the Bhattacharya distance. Retrieval

benchmarking is performed over the Brodatz album and on images from natural scenes, obtained

from the VisTex database of MIT Media Laboratory and from the Corel Photo Gallery. As a

performance indicator recall (relative number of correct images retrieved) is measured on both

texture and colour separately and in combination.

Index terms { Discrete Wavelet Frames, texture retrieval, colour image similarity, Bhattacharya

distance

EDICS: 4-KEEP
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I. Introduction

The current explosion in the generation rate of image archives necessitates the development

of e�ective ways of managing (describing, indexing and retrieving) the visual information by its

content [5], since a textual description of the image content may be subjective and inadequate for

automatic retrieval. In order to describe the image content, low level arithmetic features must

be extracted that will be quantitatively comparable. The MPEG-7 working groups are seeking

to de�ne and standardize the image content description for automatic indexing.

Numerous features have been proposed and used to describe quantitatively the visual infor-

mation, such as shape, colour, texture, motion, etc... [5]. Many image retrieval systems have

indeed been developed using all or some of these features, including QBIC [4], Photobook [19],

Chabot [18], Virage [6].

In this work texture and colour features are explored as a means of image content description.

Image classi�cation is performed according to global features for describing the texture and

colour content for the whole image. It could be also possible to extract the same features for

previously segmented objects.

Most approaches to classi�ying textured images proposed during the past decades fall into

three broad categories: statistical, model-based, and signal processing techniques [23], [22]. The

statistical approaches, such as [7], were primarily investigated in the 80's. Model-based methods

include among others Markov random �eld [9], simultaneous autoregressive [17], and Wold models

[14]. Our approach could be characterized as a signal processing method, and in particular it

is based on a joint spatial/spatial-frequency representation of the texture patterns. Common to

most signal processing methods is that the image is submitted to a �lter bank, followng which

local energy measurements are made. In this context the Gabor �lter analysis could be used [20],

[1], [8]. Having similar properties, but admitting a simpler implementation, wavelet transform

representations could also be used. Pioneering work on texture classi�cation using the wavelet

packet representation is documented [3], [12]. Related to this approach is also the quadrature

mirror (QMF) �lter bank decomposition presented in [10].

Manjunath and Ma [16] studied certain aspects of image processing important for extracting

texture features relevant to browsing and retrieval. They propose the use of Gabor wavelet fea-

tures, where an adaptive �lter selection algorithm is also proposed. The dissimilarity measure

was based on the Mahalanobis distance. They provided comparison over the Brodatz album
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[2] with the performance of three other multiscale analysis methods: the conventional pyramid-

structured wavelet transform, the tree-structured wavelet transform, and the multiresolution

simultaneous autoregressive model. The Gabor wavelet analysis is seen to outperform the other

approaches with respect to the average recognition rate. The more e�cient in terms of compu-

tational complexity was the pyramid-structured wavelet transform.

Liu and Picard [14] proposed the use of a Wold decomposition for extracting perceptual fea-

tures, described as periodicity, directionality and randomness. The performance of the Wold

model is compared with other methods: the multiresolution simultaneous autoregressive model,

the principal component analysis, the tree-structured wavelet transform, and the Tamura fea-

tures. The experiments were performed over the Brodatz database, and the Wold model was

shown to be the best, while the Tamura features and wavelet transform yield relatively poor

results.

In this paper, the problems of texture classi�cation, browsing and retrieval are approached

with algorithms based on the concept of wavelet frames. The aim of the analysis is to determine

characteristics corresponding to each texture type, so that each texture pattern is uniquely

de�ned. Such a distinction takes place in the frequency domain, where the input image is

equivalently decomposed to di�erent scale levels using the Discrete Wavelet Frames (DWF).

Once these characteristics are deduced, statistical methods are applied to extract the features

which are necessary for the description and the classi�cation of the texture pattern. Although the

philosophy of this approach has been introduced in the past [24], in our work a new statistical

measure is proposed for evaluating texture pattern similarities. The main advantages of the

Wavelet Frames representation are that it focuses on scale and orientation texture features, it

decomposes the image into orthogonal components, and it is translation-invariant.

