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Abstract

Two important problems in motion analysis are addressed in this paper: change detection

and moving object location. For the �rst problem, the inter-frame di�erence is modelized by

a mixture of Laplacian distributions, a Gibbs random �eld is used for describing the label

�eld, and ICM (Iterated Conditional Modes) or HCF (Highest Con�dence First) algorithms

are used for solving the resulting optimization problem. The solution of the second problem is

based on the observation of two successive frames alone. Using the results of change detection

an adaptive statistical model for the couple of image intensities is identi�ed. Then the label-

ing problem is solved using either ICM or HCF algorithm. Results on real image sequences

illustrate the e�ciency of the proposed method.

1 Introduction

Detection and location of moving objects in an image sequence is a very important task in numerous

applications of Computer Vision, including object tracking, �xation and 2-D/3-D motion estimation.

For a stationary observer, detection is often based only on the inter-frame di�erence. Detection

can be obtained by thresholding, or using more sophisticated methods taking into account the

neighborhood of a point in a local or global decision criterion. For a moving observer, the problem

is much harder, since everything in the image may be changed. In this case, egomotion should be

estimated and compensated to be able to detect independent motion.
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This paper deals with two related problems, change detection and moving object location.

Indeed, complete motion detection is not equivalent to temporal change detection. Presence of

motion usually causes three kinds of \change regions" to appear. They correspond to (1) uncoverd

static background, (2) a covered background, and (3) an overlap of two successive object projections.

Note also that regions of third class are di�cult to recover by a temporal change detector, when

the object surface intensity is rather uniform. All this implies that a complementary computation

must be performed after change detection, to extract speci�c information about the exact location

of moving objects.

The simplest change detector is obtained by thresholding the di�erence of two consecutive

frames. Pixels with absolute value above a certain threshold are considered as moving, whereas the

other pixels are considered stationary, as proposed by N. Diehl [7]. An extension of this model, using

a mixture decomposition for the observed di�erence (usually Laplace or Normal distributions are

used for this reason), is proposed by G. Tziritas and C. Labit [19], where the use of a Maxixum A

Posteriori probability criterion, gives an adaptive determination of the decision threshold. In both

methods the decision is taken independently from point to point. Another approach for change

detection is suggested by K. Karmann, A. Brandt and R. Gerl [12]. They use Kalman �ltering of

certain reference frames in order to adapt to changing image characteristics.

A di�erent class of algorithms is that based on a statistical modelization of the context, to

which the algorithms proposed in this paper belong. Ca�orio and Rocca [5] assumed that pixels

in di�erence frame are statistically independent and each pixel is a zero-mean Laplacian stochastic

variable. The segmentation �eld is modeled as a �rst order Markov chain along rows and the

solution was obtained by solving a Maximum A Posteriori (MAP) probability problem using the

Viterbi algorithm. An extension of this model into a two-dimensional order causal Markov �eld is

proposed by Mori, Rocca and Tubaro [14] and also by Driessen, Biemond and Boekeee [8]. The two

methods di�er only in the probability distribution function assumed for the pixel in the di�erence

frame. In both methods transition probabilities have to be empirically obtained.

More sophisticated models are suggested by Lalande and Bouthemy [13], Sivan and Malah [18],

Bouthemy and Odobez [4] and also Bouthemy and Lalande [3]. They use a spatiotemporal Markov

Random Fields (MRFs) model through Gibbs distribution, and construct a cost function which is

minimized using a deterministic relaxation algorithm. The main di�erence between [13], [18], [4]

and [3] appears in the cost function. Also di�erent iterative algorithms for the minimization are

used. In [13] a deterministic relaxation algorithm is used, which may be sensitive to the initial

segmentation. In [18] a more complicated problem is under consideration, because they assume

four possible states on change detection problem, fTexture, Smoothg�fStatic,Mobileg. They use a
multiresolution approach on two levels, where the ICM algorithm is proposed for the minimization

of a cost function in each level. Also many initial segmentations are used to avoid local minima.

