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Joint disparity and motion �eld estimation in
stereoscopic image sequences

Ioannis Patras, Nikos Alvertos and Georgios Tziritasy

Abstract

This work aims at determining four dense �elds given two stereoscopic
pairs of images in consecutive time instances: two dense velocity �elds and
two dense disparity �elds. The proposed scheme is completed in two stages.
During the �rst stage, the dense disparity �eld of the �rst stereoscopic pair is
estimated using a multiscale iterative relaxation algorithm. During the second
stage, again using a similar iterative algorithm, the two dense velocity �elds
and the disparity �eld of the second stereoscopic pair are estimated. The
method has been implemented with both synthetic and real data.
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1 Introduction

There are three general approaches regarding dynamic stereo vision which are
found in the existing bibliography [11]. The �rst one consists of initially solving
the stereoscopic problem, which leads to the static determination of objects,
followed by the correspondence of these objects in time. Leung and Huang
[5] assume a scene which contains only one moving object with respect to
the stationary receiver (camera), where stereoscopic correspondences are �rst
determined for a su�cient number of points followed by evaluation of their
three-dimensional motion. A similar approach to the problem is employed
by Netravali et al. [9] and Mitiche and Bouthemy [8]. Kim and Aggarwal
[4] use segments of boundaries, instead of points, for which initially the
stereoscopic problem is solved. Motion is determined under the hypothesis
that the depicted objects are rigid and, thus, their geometric characteristics
remain unchanged in time. Similar is also the approach by Zhang and Faugeras
[13] which is based on straight line segments with complete determination and
appropriate description in the three-dimensional space. The second general
approach evaluates independently the two two-dimensional velocity �elds in
the sequence of stereoscopic image pairs and then determines and uses the
stereoscopic relations which exist between the two velocity �elds. Mitiche [7]
determines relations among positions and velocities of discrete points which
correspond to the stereoscopic pairs. Solution to these equations results
into the three-dimensional motion of a set of points which are assumed to
belong to the same rigid body. Waxman and Duncan [12] determine relations
between the 2-D velocity �elds of the stereoscopic pair and de�ne the binocular
di�erential motion which is connected to the stereoscopic disparity. Finally,
the third approach uses a joint estimation of the two 2-D velocity �elds taking
advantage of their stereoscopic relation without seeking the complete 3-D
reconstruction of the depicted objects. In this case, where a complete 3-D
motion and shape object description is not required, Tamtaoui and Labit [10]
introduce stereoscopic relations between the velocity �elds of the stereoscopic
pair which utilize for the simultaneous evaluation of the two velocity �elds
using a recursive method. This approach seems to produce interesting results
for applications in 3-D television.

As it was shown through the previous bibliographic reference, the existing
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solutions do not utilize the stereoscopic and motion relations simultaneously;
instead, they consider the problem in sequential stages. It is known, however,
that positions at each time instant are connected with displacements and,
furthermore, the relations which connect the rate of change of the stereoscopic
disparities with the velocity �elds are known. This work aims at an integrated
solution to the problem of dynamic stereoscopic vision. A simultaneous
estimation of the velocity and disparity �elds in a dense structure, that is,
for all image points, as opposed to most of the existing methods where only
sparse image descriptions are given, is proposed. At any time instant two
motion �elds (for the left and right image sequences) and one disparity �eld are
computed. The disparity �eld of the previous stereoscopic pair is considered
as known, that is previously estimated. In addition, a method which has
been shown to be e�ective in monocular motion analysis is used, given
that it has been appropriately adapted to the requirements of the problem.
Initially, a cost function is determined which constraints the di�erent �elds
to be adaptatively smooth. This cost function also contains known equations
regarding velocity and disparity �elds in relation to image intensity, as well
as relations between velocities and disparities depending on the geometrical
model of the optical system. Minimization of the cost function results into
estimation of the velocity and disparity �elds. This minimization can be
achieved using an iterative relaxation algorithm based on the gradient of the
cost function.
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Figure 1: Converging Model