For colour features the CIE Lab colour system was chosen, which is designed to be perceptually

uniform. Only the chromaticity coordinates (a; b) are used to describe colour. In general, colour

content is best described by the chromaticity distribution which is given by 1-D or 2-D histograms.

The computational complexity is reduced if Gaussian or Laplacian models are assumed for these

distributions.

In order to compare texture and colour features a common distance measure is used. This

measure is chosen to be the Bhattacharya distance for its good classi�cation properties and

because it allows the combination of di�erent features in a simple way. The performance of the
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features is checked according to a retrieval benchmark proposed in [14]. Three data sets are

considered. The �rst database is the whole Brodatz album [2] which is a collection of various

natural grayscale textures. The second data set is obtained from the MIT Media Laboratory

VisTex database [11], which contains images of scenes of physical colour textures. The third is

obtained from the Corel Photo Gallery.

The presented work is organized as follows. In Section II, the underlying theory of the basic

�lters, the necessary decomposition by upsampling and the use of Discrete Wavelet Frames, as

applied to 2-D signals, are described. Next, in Section III, the texture and colour describing

features are introduced, as well as the dissimilarity measure, which is based on the Bhattacharya

distance. In Section IV the benchmarking results are presented, compared with other methods

and discussed.

II. Texture analysis and characterization

The fundamental tools used for processing the textured images are a �lter bank and the

concept of wavelet frames ensuring the translation invariance of the features. The �lter bank

decomposes the image into orthogonal components, hence simplifying the classi�cation problem.

A low-pass �lter H(z) and its conjugate quadrature high-pass G(z) form the pair of prototype

�lters for generating the whole �lter bank by upsampling, so that the whole range of bands is

covered. Cubic splines having appropriate scaling properties could be used for designing the pair

of prototype �lters [24]. Here the fourth-order binomial �lter and its conjugate quadrature �lter

are used,

H(z) =
3

8
+
1

4
(z + z�1) +

1

16
(z2 + z�2) (1)

G(z) = zH(�z�1) (2)

in the frequency domain, and

h(n) =

8><
>:

6=16; n = 0
4=16; jnj = 1
1=16; jnj = 2
0; jnj > 2

g(n) = (�1)1�nh(1� n) (3)

in the spatial domain. The two-channel �lter bank amplitude responses in db are illustrated in

Fig. 1. The �lter bank is obtained iteratively, indexed by the scale factor i = 0; : : : ; I ,

Hi+1(z) = H(z2
i

)Hi(z) (4)

Gi+1(z) = G(z2
i

)Hi(z) (5)
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Fig. 1. The frequency responses of the pair of conjugate �lters

where H0(z) = 1.

Therefore, the input signal can be decomposed into wavelet coe�cients corresponding to dif-

ferent scales. Thus the Discrete Wavelet Frames (DWF) could handle important texture char-

acteristics, such as periodicity and translational invariance. The representation is overcomplete

because the �ltered images are not subsampled. This leads to fewer constraints on the choice

of the prototype �lters. Even more importantly, it facilitates the selection of orthonormal basis

functions. The �lter of Equation (3) is selected because of its good orthogonalization properties.

We present here two criteria for band separation by the �lter pair. The antialiasing coe�cient

measures the energy concentration in the low-frequency band by the low-pass �lter

� =

R 1=4
0 jH(f)j2dfR 1=2
0 jH(f)j2df

;

where H(f) is the Fourier transform of the low-pass �lter H . For the above �lter we have

� = 0:985. In addition we use the correlation coe�cient between the approximation and the

details signals as follows:

LH(m) =

P
k

P
l h(k)g(l)s(m+ k � l)pP

k

P
l h(k)h(l)s(k � l)

pP
k

P
l g(k)g(l)s(k� l)

where s(�) is the autocovariance function of the input signal. For a fully correlated input signal,

LH(m) is zero-valued for any m, because the sum of all g(�) coe�cients is zero. An interesting

and important indication of the output correlation is given by the maximum value of LH(m)

under the assumption of a �rst-order Markov process for the input signal. Since at each layer

the input signal processed is an approximation signal with strong correlation, we provide here
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the maximum LH(m) value for � = 0:9,

max
m

LH(m) = 0:027

which is su�ciently weak for considering the interband decorrelation hypothesis to be valid in

practice.