In [4] motion detection is achieved through a statistical regularization approach, where particular
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attention has been paid to the de�nition of the energy function, which seems to be complicated and

also somehow expensive. There is a multiresolution scene and the approach deals also with the case

of mobile camera. Finally, [3] deals with moving object location problem using three frames, where

the solution is derived by minimizing an energy function using an iterative deterministic relaxation

scheme, which is independent of the size, intensity distribution motion magnitude, and direction

of the moving objects. The main idea of this approach is to consider three successive images at

instants t1, t2, t3 to recover the moving object location at time t2. Two binary temporal change

maps, between t1 and t2 and between t2 and t3 are determined, then a basic logical-AND operation

is performed on these two maps.

The proposed here change-detection and moving object location algorithms, use a MRF model,

through Gibbs distribution, to describe globally the labeling problem. A mixture of two Lapla-

cian distribution functions is used to model the inter-frame di�erence, and Gaussian distribution

functions are used to model the intensities in the moving object location problem. Cost functions

are constructed, based on the above distributions, and a MAP problem is solved using Iterated

Conditional Modes (ICM) and Highest Con�dence First (HCF) algorithms. The process has two

basic steps. First the change detection problem is solved, and then moving object location is per-

formed using change detection results. The proposed algorithm deals also with the case of a mobile

camera and the detection of independent motion. In this case dominant motion (camera's motion)

is estimated and then compensated, resulting in a background that appears as static.

In order to check the e�ciency and the robustness of the proposed algorithms experimental

results are presented with real image sequences. In the so-called Trevor White image sequence

(Figure 1(a)) the camera is stationary. Whereas, in the so-called Interview image sequence (Fig-

ure 1(b)), the camera is moving, and an independent moving object also exists. These two image

sequences are used as input to check the proposed methods.

The remainder of this paper is organized as follows. In Section 2 we deal with the change

detection problem, where camera's motion estimation (if the camera is moving), de�nition of energy

function, and proposition of appropriate algorithms for the minimization of cost function take place.

The moving object location problem appears in Section 3, while Section 4 contains concluding

remarks and future work. Finally, in an Appendix is presented a Maximum Likelihood (ML)

estimator for mixture decomposition.
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(a)

(b)

Figure 1: (a) Trevor White image sequence. (b) Interview image sequence

2 Change Detection

2.1 Dominant Motion Estimation

A very common hypothesis in change detection problem is the static camera, which holds in a large

number of proposed solutions. An expected result is that these solutions cannot be used when they

deal with a mobile camera. This constraint is raised, computing the dominant motion, using a

gradient-based robust estimation method proposed by J. Odobez and P. Bouthemy [15], in order

to create a compensated sequence in which only the motion of independent moving objects is still

valid. An a�ne motion-model is considered de�ned by:

0
@ u(x; y)

v(x; y)

1
A =

0
@ a11 + a12x+ a13y

a21 + a22x+ a23y

1
A (1)
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The estimation of the set of unknown parameters � = faij; i = 1; 2; and j = 1; 2; 3g between frames

at time instant t and t+ 1 is extracted as follows

�̂ = arg min
X
(i;j)

�(I(i+ u(i; j); j + v(i; j); t+ 1)� I(i; j; t)) (2)

where I(i; j; t) is the gray level of the observed image at pixel location (i; j) and time t, and

�(x) =

8<
:

x2; if jxj � T

T 2; if jxj > T
(3)

where T is a threshold determined experimentally, and in any case depending on the amplitude

of the motion and the intensity gradient. The minimization is performed using a simple method,

Iteratively Reweighted Least Squares (as proposed in [15]), with a binary weight, determined by

the above mentioned threshold. This estimator allows getting a good estimation of the dominant

motion (i.e. background apparent motion), if the a�ne motion model is su�ciently accurate, which

is used to compute a compensated image sequence in which the background then appears as static.

In Figure 2 are given results of applying the above method to the Interview sequence, where

camera's motion is only translational. The inter-frame di�erence after camera's motion compensa-

tion indicates the presence of independent motion.

(a) (b)

Figure 2: Estimated dominant motion on Interview sequence: (�11; �21) = (5:75;�0:3). (a) Inter-
frame di�erence. (b) Inter-frame di�erence image after camera's motion compensation.

