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Abstract

We propose a general framework that focuses on auto-
matic individual/multiple people motion-shape analysis and
on suitable features extraction that can be used on ac-
tion/activity recognition problems under real, dynamical
and unconstrained environments. We have considered var-
ious athletic videos from a single uncalibrated, possibly
moving camera in order to evaluate the robustness of the
proposed method. We have used an easily expanded hier-
archical scheme in order to classify them to videos of indi-
vidual and team sports. Robust, adaptive and independent
from the camera motion, the proposed features are com-
bined within Transferable Belief Model (TBM) framework
providing a two level (frames and shot) video categoriza-
tion. The experimental results of97% individual/team sport
categorization accuracy, using a dataset of more than 250
videos of athletic meetings indicate the good performance
of the proposed scheme.

1 Introduction

Automatic indexing based on human motion analysis and
action/activity recognition under real, dynamical and un-
constrained environments is key of importance because can
be applied in many areas such as database management,
surveillance or human-computer interface. Human motion
analysis consists in [1]detection, tracking andrecognition.
Group detection and/or counting is generally embedded in
thedetection and tracking processes. Object detection and
tracking in complicated environments is still the key prob-
lem of the visual surveillance and it is becoming an im-
portant issue in several applications such as camera based
surveillance and human machine interaction. The detec-
tion and tracking algorithms are challenged by occluding
and fast/complicated moving objects, as well as illumina-
tion changes.

Concerning the 2-D approaches, Wang et al. [2] propose
a method to recognize and track a walker using 2D human
model and both static and dynamic cues of body biomet-

rics. Moreover, many systems use Shape-From-Silhouette
methods to detect and track the human in 2D [3] or 3D
space [4]. The silhouettes are easy to extract providing valu-
able information about the position and shape of the person.
When the camera is static, background subtraction tech-
niques can give high accuracy measures of human silhou-
ettes by modeling and updating the background image [5].
Otherwise, when the camera is moving, camera motion es-
timation methods [6] can locate the independently moving
objects. The system called W4 [5] is based on a statistical-
background model to locate people and their parts (head,
hands, feet, torso, etc.) using static cameras and allowing
multiple person groups. Rabaud and Belongie [7] present a
method for counting moving objects without tracking them
based on a highly parallelized version of the KLT tracker.
It is performed in crowding situations where the tracking
does not make sense to perform. Figueroa et al. [8] pro-
pose a system of tracking soccer players using multiple sta-
tic cameras. The occlusions have been treated by splitting
segmented blobs based on morphological operators and a
backward and forward graph representation based on hu-
man shape, motion and color features. However, in a real
soccer game, there are crowd situations, where the people
should be manually tracked.

Most of aforementioned schemes are semi-automatic
and assume static camera and constrained indoor environ-
ments, analyzing high quality silhouettes (Figure 1(b)).
However, the estimated silhouettes from real and uncon-
strained environments are in low quality (Figures 1(d) and
1(f)). The goal of this research is to propose a general hi-
erarchical scheme that can be used on action/activity recog-
nition problems under real, dynamical and unconstrained
environments, based on low level shape features. In order
to evaluate the robustness of the proposed scheme, we have
applied it on various athletic videos from a single uncali-
brated and possibly moving camera. The automatic analysis
of these videos is a challenging problem due to the complex
and fast motions of the athletes and to the unconstrained
changes in the environment of athletic meetings. In pre-
vious work, a novel architecture utterly based on Transfer-
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(a) (b) (c) (d) (e) (f)

Figure 1: (a), (b) Original image and the silhouette esti-
mated by the method of [5] under static camera.(c), (e)
Original images and(d), (f) the corresponding silhouettes
estimated by the method of [10] under moving camera.
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Figure 2: Schema of the proposed system architecture.

able Belief Model [9], was proposed [3, 10] for individual
motion analysis and action/activity recognition in athletic
sports videos.

The goal of the proposed method is to classify a video
into individual (individual sport such as high jump and long
jump) and multiple people (team sport such as running and
hurdling). As well, the system detects and counts the num-
ber of people in videos. A reliability factor is estimated at
each frame in order to quantify the quality of the classifi-
cation which is taken into account for decision concerning
the number of people. In this framework, no initialization
step is required and no assumption or knowledge is assumed
about the number of people and their motion in the scene.
The proposed framework can be decomposed into several
main modules illustrated in Figure 2. First, silhouettes are
computed using a camera motion estimation method [6] and
shape based features are extracted (Section 2). Next, peo-
ple detection and counting are performed (Section 3). Fi-
nally, the video is classified to individual sport and team
sport video, based on a TBM fusion process (Section 4).
Experimental results are given in Section 5. Conclusions
and discussion are provided in Section 6.