All of the above are extensible into 2-D, thus becoming applicable to images with texture,

the features of which must be extracted. This can be accomplished by forming wavelet bases

which result from the cross-product of separable bases in each direction. Thus, the analysis is

computationally straightforward, since rows and columns of the image are processed separately,

as if they were 1-D signals.

Of course, other �lter prototypes could be used in the same processing scheme. Randen

and Husoy [22] compared the most frequently used �ltering approaches, including Laws masks,

Gabor �lter banks, wavelet transforms, wavelet packets, wavelet frames, quadrature mirror �lters,

discrete cosine transform, eigen�lters, and linear predictors. They do not give conclusive evidence

for preferring a particular �lter, because often the e�ectiveness of the various �lters depends on

the image in question. Nonetheless, the QMF and wavelet frames approaches were among the

best in the comparisons performed in [22].

In addition to wavelet frames decomposition, other �ltering analysis approaches could also

be used in the following section considering the feature extraction, classi�cation and retrieval

problems. We adopted the Discrete Wavelet Frames analysis because of the above separability

property, which parmits a simpler implementation.

III. Feature extraction and dissimilarity measure

A. Texture feature extraction

The previous analysis can be applied to input texture images to distinguish I frequency layers,

yielding the following representative vector:

y(m;n) = [y1(m;n); : : : ; yN�1(m;n); yN(m;n)] (6)

where each element of y(m;n) has been determined according to the wavelet frame analysis

and the dimension of the vector is N = 3I + 1, composed of 3I detail components and the

approximation at level I component. It is evident that in each resolution level three new feature

channels are obtained, which characterize for the given scale depth the horizontal, the vertical and
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the diagonal directions. The �rst analysis layer corresponds to high frequencies, while the higher-

order layers represent represent successively lower frequencies. Thus, depending on the value of

the corresponding vector coe�cient, the direction and the amount of frequency contribution is

deduced at a given image point (m;n). Di�erent textures are distinguished based on these last

two characteristics.

In this work the discrimination of di�erent textures is based only on the N � 1 high-frequency

components. The low-pass component is not used because a texture is better described through

the higher frequency channels than through the approximation component. The �rst reason for

this is that a mean-invariant classi�er is required, and secondly, the approximation component

might not be stationary, with a shift-variant variance. In other words the approximation com-

ponent is more sensitive to local inhomogeneities. Each texture class is then characterized by

the variances of the high-frequency components yi(m;n), say �2i (i = 1; : : : ; N � 1). Indeed, the

mean value of each high-frequency component is zero, because the sum of the corresponding �lter

coe�cients is zero. In addition, the correlation coe�cients between di�erent components could

be assumed to be zero, as explained in the previous section, dealing with the �lter properties.

B. Colour features

In order to characterize the colour content of an image the CIE Lab colour space is used. The

Lab colour coordinate system has the advantage that it is designed to be perceptually uniform,

meaning that the same distance in the colour space leads to equal human colour di�erence

perception, i.e., images which are perceptually similar have the same chromaticity components.

It also has the advantage that lightness L is distinct and independent from the chromaticity

coordinates (a; b). For colour image classi�cation and retrieval it is more relevant to compare

the chromaticity distribution of an image, disregarding the lightness component. This exclusion

of lightness is enforced in our case by the fact that lightness is used to extract texture features.