2.2 Change Detection Algorithm

Let D = fd(i; j)g denote the gray level di�erence image with

d(i; j) = I(i; j; t+ 1) � I(i; j; t)
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The change detection problem consists of a \binary" label �(i; j) for each pixel on the image

grid. We associate the random �led �(i; j) with two possible events, �(i; j) = s (Static), if the

observed di�erence d(i; j) supports the hypothesis for static pixel (H0), and �(i; j) = m (Mobile),

if the observed di�erence supports the alternative hypothesis H1, for mobile pixel. Under these

assumptions, for each pixel it can be written

H0 : �(i; j) = s

H1 : �(i; j) = m
(4)

Let pDjs(djs) (resp. pDjm(djm)) be the probability density function of the observed inter-frame

di�erence under the H0 (resp. H1) hypothesis. These probability density functions are supposed

homogeneous, i.e. independent of the pixel location and usually they are under Laplacian or

Gaussian low. We use here a Laplacian distribution function to describe the statistical behavior

of the pixels for both hypotheses, thus the conditional probability density function of the observed

di�erence values is given by

p(D = dj�(i; j) = l) =
�l

2
e��ljdj; l 2 fs;mg (5)

The parameter �l is related to the standard deviation �l by �l =
p
2

�l
. Let Ps (resp. Pm) be the

a priori probability of hypothesis H0. Observed di�erence values are assumed to be obtained by

selecting a label l 2 fs;mg with probability Pl and then selecting a d according to the probability

low p(D = djl). Thus the probability density function is given by

pD(d) = PspDjs(djs) + PmpDjm(djm) (6)

In this mixture distribution fPl; �l; l 2 fs;mgg are unknown parameters. The principle of Maximum

Likelihood is used to obtain an estimation of these parameters ([9], [17]). The unknown parameters

are iteratively estimated using the observed grey level inter-frame di�erences. An initial estimation

is calculated using �rst, second and third order moments of the variable considered (cf. Appendix).

In Figure 3 are given the histogram and the approximated probability density function (dashed

line) for both test sequences.

Under the above assumptions the change detection problem can be formulated as a scene

labeling with contextual information. In such a framework, there are

� a set of sites S = f(i; j)g

� a set of possible labels for each site (here the same for each site)

A = fs;mg

� a neighborhood relation, G, over the sites, which de�nes a graph where the vertices represents

the sites, and the (weighted) edges represent the constraint on the label assignment of the

neighboring sites.
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(a) (b)

Figure 3: Mixture decomposition in Laplace distributions for inter-frame di�erence: (a) Trevor

White sequence, (b) Interview sequence

The problem is to assign a label to each site in such a way, that the solution is consistent with the

constraints.

Let ! be a labeling form of the image with respect to A as a realization of the set of random

variables � = f�(i; j); (i; j) 2 Sg, and !(i; j) 2 A represents the label attached to the site (i; j)

according to the labeling !. The Static-Mobile decision �eld as it appears in our aproach is modeled

as a MRF with a 8-pixel neighborhood (Figure 4). To describe Pr(!) a Gibbs distribution is used,

where only two-pixel cliques are considered in order to reduce the number of necessary parameters

and the computational cost.

Figure 4: 8-pixel neighborhood : a possible choice of e�ective cliques

Using the local characteristics of the MRF, p(d; !) is given by

p(d; !) =
e�

1
T
U(d;!)

Z
(7)

U(d; !) is the energy function and Z is a normalizing constant. The function U(d; !) can be

decomposed into two terms

U(d; !) = U1(!) + U2(d; !) (8)
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� The �rst term, U1(!) accounts for the expected spatial properties (homogeneity) of the label

�eld:

U1(!) =
X
c2C

Vc(!) (9)

where C is the set of all two-pixel cliques in the whole frame, and the potential of a clique c,

Vc(!), is given by

Vc(!(i; j); !(i+ k; j + l)) =

8>><
>>:

��s if !(i; j) = !(i+ k; j + l) = s

��m if !(i; j) = !(i+ k; j + l) = m

�d if !(i; j) 6= !(i+ k; j + l)

(10)

(i+ k; j + l) being a neighboor of (i; j) (here, 0 < k2 + l2 � 2). The potential �d is the cost

to pay to get neighboors having di�erent labels, �s is a potential value which facilitates the

selection of Static label, and �m facilitates the selection of Mobile label (0 < �d � �s; �m).