The analysis is based on a converging (�xating) stereoscopic optical system,
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shown in Figure 1, where � is the angle between the two optical axes, B is the
distance between the two focal points and f is the same focal length for each
camera. For a 3-D point r with left camera coordinates rl = ( Xl ; Yl ; Zl )
and right camera coordinates rr = ( Xr ; Yr ; Zr ) the following equality holds
true: 2
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If (xr; yr) and (xl; yl) are the perspective projections of r in the right and
left image, respectively, the following relations among the coordinates of the
same point r and its projections in the stereoscopic pair are obtained:

xr
Zr

f
= xl

Zl

f
cos � + Zl sin � �B cos �=2 (2)

yr
Zr

f
= yl

Zl

f
(3)

Zr = �xl
Zl

f
sin � + Zl cos � +B sin �=2 (4)

Examining the ratio yl
yr

it is shown:

yl
yr

=
Zr

Zl

=
xl
f
sin �=2 + cos �=2

xr
f
sin �=2 + cos �=2

De�ning the disparity vector ~d as

~d = (xr � xl; yr � yl)

and assuming that � is very small, then yl
yr
� 1; that is, the y-coordinate of ~d

is almost zero. For the remainder of this work it is accepted that all previous
assumptions hold true, thus, ~d is a 1-D vector along the x-axis.

Eqs. (2 - 4) form the basis for 3-D scene reconstruction following the
establishment of image-point correspondence in the stereoscopic pair. For
every image-point pair (xr; yr); (xl; yl), the solution of those equations provides
a depth estimate (Zl and Zr) of the projected 3-D point. Depth can also be
calculated using an intermediate coordinate system (the cyclopean system)
which is obtained by rotating < Xl ; Yl ; Zl > about the y axis with an angle
�=2 and then translating B

2 sin (�=4) along the x-axis. From the corresponding
equations, a closed form solution for Z (depth) is determined [2]:

Z = �B
tan(�� �) tan(�+ �)

tan(�� �) + tan(�+ �)
(5)

where � = �=2� � , � = arctan(xl=f) and � = arctan(xr=f).
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If the angle � = 0, we obtain the lateral model. In this case, the equations
relating image and 3-D point coordinates are:

xr = xl �B
f

Z
(6)

yr = yl (7)

where Z = Zr = Zl. It is also noted that the disparity vector ~d is 1-D along
the x-axis.

In Section 2 we present a regularization method for obtaining a smooth
disparity �eld from a stereoscopic pair using di�usion adaptive functions. In
Section 3 the simultaneous estimation of the two motion �elds and the current
disparity �eld from two successive stereoscopic pairs is presented. Section 4
contains experimental results with both synthetic and real stereoscopic image
sequences. Then some conclusions are given, as well as directions of future
work.

2 Disparity Field Estimation

Solution to the stereoscopic problem consists of determining a dense disparity
�eld � through which every point (xl; yl) in the left image is matched to a point
(xl + �; yl) = (xr; yr) in the right image. Using the optical-ow preservation
principle, it is also true that I l(xl; yl) = Ir(xr; yr). However, since intensity
measurements are not exact and all hypotheses are not absolute, the following
functional is minimized [3]:

ei =
Z Z

(I l(x; y)� Ir(x+ �; y))2dxdy (8)

In addition, it is required that Z, and thus �, is varying smoothly.
Consequently, a smooth-�eld functional is introduced for minimization:

es =
Z Z

(g(�x) + g(�y))dxdy (9)

where �x = @�

@x
and �y = @�

@y
and g(:) is a function which belongs to the

DAF (Di�usion Adaptive Functions) as described in [6]. g(:) as a member
of the DAF family, is provided as an alternative to the quadratic regularizer
(:)2 which has the disadvantage that it imposes the smoothness constraint
everywhere and leads to oversmoothing. On the other hand a carefully
chosen gc(:) may regularize the solution and at the same time preserve the
discontinuites. In that framework the interaction function h(:) which is de�ned
such that : g0(x) = xh(x) determines the interaction between neighboring

pixels. In this work g(:) and h(:) were chosen to be : g(x) = jxj�2 ln (1 + jxj

)

and h(x) = 1

1+ jxj


. For the discrete case the total quantity to be minimized is

5



given by:

X
i

X
j

(Ir(i+ �i;j; j)� I l(i; j))2 + �
X
i

X
j

X
p02Nij

g(�ij � �p0)

where Nij = f(i�1; j); (i+1; j); (i; j�1); (i; j+1)g is the 4-point neighborhood
of (i; j). The sum

P
p02Nij

g(�ij � �p0) is an approximation for es and
can be extended to a neighborhood of more than 4 points (e.g., 3 � 3

where the diagonal terms are normalized by
p
2
2
). ë is a weight coe�cient

which determines to what degree estimation of the �eld is inuenced by the
smoothing operator. Minimization of this quantity results into the following
equation:

(Ir(i+ �i;j; j)� I l(i; j)) Érx(i+ �i;j; j) + �
X

p02Nij

lp0(�ij � ��ij) = 0 (10)

where lp0 = h(�ij � �p0) are the coe�cients which determine the contribution
of each of the neighborhood points in estimating �ij, and

��ij =

X
p02Nij

lp0�p0

X
p02Nij

lp0

Assuming that the magnitude of the �eld is relatively small and image intensity
varies smoothly, the following relations hold true:

Irx(x+ �; y) = Irx(x+ ��; y)

Ir(xr; yr) = Ir(xl + �; yl) = Ir(xl + ��; yl) + (� � ��)Irx(xl +
��; yr)

Considering the above, Eq. (10) becomes:

(�Irl + (� � ��)Irx(xl +
��; yr)) I

r
x(xl +

��; yr) + �
X

p02Nij

lp0(� � ��) = 0 (11)

where �Irl = Ir(xl + ��; yl)� I l(i; j). In total, there are as many equations as
there are points (i.e., unknowns). The system is formulated into a tri-diagonal
matrix, thus allowing use of the iterative Gauss-Seidel method. The solution
at the kth iteration is given by the relation:

�ki;j = ��k�1i;j �
�IrlIrx

�
P

p02Nij
lp0 + (Érx)

2
(12)

where �k�1 is the disparity �eld estimated at the (k � 1) iteration.
It is particularly important to determine a termination condition for the

algorithm, so that convergence is ensured. For this reason, a convergence
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measure is examined periodically (every ten iterations), which is the average
correction in the direction of the slope:

�T =
X
(i;j)

j�IrlIrxj

�
P

p02Nij
lp0 + (Irx)

2

The algorithm is terminated when the percentage diminishment of the �T

amount becomes less than a threshold. This condition on the diminishment
�T ratio is proven to be more stable and reliable for di�erent stereoscopic
pairs than a threshold condition on the �T amount itself.

2.1 Multiscale Algorithm

The previously described algorithm, as a gradient-descent algorithm, can
estimate successfully only �elds of small disparities. Otherwise, it requires
good initial conditions so that it will not be entrapped and converge to a local
minimum. Thus, it is insu�cient for real data where large disparity values are
possible and no prior general knowledge of the scene depth is available.

3rd level

2nd level

1st level

(a) (b)

Figure 2: (a) Data pyramid and (b) Field pyramid

Consequently, a coarse-to-�ne multiscale method in a pyramidal form
(Fig. 2) is implemented, where in each level (l) the algorithm is applied to
images of submultiple dimensions of the original ones. Those images are
the result of reduction by low-pass �ltering and subsampling. The image
dimensions at level l are both reduced by a factor 2l. Convergence of the
algorithm at level l implies a dense disparity �eld where each of its 1-D vector
�(l) corresponds to an initial image region of size 2l�2l. The estimated at level l
disparity �eld �(l) constitutes the initialization of the �eld �(l�1) to be estimated
at level l � 1. An immediate result of this reduction is the scale change on
the magnitude of the �eld to be estimated. Because of the reduction, the
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characteristics (features) to be matched in the two images di�er by a smaller
absolute value (number of pixels). If, for example, (xl, yl) and (xl + �, yl) are
the coordinates of corresponding points at level (l), then at the higher level
(l + 1) the coordinates will be (xl2 ,

yl
2
) and (xl

2
+ �

2
, yl

2
), respectively. This

means that at a higher level the disparity to be estimated has a submultiple
magnitude, thus, making the algorithm more e�cient. This way, at the higher
levels a coarse estimation of the disparity �eld is achieved which becomes �ner,
in exactness and detail, at the lower levels of the pyramid. In the last level,
the base of the pyramid, the algorithm is applied to the original images and
its convergence provides the �nal disparity �eld.