In order to characterize the chromaticity content of an image, the 2-D histogram of the (a; b)

coordinates are used. A uniform quantization of the 2-D histogram down to 1024 chromaticity

bins is performed, because otherwise it would be very large and very sparse ([�137; 96]; [�99; 133]

for (a; b) which yields 54056 bins). The number of chromaticities is so large because most of

the values of these coordinates are very dense in a small region around zero. Higher absolute

values are found only when the image contains pure colours such as high saturated red or blue.

Empirically the values of (a; b) found in natural images are compact and occupy a small portion
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of the whole range of values.

This method has the advantage of describing exactly the 2-D distribution of the chromaticity

coordinates. However it has the disadvantage that 1024 oating point numbers are needed for

storage for the empirical probability density function of each image. This size could be reduced

if the coordinates are uncorrelated, in which case the 1-D histograms of each coordinate could be

used. Thus colour feature could use the 232 and 233 bins of the (a; b) histograms respectively.

In order to reduce the number of the colour features we could assume a model for each co-

ordinate distribution. In our case the Gaussian and Laplacian distribution are used as models.

This model requires only the mean value and the variance of the image's colour coordinates. The

storage demands are minimized and the comparison of colour features is accelerated. Detracting

from this model's usefulness is that its assumptions are not always valid. This fact leads us to

a constrained data set in which each image will contain chromaticities concentrated around a

concrete value at each coordinate.

C. Dissimilarity measures

Measuring the dissimilarity between images is of central importance for retrieving images by

content. A thorough empirical evaluation of many di�erent dissimilarity measures for colour and

texture is given in [21]. For large histograms it is concluded that of these the �2 distance, the

Kullback divergence and the Jensen divergence perform best. In our work we considered two

dissimilarity measures of the same category, the likelihood ratio and the Bhattacharya distance.

A preliminary study [13] and empirical evaluation of these two measures lead us to select the

Bhattacharya distance for retrieving images by colour and texture. In this paragraph we present

both, and in benchmarking we use the latter.

Assuming Gaussian probability density functions with the previous statistics, the logarithmic

likelihood criterion gives the distance of a test texture y from a class j,

dLj (y) =
X
(m;n)

N�1X
i=1

 
y2i (m;n)

�2i;j
+ ln�2i;j

!
/

N�1X
i=1

 
S2
i

�2i;j
+ ln �2i;j

!
(7)

where the �rst sum is taken over all image points, S2
i is the variance of the i component of the

current image, and �2i;j is the variance of the same component of class j.

A more interesting criterion is the Bhattacharya distance, because it is strongly linked to the

minimum classi�cation error for the two-classes case, and because the two texture patterns, the
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one of the data set and the one tested, are considered in an symmetric way. The Bhattacharya

distance is in fact a special case of the Cherno� bound of the Bayes error [25]. It is well known

that the Cherno� information gives the highest achievable exponent for the error probability.

The de�nition of the Bhattacharya distance is

dB(p1; p2) = � ln

�Z
x

q
p1(x)p2(x)dx

�
(8)

where p1, p2 are probability density functions of vector x of any dimension. The Bhattacharya

distance satis�es the symmetric property, (d(p1, p2) = d(p2, p1)). The triangular property is

satis�ed only for speci�c con�gurations.

In our case this distance could be de�ned on empirical probability distributions. The discrete

expression is

dB(h1; h2) = � ln

 X
i

q
h1(i)h2(i)

!
(9)

where i is an index into the bins of the normalized histograms h1, h2.

In the case that we have a model for the feature's distribution, a simpler expression for the

Bhattacharya distance can be deduced. Statistical analysis of experimental results have shown

that the probability distribution of the high-frequency components could be the generalized

Gaussian [15]

p(x) =
c

2��
�
1
c

�e�� jxj
�

�c
;

where the parameter � is related to the variance and c reects the sharpness of the probability

density function. For c = 2, we obtain the Gaussian function, and for c = 1, the Laplacian func-

tion. Taking into account that we have in practice an interband decorrelation, the Bhattacharya

distance will be the sum of the corresponding distances on all the components

dBj (y) =
1

c

N�1X
i=1

ln
Sc
i + �ci;j

2
q
Sc
i �

c
i;j

: (10)

In our work we have considered and we give results for both c = 2 and c = 1.