� Energy U2 expresses the adequacy between observed temporal di�erences and corresponding

labels. The relation between the observation and the label given by p(D = d(i; j)j�(i; j) =
!(i; j)), the following expression is obtained

U2(d; !) = �X
(i;j)

ln [p(D = d(i; j)j�(i; j) = !(i; j))] (11)

The solution of the labeling problem is derived using a Maximum A Posteriori (MAP) crite-

rion, i.e. the a posteriori distribution of the labels given the observations is maximized, which is

equivalent with the minimization of the energy function

U(d; !) =
X
c2C

Vc(!)�
X
(i;j)

ln [p(D = d(i; j)j�(i; j) = !(i; j))] (12)

To minimize U(d; !) two di�erent types of iterational algorithms are used, Iterated Conditional

Modes (ICM) and Highest Con�dence First (HCF), which are both iterative deterministic relaxation

techiques. These algorithms are suboptimal, that may converge to local minima, but they induce

drastically less computational cost and time than a stochastic relaxation scheme (i.e. simulated

annealing [10]).

In the ICM algorithm [2], as we used it, an initial estimation of labels is provided by the

Maximum Likelihood criterion, that is the minimization of U2(d; !). We also use an Undecision

label, and in consequence a threshold on the decision function is used to discriminate the case where

a decision seems to be almost sure from the case where a decision is somehow ambiguous. Then,

in case of decision, a plausible choice is the label which has maximum conditional probability given

the observation of d(i; j) and the current labels in neighborhood of (i; j).

In HCF algorithm [6], the minimization is performed as follows. et each site, a label is selected if

it provides the greatest local decrease of the energy function. Computational cost can drastically be
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(1)

(2)

(3)

(a) (b)

Figure 5: Change detection maps: (1) Maximum Likelihood, (2) ICM, (3) HCF, for (a) Trevor

White sequence, (b) Interview sequence
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reduced, if the visit stragegy (for image sites) is optimized. Thus, according to the HCF algorithm

the sites are not visited in turn, and we are able to constantly focus on illabeled sites, by introducing

an \instability" measure according to which sites are ordered in a stack. Because we are dealing

here with only two labels, this \instability" measure can be easily computed. The site to be visited

is the one at the top of the stack. On the other hand supplementary computations are required to

construct and to maintain the stack. Thus, due to the initialization step, all sites are pushed to

the stack according to the energy term U2(d; !) and \instability" measure. Convergence is reached

when the stack is empty. The main advandage of HCF is that all computations are very local (apart

from the stack updating process) and can be easily parallelized. A signi�cant di�erence between

our implementation and the original HCF, is that we use it two times, in order to enforce Mobile

points. Usually in the �rst pass the potential function Vc(!), for both labels (Static;Mobile), has

equal values (�s = �m), something which does not hold in the second pass, where �s is decreaced

while �m is increased. The initial labeling guess in the second pass, is the labeling result from the

�rst pass.

In Figure 5 are given on the two test sequences results of applying �rstly a threshold Maximum

Likelihood estimator, and then that of applying the ICM and HCF algorithms, as described above.

3 Moving Object Location

The modelization of moving object location problem is similar with the one we adopted in change

detection. The labeling problem in this case is more complicated because the goal is to characterize

the situation that holds in both frames, for each pixel in the image grid. Any pixel in any frame

either belongs to the background pixel, or it belongs to some moving object. Let U = fB;Og be the
set of the two possible labels, where B means \background" and O means \object". In the moving

object location problem a couple of labels should be estimated (�(i; j; t);�(i; j; t+ 1)) 2 U � U .