3 Simultaneous Motion and Disparity

Estimation

The second stage of this work consists of a simultaneous estimation of the two
velocity �elds and the disparity �eld of the second stereoscopic image pair.

3.1 Optical Flow - Disparity Relations

Combining equations 6-7, the following relations among the components of the
�elds to be estimated are derived:

yl = yr ) vl = vr (13)

and
xr = xl + � ) ur = ul + �t+1 � �t (14)

Solving the system of these two equations with respect to �t+1 and vr results
into:

vr = vl and �t+1 = ur � ul + �t (15)

Therefore, to completely determine the requested �elds it is su�cient to
evaluate their three components ur, ul and vl.

3.2 Proposed Solution

To estimate the motion and the second disparity �elds, the correspondence
between points in the �rst stereoscopic image pair is used, as derived in the
�rst stage by evaluating the �eld �t. In the second stage, the aim is to
determine two points in the second pair of images for every pair of points
of the �rst stereoscopic image pair, so that these four corresponding points
are the projections of the same point in space. The �rst point pair is the
projection at time instant t while the second is at t + 1. The principle of
optical-ow preservation is used; that is, the projections in the four images of
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the same feature of an object in space are of the same light intensity. Thus,
the following relations result:

e1s = Irt+1 � Irt = 0

e2s = I lt+1 � I lt = 0

e3s = Irt+1 � I lt+1 = 0

where I lt+1 and Irt+1 are the intensities of the left and right points in the second
stereoscopic image pair, while I lt and Irt are the intensities of the corresponding
points in the �rst stereoscopic image pair.

As with the solution to the stereoscopic problem, the minimization of
the squared deviation from the optical-ow preservation principle and the
minimization of a smoothness measure for the estimated �elds are considered.
In addition to the �elds for direct evaluation, a smoothness measure for the
quantity (ur�ul) is introduced; that is, the velocity di�erence in the two image
sequence which in the case of the lateral model is ur � ul = f Vz

Z2 . Smoothness
of this quantity is achieved with a coe�cient � in relation to the smoothness
of �elds ur, ul and vl. The total quantity to be minimized is:

E =
Z Z

((e1s)
2 + (e2s)

2 + (e3s)
2)dxdy + ��

Z Z  
g(
@(ur � ul)

@x
) + g(

@(ur � ul)

@y
)

!
dxdy

+ �
Z Z  

g(
@ur
@x

) + g(
@ur
@y

) + g(
@ul
@x

) + g(
@ul
@y

) + g(
@vr
@x

) + g(
@vr
@y

)

!
dxdy (16)

In the discrete case this quantity becomes:

X
(i;j)

(�I l)2 + (�Ir)2 + (�Irl)2

+�
X
(i;j)

X
p02Nij

(g(urij � urp0) + g(ulij � ulp0) + g(vlij � vlp0) + g((urij � ulij)� (urp0 � ulp0))

where

�Irl = Irt+1 � I lt+1
�Ir = Irt+1 � Irt
�I l = I lt+1 � I lt

Minimizing this last quantity the following equations are obtained:

�I l I lx ��Irlt+1 I
l
x + �

X
p02Nij

l1p0(ulij � ulp0) + � l4p0 ((ulij � urij)� (ulp0 � urp0)) = 0(17)

�Ir Irx +�Irlt+1 I
r
x + �

X
p02Nij

l2p0(ulij � ulp0) + � l4p0 ((urij � ulij)� (urp0 � ulp0)) = 0(18)

�I l I lx +�Ir Irx + (�Irlt+1) (I
r
x � I lx) + �

X
p02Nij

l3p0(vlij � vlp0) = 0(19)
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where the coe�cients l1p0; l2p0; l3p0 and l4p0 result from the smoothing of ul; ur; vl

and ( ur � ul ), respectively, and the derivatives of the light intensities refer
to the second stereoscopic image pair (i.e., at time instant t+ 1).