When texture features and colour histogram features need to be combined, the last model-

based expression is used for texture features and the initial expression is used for histograms.

Each term for each feature is summed independently of the expression of the distance, because

the decomposition is approximately orthogonal.
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IV. Retrieval benchmark

In order to assess the capabilities of the texture and colour features alone or in combination a

retrieval benchmark comparison was performed. For this purpose all the images in the database

are sectioned into an equal number of icons, all of the same size. provided that all the images

in the database have the same size. A database of icons is thus obtained with a large number of

items. Each small icon in the database is used to retrieve from the database the nearest (more

similar) icons, except itself. The similarity between two icons is determined using as measure the

Bhattacharya distance described in the previous section. For each number of retrieved icons, we

record the recall, that is the number of relevant images relative to the total number of relevant

images in the database. This result is presented graphically in a hit rate curve versus the number

of retrieved images. It is obvious that this curve will be increasing, because as the number of

the retrieved icons is increasing the classi�cation rate is increasing. A retrieval example is shown

in Figure 2 for the relatively heterogenous D13 Brodatz image. In this example for 8 retrieced

icons the recall is 50 %, and for 17 it is 75 %.

The �rst database used is the entire Brodatz collection containing 112 grayscale texture pic-

tures. Each of them is subdivided into nine non-overlapping subimages, resulting in 1008 texture

patches. The DWF analysis is performed up to �ve scale levels. In Figure 3 the average percent-

age of relevant icons retrieved versus the number of top retrieved icons is graphically presented.

In the same �gure a comparison with the MRSAR method is given. As the Brodatz album

is used in other published work for benchmarking, we present the recall measure for di�erent

methods as reported in the literature (Tab. I). The number of the retrieved images is equal to

the number of expected relevant subimages. As in our experiments the number of subimages per

texture picture is equal to nine, the number of retrieved subimages is eight. We should note that

there may be some di�erences in the data set, as for example a di�erent scanning procedure,

or in the implementation of the various methods. This global result shows that the proposed

method yields very good results, while being much simpler in computations in comparison with

the Wold model, the Gabor analysis and the MRSAR model.

The database used for the second retrieval experiment consists of 55 images of di�erent texture

classes derived from the MIT Media Laboratory VisTex texture database, shown in Figure 4.

The DWF algorithm is applied to analyze the images from the database in �ve scale levels.

The variances �2i are then calculated in order to characterize each textured image, based on the
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Fig. 2. A retrieval example: the top-left icon is the query picture

Method Retrieval performance
Wold [14] 75%
DWF (our result) 73.4%
Gabor [16] 73.1%
MRSAR [16] 72.0%
MRSAR [14] 70 %
TWT [16] 68.0%
PWT [16] 67.4%

TABLE I

The average recognition rate for the Brodatz collection and for different methods

and implementations
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previously described feature extraction algorithm.

Tables II and III present results on the retrieval accuracy of our method for the same database.

Each of the 55 texture images provides sixteen 128 � 128 subimages, 880 subimages in total.

The average recognition rate is computed for di�erent numbers of the top retrieved images. Each

image in the database is used once as query prototype. The Bhattacharya distance is used for

classifying and retrieving the subimages. Two hypotheses are considered for the probability

distribution of the wavelet frame components: Gaussian and Laplacian. Table II shows detailed

results on the recognition rate for assessing the e�ciency of the method with respect to the

image content. Table III shows global rates under the Laplacian assumption, knowing that

the behaviour on the individual images is very similar to that of the Gaussian distribution

assumption. In addition, we have implemented a Gabor �lter for the diagonal components for

separating the two diagonal directions. A small improvement is achieved: in the �rst 15 retrieved

images 77.2% were correct, in comparison with 76.9% of the Wavelet analysis.