2. Features Extraction
The binary silhouettes, estimated by the camera motion es-
timation method [6]1, probably contain objects that do not
follow the athletes motion, e.g. fake objects in the back-
ground (see Figure 1). We assume that the camera tries to
track the humans (athletes), which is a tenable assumption

1An affine model is used to describe the camera motion. The above
method, that we use, was implemented by the Vista Team of IRISA and
has the advantage to take into account the global variation of illumination
thus it is adapted for real videos.
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Figure 3: From numerical features to belief.(a) Angle, (b)
Eccentricity,(c) Area.

because the athlete is the object of interest, so the athletes
are about in the same position in a short time window. If
we suppose that the noise is appearing in random positions
(white noise) over the time, then a lowpass time filter can
remove the noise (see gray pixels of Figure 4).

Shape features are computed in order to detect both hu-
mans and groups and to count people in groups. We com-
pute for each objectOi

t, its major axis angleθi, its eccen-
tricity εi and its normalized areasi. These features are un-
correlated, independent from camera view, and their values
can be estimated robustly under low quality silhouettes.

The angle of the objectOi
t major axisθi is defined by the

three second order moments. This angle shows the main ori-
entation of the object. In the whole paper, angles are mea-
sured in degrees. The robustness ofθi estimation is deter-
mined by the object’s eccentricity. The eccentricity (εi ≥ 1)
is defined by the ratio between the two principal axes of the
best fitting ellipse, measuring how thin and long a region is.
If εi is close to one, thenθi will be unspecified. The area
featuresi should be normalized in order to be independent
from both image size and distance of the object from the
camera. Generally, it holds that the area of interest concerns
the athletes, that are tracked by the camera. These athletes
normally have similar distances from the camera. There-
fore,si is defined as ratio between an object area (|Oi

t|) and

the mean object area
�

k
|Ok

t
|

Nt

, whereNt denotes the esti-
mated number of people at framet (Section 4.1).

The three proposed features (θi, εi and si) are simple
and well understandable. Thus, they can be easily converted
into beliefs using a fuzzy-sets inspired symbolic representa-
tion (Figure 3). Appropriate table of rules can then be used
for people detection and counting as presented in Tables 1-2
(and discussed further). The proposed numeric-to-symbolic
conversion is presented in Figure 3, whereL is used for
low value,M for medium values andH for high values.
Figure 3(a) presents the angleΘi numeric-to-symbolic con-
version, withΘi = min(θi, 180− θi), Θi ∈ [0, 90]. Figure
3(b) presents the numeric-to-symbolic conversion of eccen-
tricity. The red, blue and green curves correspond to the
probability ofLE, ME andHE respectively. Figure 3(c)
presents the numeric-to-symbolic conversion of area feature
si. Two beliefs are concerned: low area (LS), which is true
for si ≤ 0.25 · R2 indicating a little area objects (possibly

2R is an adaptive factor, denoting the probability of an object, which
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noise), and high area, indicating an object of normal area
(possibly humans).

3. People Detection and Counting
3.1. People detection
This method removes noise objects, that can not be removed
by the noise reduction procedure, using their shape features.
We have used the rules of Table 1 in order to detect and re-
move such objects, combining the symbolic beliefs. This
table can be estimated by a learning stage using an EM pro-
cedure for instance. Using this table, the probability of hu-
manPr(O

i
t is H) can be estimated by the cells where the

probability ofH is positive. An objectOi
t will be detected

as human ifPr(O
i
t is H) > 0.5. Otherwise, it will be de-

tected as noise.

LE ME HE

LS, LΘ N N N

LS, HΘ N 0.15/H N
0.85/H

HS, LΘ 0.2/N H H
0.8/H

HS, LΘ 0.1/N H 0.05/N
0.9/H 0.95/H

Table 1: The table rules for human/noise detection,N , H
denotenoise, humans, respectively.

The notation0.2/N in Table 1 means that the20% of the
belief is assigned to propositionN .

3.2. People counting
The people counting procedure is executed for each human
(blob) detected object and is based on the assumption that
each human major axis (in the most time) is mainly ver-
tical. Thus, an individual object probably has high angle
and medium eccentricity. Otherwise, the object is proba-
bly a group of people containing two, three or more peo-
ple. Using rules of Table 2, where the proposed features
are combined, the number of people per object can be esti-
mated, whereK denotes the number of people (real value)
in groups estimated by an algorithm described hereafter.