This notation is equivalent with given label �(i; j; t) (resp. �(i; j; t+1)) for the situation that holds

on frame at time instant t (resp. t+ 1) at pixel loaction (i; j). We have four possible label events,

H00 : (�(i; j; t);�(i; j; t+ 1)) = (B;B)

H01 : (�(i; j; t);�(i; j; t+ 1)) = (B;O)

H10 : (�(i; j; t);�(i; j; t+ 1)) = (O;B)

H11 : (�(i; j; t);�(i; j; t+ 1)) = (O;O)

(13)

The available observation set is composed of change detection map, and gray level values for both

frames. The �rst problem we deal with is the computation of conditional density functions. Let

p((I(i; j; t); I(i; j; t+ 1)) = (x0; x1)j(�(i; j; t);�(i; j; t+ 1)) = (�; �))

be the conditional density function for case (�; �), where (�; �) 2 U �U and I(i; j; t) the grey level

value at pixel (i; j). In case of � 6= � the problem is easier, since the two events are completely
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independent, thus

p(x0; x1j�; �) = p(x0j�)p(x1j�) (14)

Under the above hypothesis we are not obliged to calculate the two-dimensional density functions

for cases (B;O); (O;B) because their values can be extracted by the use of one-dimensional density

functions.

3.1 Gaussian mixture decomposition of the probability density func-

tion

The Static, as well as the Mobile, part of change detection map may be composed of many di�erent

populations according to their gray level values. Under this hypothesis the density function of the

gray level value, for both object and background, may be decomposed in a mixture of Gaussians,

p(xj�) =
c�X
i=1

P�i

��i
p
2�

e
� (x���i)

2

2�2
�i (15)

Using change detection map and pixels labeled as unchanged, we are able to evaluate the his-

togram for the gray level values of the background. The problem now is to estimate the parameters

of the mixture decomposition. An additional problem is that the number of populations, c�, is

unknown. The number of populations is extracted empirically using the observed histogram. To

avoid the inuence of noise �rst we perform a smooth operation on the observed histogram and

then we are looking for local maxima, according to their probability; that is we are seeking for

the modes of this distribution. Then using the ML estimator for mixture decomposition, we can

compute the unknown parameters (PBi; �Bi; �Bi) for each population. The same approach is used

for the estimation of p(xjO). The only di�erence is that pixels labeled as changed, and presenting

an important inter-frame di�erence, are excluded from the Object as considered to belong to the

occluding regions. The evaluation of the histograms for both cases is performed only on the �rst

frame, because we assume the temporal stationarity of the corresponding variables. Results are

given in Figure 6.

The problem remains with cases (B;B); (O;O) and two solutions are proposed. The simplest

one is the use of a global correlation coe�cient ��, for both cases. Then using this coe�cient and

assuming that it is valid separately for the populations composing the distribution of the gray levels,

we can write

p(x0; x1j�;�) =
c�X
i=1

P�ipG2(x0; x1;��i; ��i; ��) (16)

where pG2(x0; x1;��i; ��i; ��) is a two-dimensional Gaussian probability density with parameters

(��i; ��i; ��i; ��i; ��).
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(a) (b)

Figure 6: Mixture decomposition in Gaussian distributions for Trevor White sequence: (a) Static

(background) part, (b) Mobile part.

A more robust and reliable approach is the estimation of two-dimensional normal density func-

tions. Using as initial guess all the possible combinations between the observed populations of

Background and Object hypotheses and their parameters, and the proposed ML estimator for mix-

ture decomposition, we can compute the unknown parameters of this model. During processing,

some classes are rejected because their probability is very small (almost zero). This approach de-

mands a considerable amount of computations, but it has a signi�cant bene�cial infuence on the

extracted results.

3.2 Piecewise uniform probability density function

An alternative method to determine the values of the energy term U2 is the quantization of all

variables, obtaining thus a piecewise uniform model for the probability density functions. This

technique is proposed, in order to avoid the great computational cost of mixture decomposition.

The general idea is to divide the set of possible grey level values in non-overlapping intervals,

in such a way that the four probability density functions could use the same orthogonal division

of the two-dimensional space of possible values for the couple of intensities on the two frames and

for all possible labels of this couple. As the division should be orthogonal for covering the two

cases of independent distribution of the two variables, quantization can be simply one-dimensional.