We have also compared our method to the MR-SAR method [17] which could be regarded as

representative of the state-of-the-art modeling for texture classi�cation. Two types of MR-SAR

are used. The �rst is the one proposed by Mao for classi�cation, and uses a Gaussian pyramid

of the textured image in order to extract SAR model parameters at di�erent resolutions. The

second type is a "pseudo" MR-SAR that does not change the image scale, but enlarges the SAR

model mask, capturing lower resolution characteristics. This type is used by Mao and Jain [17]
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Bark.0002 Bark.0003 Bark.0004 Bark.0008 Bark.0009 Brick.0000 Brick.0002

Brick.0004 Brick.0005 Clouds.0000 Fabric.0000 Fabric.0002 Fabric.0004 Fabric.0007

Fabric.0009 Fabric.0011 Fabric.0013 Fabric.0015 Fabric.0017 Fabric.0018 Flowers.0002

Flowers.0003 Flowers.0004 Flowers.0005 Food.0000 Food.0002 Food.0005 Food.0006

Grass.0001 Leaves.0001 Leaves.0002 Leaves.0004 Leaves.0008 Leaves.0010 Leaves.0011

Leaves.0012 Leaves.0013 Leaves.0014 Metal.0000 Metal.0002 Metal.0004 Sand.0000

Sand.0005 Stone.0001 Stone.0002 Stone.0004 Tile.0000 Tile.0004 Tile.0007

Water.0000 Water.0002 Water.0003 Water.0004 Wood.0000 Wood.0002

Fig. 4. The VisTex texture image database used for retrieval experiments
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Number of 15 20 25 30 35 40 45
retrieved images
Bark.0002 68.8 80.0 85.4 91.2 96.7 97.9 99.2
Bark.0003 52.1 59.2 67.5 74.2 77.1 81.7 83.3
Bark.0004 77.5 85.4 87.9 90.0 92.1 92.9 94.2
Bark.0008 57.1 61.2 65.4 68.3 70.0 72.1 74.2
Bark.0009 37.5 40.8 42.9 45.8 47.1 49.2 51.2
Brick.0000 89.2 93.3 96.2 97.9 99.6 100.0 100.0
Brick.0002 74.2 77.9 81.2 82.1 83.3 85.8 87.5
Brick.0004 75.4 82.1 82.9 85.8 87.5 89.2 89.6
Brick.0005 91.7 97.5 97.9 99.2 99.2 99.6 100.0
Clouds.0000 92.5 96.2 97.9 98.3 99.2 99.6 99.6
Fabric.0000 78.3 81.7 84.2 87.9 90.4 91.7 92.9
Fabric.0002 85.0 87.9 89.2 90.0 91.2 92.1 93.3
Fabric.0004 75.4 78.8 80.4 84.2 85.8 86.7 88.8
Fabric.0007 97.1 97.9 99.2 100.0 100.0 100.0 100.0
Fabric.0009 98.3 99.2 100.0 100.0 100.0 100.0 100.0
Fabric.0011 75.0 84.6 90.8 93.8 95.4 97.9 98.8
Fabric.0013 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Fabric.0015 81.2 91.2 95.0 96.7 97.5 98.8 99.2
Fabric.0017 93.8 96.7 97.1 97.9 99.2 99.2 100.0
Fabric.0018 93.3 99.2 100.0 100.0 100.0 100.0 100.0
Flowers.0002 57.9 64.2 73.8 80.4 86.2 92.1 93.8
Flowers.0003 81.2 91.2 95.0 98.3 100.0 100.0 100.0
Flowers.0004 63.8 72.9 77.1 80.8 84.2 87.5 87.5
Flowers.0005 56.7 73.3 86.2 92.5 94.6 95.0 95.8
Food.0000 66.2 77.9 84.6 88.3 90.0 92.9 95.0
Food.0002 53.3 63.3 75.8 84.2 88.8 92.1 92.5
Food.0005 81.7 90.8 94.2 95.0 97.1 98.3 98.3
Food.0006 82.5 92.5 96.2 97.5 99.6 100.0 100.0
Grass.0001 97.1 99.6 100.0 100.0 100.0 100.0 100.0
Leaves.0001 66.7 74.6 81.2 85.4 88.3 88.8 90.4
Leaves.0002 87.9 89.6 89.6 90.8 92.1 92.9 93.3
Leaves.0004 82.9 94.6 97.9 99.6 99.6 100.0 100.0