Let

�ulij =

P
p02Nij

l1p0ulp0P
p02Nij

l1p0

+ �

P
p02Nij

l4p0ulp0P
p02Nij

l4p0

and similarly �urij, while let
�vlij be:

�vlij =

P
p02Nij

l3p0vlp0P
p02Nij

l3p0

and

V l
ij =

X
p02Nij

l3p0(vlij �
�vlij)

Assuming that the �elds to be estimated are small in magnitude and that
the intensities vary smoothly, the following approximations are used:

� approximation of the �rst derivative of the intensity:

Irx
4
=

@Irt+1(xr + ur; yl + vl)

@x
�

@Irt+1(xr + �ur; yl + �vl)

@x

Iry
4
=

@Irt+1(xr + ur; yl + vl)

@y
�

@Irt+1(xr + �ur; yl + �vl)

@y

Similar approximations hold true for the intensities in the left image
(I lx and I ly).

� approximation of the intensities at points (xr + ur; yl + vl) and (xl +
ul; yl+vl) in the left and right image, respectively, with �rst order Taylor
expansion:

Irt+1(xr + ur; yl + vl) � Irt+1(xr + �ur; yl + �vl) + (ur � ur)I
r
x + (vr � vr)I

r
y

I lt+1(xl + ul; yl + vl) � I lt+1(xl + ul; yl + vl) + (ul � ul)I
l
x + (vl � vl)I

l
y

The �nal form of the equations in the discrete grid are:

Q

2
64
ukl � uk�1l

ukr � uk�1r

vkl � vk�1l

3
75 = b (20)

where

Q =

2
666664

2(I lx)
2 + � �I lxI

r
x � � �

X
p02Nij

l4p0 I lx(2I
l
y � Iry )

�I lxI
r
x � � �

X
p02Nij

l4p0 2(Irx)
2 + � Irx(2I

r
y � I ly)

I lx(2I
l
y � Iry ) Irx(2I

r
y � I ly) �+ (I ly)

2 + (Iry )
2 + (Iry � I ly)

2

3
777775

10



and

b =

2
666666666666664

I lx(�I l ��Irl) + � � (
X

p02Nij

l4p0 ((� � 1)

X
p02Nij

l4
p0ur

X
p02Nij

l4
p0

+

X
p02Nij

l2
p0ur

X
p02Nij

l2
p0

Irx(�Ir +�Irl) + � � (
X

p02Nij

l4p0 ((�� 1)

X
p02Nij

l4
p0ul

X
p02Nij

l4
p0

+

X
p02Nij

l2
p0ul

X
p02Nij

l2
p0

I ly(�I l ��Irl) + Iry (�Ir +�Irl)

3
777777777777775

The above system is represented by a positive-de�nite matrix; thus, its
solution is obtained through direct inversion.

4 Experimental Results

4.1 Stereoscopic Problem Solutions

This algorithm was tested with both synthetic and real data. In the synthetic
case, the image of a square is given, with constant disparity � = 5 for the square
and � = 0 for the background. The mean squared error in evaluating the �eld
� was 0.0809, and the mean squared di�erence between the right image and
its reconstruction using the estimated �eld was 0.257869. The largest scale
where the �eld was estimated was 2, while the number of iterations necessary
for the algorithm to converge was 150. The value of the coe�cient � was 500.

A quantitative evaluation of the �eld � is shown in Fig. 3(a), where the
corresponding depth map is given.

(a) (b)

Figure 3: Depth map at time (a) t, and (b) t+ 1

Real data consist of a stereoscopic pair shown in Fig. 4. For � = 500,
the resulting mean squared error on the intensities was 14.76. In addition,
Fig. 5(a) shows a depth evaluation, as it results from Eq. (5), of the depicted
objects.
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Figure 4: Stereoscopic image pair at time t

4.2 Stereoscopy and Motion

The results on synthetic data from the second stage of the work are concluded
in Table 1. Tests on synthetic data were realized using two categories of images:

� The second stereoscopic image pair follows from the �rst by translating
the components Ul, Ur and Vl = Vr which are varied from the left top to
the right bottom point of the image:
Ul from 1.0 to 3.0
Ur from 1.0 to 2.0
Vl = Vr = 2.0 (constant)

� The second stereoscopic image pair follows from the �rst by translating
the depicted square (where � = 5 ) as it results from the constant �elds
Ul = 3:0, Ur = 3:0, Vl = Vr = 2:0. The remaining image is translated by
a vector (�1;�1) for both the left and the right sequence.