The change detection being available, and the necessity to have a good representation of both

background and mobile part, independently of their relative size, leads to the construction of two

di�erent quantizers, one for each population. The two quantizers are then uni�ed to one having as
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set of decision levels the union of the two sets of decision levels.

A key problem with quantizers is the determination of the number of decision levels. This

problem is solved using the observed histograms and a criterion on the mean squared quantization

error. So at the beginning, a number of prevailing values is selected according to the observed

histogram, and it composes the set of initial quantization levels. Then the Lloyd-Max algorithm [11]

is performed until the convergence is reached. If the global mean square error is above the given

threshold, the level with biggest mean square error is subdivided and a new pass of Lloyd-Max

algorithm is performed. This operation holds until the global mean square error is above the given

threshold.

(a) (b)

Figure 7: Trevor Sequence - Quantization Approach

Quantizations : (a)Static part , (b)Mobile part

Then, according to the �nal set of decision levels and the observed histograms, the probability

for each level for both cases (Static, Mobile) is evaluated. Such a result on Trevor White sequence is

given in Figure 7. The two-dimensional observed histograms for the couple of pixels with identical

labels (both Static or both Mobile) is used on the orthogonally divided set of values to obtain the

two-dimensional distribution of the respective couple of variables, again piecewise uniform.

3.3 MAP labeling

Using the same neighborhood de�nition as it appears in change detection part, we can modelize the

problem as a MRF with second order neighborhood, where Gibbs distribution is used to describe
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the a posteriori probability of a global labeling form !,

p(!) =
e�

U(It;It+1;!)

T

Z
(17)

where

U(It; It+1; !) = U1(!) + U2(It; It+1; !) (18)

The de�nition of U1; U2 is similar to those presented in change detection. A more sophisticated

de�nition of potential function is required now

Vc(!(i; j)) = �e>k

2
666664

��s 1 1 1

1 ��d �dd 1

1 �dd ��d 1

1 1 1 ��s

3
777775

2
666664

nBB

nBO

nOB

nOO

3
777775

(19)

where the following mapping is used f(B;B) : 1; (B;O) : 2; (O;B) : 3; (O;O) : 4g, nBB (resp.

nBO; nOB; nOO) is the number of pixels with label (B;B) (resp. (B;O); (O;B); (O;O)), and ek

is a vector with the k-th element equal to 1 and the others zero. �s is a potential value that fa-

cilitates the selection of (B;B) and (O;O) label, �d facilitates the selection of (B;O) and (O;B)

labels and �dd is the cost to pay to get neighbors with label (B;O) for pixels with label (O;B) (or

the opposite), while the cost to pay to get neighbors with di�erent label in any other case is 1.0.

The exception value �dd is used because facts (B;O) and (O;B) are mutually exlusive as neighbors.

Finally � is a weight value.

The solution is derived using MAP criterion and the following energy function has to be mini-

mized,

U(It; It+1; !) =
X
c2C

Vc(!)�
X
(i;j)

ln[p(It; It+1j�(i; j) = !(i; j)] (20)

HCF and ICM algorithms are proposed for the minimization of U(It; It+1; !). An important point

in HCF approach is that due to the initialization step, we give label (B;B), at pixels with Static

decision on change detection map. This initialization decreases at a signi�cant factor the required

computational cost. HCF get more complicated, compared to the change detection case, since

we are dealing with four labels, something which has negative e�ect in its computational time,

especially in \instability" measure computations.

In Figure 8 are given the results of the labeling process on the Trevor White sequence for the

two approaches of evaluation of the probability density functions presented above. The ML decision

test result is given for illustrating the e�cacy of these estimated probability distributions. In black

is the backround, and in gray the covered and uncovered regions. The projection of this result on

the two successive frames gives the location of the moving object at the two corresponding moments

(Figure 9).
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(1)

(2)

(a) (b)

Figure 8: Moving object localization for Trevor White sequence: (1) ML labeling, (2) HCF labeling,

using (a) Mixture decompostion for histogram analysis. (b) Quantization approach for histogram

analysis.