Leaves.0008 70.4 84.2 90.8 94.6 96.7 97.9 98.3
Leaves.0010 55.0 61.7 68.8 74.2 76.7 79.2 81.2
Leaves.0011 53.8 60.0 64.6 69.2 72.1 76.2 80.4
Leaves.0012 67.5 80.0 90.4 92.9 95.8 97.1 97.9
Leaves.0013 59.6 62.5 65.4 66.2 68.8 70.4 72.9
Leaves.0014 72.9 81.7 85.4 89.2 90.8 92.1 92.5
Metal.0000 81.2 88.3 93.3 98.3 100.0 100.0 100.0
Metal.0002 98.3 100.0 100.0 100.0 100.0 100.0 100.0
Metal.0004 79.2 87.5 93.3 96.7 97.9 98.3 99.6
Sand.0000 97.5 99.2 99.6 100.0 100.0 100.0 100.0
Sand.0005 61.7 67.9 71.7 74.2 76.7 79.2 79.6
Stone.0001 62.5 73.3 81.2 88.3 92.9 95.4 96.7
Stone.0002 85.0 88.3 91.2 95.0 96.2 97.1 97.1
Stone.0004 86.2 92.1 93.3 95.0 95.8 97.5 97.5
Tile.0000 77.5 78.3 80.0 80.4 82.5 84.2 84.2
Tile.0004 99.2 100.0 100.0 100.0 100.0 100.0 100.0
Tile.0007 77.9 80.8 84.2 85.8 88.3 89.2 89.6
Water.0000 61.2 67.1 70.0 71.7 74.6 77.5 80.8
Water.0002 62.1 65.4 68.3 70.4 72.5 75.8 77.9
Water.0003 99.2 100.0 100.0 100.0 100.0 100.0 100.0
Water.0004 64.6 72.1 77.1 82.9 85.8 87.9 90.8
Wood.0000 32.5 40.4 45.8 47.9 50.0 52.9 55.4
Wood.0002 100.0 100.0 100.0 100.0 100.0 100.0 100.0
All 75.9 81.9 85.6 88.2 89.9 91.3 92.2

TABLE II

Average percentage recognition rate for all texture classes versus the number of the

top retrieved subimages under the Gaussian hypothesis
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Number of retrieved images 15 20 25 30 35 40 45

Retrieval performance 76.9 82.6 86.0 88.5 89.9 91.1 92.1

TABLE III

Average percentage recognition rate for all texture classes versus the number of the

top retrieved subimages under the Laplacian hypothesis

for segmentation, and for classi�cation in [14], [16]. The implementation is like the one described

by Picard, using three resolutions and second order SAR mask. A multiresolution SAR model

with 3 resolution levels is tested, as well as a pseudo MR-SAR model. The retrieval perfor-

mance operating characteristics are given in Figure 5. Our method outperforms the MR-SAR

model-based method of about 5% for any number of retrieved images. However, this comparison

indicates an average performance over the whole image database. There exists an important

dispersion on the di�erential performance on the individual texture images. The multichannel

approaches perform better on structured, quasi-periodic textures, while MR-SAR modeling could

be much better on textures without speci�c structure. In order to illustrate the inuence of the

texture pattern we give the list of images for which the Wavelet approach performs much bet-

ter (f Brick.0002, Brick.0004, Fabric.0000, Fabric.0002, Fabric.0011, Flowers.0003, Food.0006,

Grass.0001, Leaves.0001, Leaves.0002, Leaves.0010, Leaves.0014, Tile.0000, Tile.0004, Wood.0002g),

and the list of images where the Auto-regressive modeling is much more e�cient (f Bark.0009,

Fabric.0015, Fabric.0018, Food.0005, Leaves.0004, Leaves.0011, Metal.0000, Metal.0004, Tile.0007,

Water.0000, Water.0004g).