Category Iterations � MSE MSE on Intensities
Ul Ur V LL RR RL

1 310 150 0.0320 0.01 0.008 1.16 1.67 1.00
2 320 150 0.147 0.143 0.318 1.78 1.76 0.951

Table 1: Experimental results on synthetic data

In Table 1 the MSE expresses the mean squared deviation for each of
the estimated �elds; that is, it results from

PP
(ûij � Uij)

2 , where û is the
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(a) (b)

Figure 5: Estimated depth map at time (a) t, and (b) t+ 1

estimated �eld, while U is the synthetically created �eld, on which production
of the second stereoscopic image pair was based. In the same table MSE on
intensities are given too, for the left images (LL), for the right images (RR)
and for the stereoscopic pair at t+1 (RL). A qualitative evaluation of the �eld
�t+1 is shown in Fig. 3(b).

Implementation of the second stage with real data consists of two
stereoscopic pairs, the �rst of which was the one used during the �rst stage
of this work. The result of the �rst stage (i.e., correspondence between image
points in the �rst pair) is assumed given and is utilized for the simultaneous
estimation of motion and disparity at the next time instant. Qualitatively, the
motion of scene objects consists of two components:

� a camera movement from right to left, which creates the optical e�ect of
scene objects moving towards the opposite direction

� movement of the depicted train from right to left

Maximum level � Iterations MSE on Intensities
LL RR RL

3 150 730 3.64 3.34 15.51

Table 2: Stereoscopy and motion on real data

The estimated motion �eld for a scale depth equal to 3 and � = 150 is
shown in Fig. 6, where the uni�ed motion of the background to the right,
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and the independent motion of the train to the left, are clearly distinguished.
Other numerical results are given in Table 2. The estimated motion �elds
were then segmented into regions using a K-Means type algorithm, in which
the number of segments should be provided a priori. The distance between a
segment s and a point p was de�ned to be the quantity: k Ûs � Up k, where

Ûs is the mean of the velocity vectors at the points that belong to segment s
and Up the velocity vector at point p. The resulting segmentation on the left
motion �eld is shown in Fig. 6, were the regions that correspond to the train
and to the camera's motion are clearly distinguished. The evaluated depth
map for the time instant t+ 1 is shown in Fig. 5(b).

(a) (b)

Figure 6: (a) Estimated dense velocity �eld for the left camera, and (b)
corresponding segmentation

5 Conclusions

An integrated approach to the problem of dynamic stereoscopic vision was
proposed, where velocity and disparity �elds in a dense structure are estimated
simultaneously. In both stages of the scheme, where initially the dense
disparity �eld of the stereoscopic pair is evaluated followed by estimation of
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the two dense velocity and disparity �elds of the second stereoscopic pair,
convergence is achieved using a multiscale iterative relaxation algorithm.
Experimental results were presented for both synthetic and real data.
Speci�cally, the approach was applied to an image sequence of a real scene,
where both the object and the binocular system are moving. The estimated
velocity �eld was then segmented using a K-Means type algorithm. Currently
we are working on the reconstruction of the 3-D motion for the di�erent
segments using robust regression techniques. It would be also useful to
incorporate the regression scheme into the segmentation phase, that is to
segment the velocity �eld into regions that correspond to the same 3-D motion.
Since theoretical and experimental approaches to this problem assume only a
simple stereoscopic model (i.e., converging or lateral), it would be useful to
examine other models such as the axial [1], the telescopic, or a general one
where the two optical systems are related with non-zero rotations, so that
it is possible to confront the more general case where the geometry of the
stereoscopic model is varying with time. This optical-system dynamic behavior
�nds application in robotics where autonomous mechanisms are desired.
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