(a) (b)

Figure 9: Moving region location
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4 Conclusion

In this paper, we described methods and related algorithms for solving two interesting problems

arising in motion detection.

Concerning the �rst problem, that is change detection, the main contribution of this paper is the

use of a very e�cient mixture decomposition of the distribution of the inter-frame di�erence. Thus

the threshold for the ML decision test is adapted to the data. Introducing then a Gibbs random

�eld model for the labels, we proposed the use of two known, and slightly modi�ed, deterministic

relaxation algorithms, ICM and HCF, for solving the resulting minimization problem. The reliable

statistical model used enables to obtain good results on real image sequences, even if the camera is

moving, in which case its motion is �rstly estimated and compensated.

The image segmentation in changed and unchanged regions was then used for a further step

in the segmentation process, which searchs for determining covered and uncovered regions as parts

of the whole changed region. As a result we obtained the location of the moving object in the two

frames. In our knowledge, the method described in this paper is the only method using only two

frames for locating moving objects. At the �rst step of the proposed algorithm, the probability

density function of the background and the moving object are evaluated by identi�ng an adaptive

mixture decomposition, or by approximating them, for less computation cost, using a piecewise uni-

form distribution. Three solutions were proposed for the modelization and identi�cation of the joint

probability distribution of the couple of image intensities on the same site in two successive frames.

The two �rst were an extension of the mixture decomposition of the respective one-dimensional

distributions, and the other one was evaluated under a piecewise uniform probability distribution

assumption. The e�cacy of all these probability distributions was checked implementing the corre-

sponding ML decision tests. The �nal labeling result were obtained using deterministic relaxation

algorithms (as ICM or HCF) based on a Gibbs random �eld model. Very satisfactory results were

obtained on a real image sequence for videoconference applications.

Interesting questions for further investigation concern: the multiresolution implementation of

the proposed algorithms for speeding up the computation process and the automatic data-dependent

determination of the parameters of the Gibbs random �eld model. Of course the results we obtained

could be further exploited for motion estimation, as the occluding boundaries could be considered

as known.
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Appendix: Mixture density estimation

A common problem in statistical analysis is mixture decomposition. To be more speci�c,

the problem is to decompose observed samples in a known number of populations which could

theoretically describe the data. It is assumed that the probability distribution for the observed

data, except the values of some parameters, are known. Let c be known number classes, Pj be the

a priori probability of class number j, and p(xj�j) be the probability density function for the same

class, where �j is a vector of unknown parameters. The mixture of the c classes gives the following

probability density function

p(xj�) =
cX

j=1

Pjp(xj�j);
cX

j=1

Pj = 1 (21)

where � is a vector made up of f�j : j = 1; : : : ; cg and fPj : j = 1; : : : ; cg. The problem is to

estimate the unknown parameters in �. The maximum likelihood (ML) estimator is given by Duda

and Hart [9] and R. Schalko� [17]. Another method based on fuzzy ISODATA process, is proposed

by J. Bedzek and J. Dunn [1]. Here we use the ML estimator, thus we present the general formula

and its application in the case of Laplacian densities. The case of Gaussian densities is considered

in [16] and [9].

Let us de�ne the a posteriori probability of class i given an observation x

Pi(xj�) = Pip(xj�i)Pc
j=1 Pjp(xj�j)

(22)

If fx1; : : : ; xn; : : : ; xNg is a data set, the a priori probabilities and the parameters of the probability

density model must satisfy the following equations:

P̂i =
1

N

NX
n=1

P̂i(xnj�) (23)

and
NX
n=1

P̂i(xnj�)r�i log p(xnj�̂i) = 0 (24)

where

P̂i(xnj�̂) = P̂ip(xnj�̂i)Pc
j=1 P̂jp(xnj�̂j)

(25)

For the case of a mixture of two Laplacian densities, the following iterative algorithm is obtained

concerning parameters �0 and �1

�i(k) =
NP̂i(k � 1)

PN
n=1 P̂i(xnj�̂(k � 1))jxnj

(26)

Parameter values are initialized using the moment estimation method.
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