For the colour texture retrieval benchmark we use the same images. Figure 6 shows the retrieval

performance curve for all the combinations. For texture the DWF features are used. For colour

we use the 2-D histogram of (a; b), the two 1-D histograms of a; b respectively, the parameters of

a Gaussian and a Laplacian model. For the DWF analysis 5 levels of decomposition were used,

yielding a 15-dimensional feature vector. Also Laplace distribution modeling was used for texture

features, for which experimental results show to perform better than the Gaussian assumption.

As expected the 2-D histogram has the best performance, even with small di�erence from

the performance using 1-D histograms (91.3% against 90.6%). The modeling of the histograms

distribution with Gauss and Laplace distribution provide good performance when combined with

texture features yielding 88.5% and 85.3% of correct classi�cation respectively. In practice a; b
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Fig. 5. Benchmark comparison of texture retrieval (VisTex images)

1-D histograms are close to the Gauss distribution in most cases. This is because most of

the images are homogeneous which yields homogeneous chromaticities. Also Gauss modeling is

enforced from Lab colour system which has chromaticity a; b coordinates very compact in a small

range of all possible values.

Figure 7 shows the performance according to the benchmark using each texture or colour

feature alone. Texture features have the best performance with 76.8%. Then the colour features

follow, 2-D histograms, 1-D histograms, Gauss and Laplace modeling with 71.1%, 70.2%, 62.8%,

49.8% respectively. Texture features result in the best performance because the data set is

texture-oriented.

In Figure 8 we present the results for the Corel Photo Gallery data set, comprised of 210

images of 384 � 256 pixels. As for the VisTex data set 128 � 128 subimages are considered. The

benchmark is de�ned in the same way, and the results show that the combination of texture and

colour features gives a percentage of correct classi�cation of the �rst retrieved subimage equal to

93%. If texture features are used alone the performance drops to 80%, and in the case of colour

features alone 75%. In Figure 9 we give the more heterogeneous, in either colour or texture,

images, for which the retrieval is less performant. Note that scale- or rotation-invariance are not
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addressed in this paper.

V. Conclusion

The Wavelet Frame Analysis decomposes images into di�erent frequency bands, expressing

them into various scales and orientations. For this reason the components of the wavelet frames

are particularly e�ective in exploiting periodicities in texture patterns. The Wavelet Frames

Decomposition used in our work is extremely simple, implemented using 5-tap 1-D �lters. In
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the future it will be interesting to �nd the best �lter-bank for a given retrieval set. Colour was

described by the chromaticity distribution in the CIE Lab colour space.

The proposed classi�cation and retrieval method, based on the Bhattacharya distance as a

dissimilarity measure between texture patterns and colour distributions, was tested according to

a standard retrieval benchmark on three relatively large sets of natural textures from the Brodatz

collection, the VisTex database and the Corel photo gallery. These data sets, consisting of pure

texture and coloured textures, are essentially homogeneous in texture and more spatially variant

in colour. As expected texture features were shown to be more relevant for image classi�cation

and retrieval. The results were very satisfactory for such a rich database, and in comparison

with another well-known and e�ective method of random �eld modeling, the multiresolution

autoregressive method, our method exhibits much better results for quasi-periodic texture pat-

terns, and poorer results for \random" or \chaotic" patterns. Other comparisons with other

known methods show that our method is either equivalent or better in performance, and compu-

tationally less time-consuming. In particular in comparison with other wavelet-based methods

we obtain clearly better results. In addition, our method easily combines di�erent features, as

shown with texture and colour.
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Fig. 9. Images with inhomogeneities from the Corel data set