The number of peopleKi (real value) of a horizontally
directed objectOi

t is estimated by using its eccentricity (εi)
and its area (|Oi

t|). According to the objects’ surfaces, the
most possible value ofKi is si. The object is horizon-
tally directed, so we can use the group model of Figure
5(a) in order to compute the mean eccentricity per human

eh = H
Lh

, whereL =
√

|Oi
t| · εi (group length),H =

|Oi

t
|

L

hassi > 0.05, to be a human object.

(group height) andLh = L
si

(human length). Ifeh is higher
than four, which is the maximum individual eccentricity, the
number of humans will be recomputed by enforcing the ec-
centricity per human to be four. Thus, it holds that,Lh = H

4

andKi = L
Lh

. Figure 4 illustrates the results of people de-
tection and counting algorithm. The little black boxes cor-
responds to the mass centers of the detected humans.

(a) (b) (c) (d)

Figure 4:(a) Four individual and one group of four people
are detected.(b) The original image of(a) is shown.(c) An
individual and a group of two people are detected.(d) The
original image of(c) is shown.

3.3. Quality factor estimation
A measurement of frame quality (reliability) factorQt can
be estimated using the probability of the decisions (hu-
man/noise decision and counting decision) results. If the
decisions are taken with low probabilities thenQt should
be low, otherwiseQt should be high. LetP HN

r (Oi
t) de-

notes the decision probability of the objectOi
t to be human

or noise. LetP NP
r (Oi

t) be the decision probability con-
cerning the number of people in the objectOi

t. Qt ∈ [0, 1]
is estimated by the product of the expected values (Ei) of
PHN

r (Oi
t), PNP

r (Oi
t) over the objects:

Qt = Ei(P
HN
r (Oi

t)) · Ei(
PNP

r (Oi
t)

√

max(Ki, 1)
) (1)

PNP
r (Oi

t) is divided with the square root of the number
of detected people

√

max(Ki, 1) in object Oi
t, because

the accuracy of people counting procedure decreases, as
the number of people increases (occlusions are appeared).
The use of

√

max(Ki, 1) improves slightly the categoriza-
tion accuracy. Qt will be used on video categorization
scheme. Figure 5(c) presentsQt numeric-to-symbolic con-
version. There are three beliefs for quality factor: bad qual-
ity (Bad), unknown quality (Bad ∪ Good) and high
quality (Good).

4. Video Categorization Scheme
The results of people counting procedure and the frame
quality factor are fused using TBM framework in order to
discriminate the video of individual sport (I) and team sport
(T ). We have used the TBM framework, since it is more
general than probabilities and explicitly defines the conflict
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LE ME, HE

HS, LΘ 1, 0.3 + max(1 − |K − min(1, K)|, 0) bK + 1c, 1 − K + bK + 1c
2, 1.0 + max(1 − |K − 2|, 0) bKc, remainder
3, 0.8 + max(1 − |K − max(3, K)|, 0)

HS, HΘ 1, 0.6 + max(1 − |K − min(1, K)|, 0) 1, 0.6 + 0.4 ∗ max(1 − |K − 1|, 0)
2, 1.0 + max(1 − |K − 2|, 0) 2, remainder
3, 0.8 + max(1 − |K − max(3, K)|, 0)

Table 2: The table rules for people counting.

and doubt. The classification concerns two classes: video
of individual sport (I) and team sport (T). Therefore,Ω =
{I, T} is the frame of discernment of the classification. A
basic belief assignment (BBA) [9]mΩ

t at framet is defined
on the set of propositions2Ω = {∅, I, T, I ∪ T}, where∅
andI ∪T correspond to the conflict and doubt respectively.
mΩ

t : 2Ω → [0, 1], X → mΩ
t (X) and by construction it

holds thatmΩ
t (∅) = 0, and

∑

X ⊆ Ω
mΩ

t (X) = 1. A value
mΩ

t (X) is a basic belief mass which expresses a confidence
propositionX ⊆ Ω according to a given feature but does
not imply any additional claims regarding subsets ofX. It
is the fundamental difference with probability theory.

4.1. Number of people estimation

The number of peopleNt (real value) at framet is robustly
estimated using quality factor:

Nt = (1 − Qt) · Nt−1 + Qt · TPt (2)

whereTPt (integer value) denotes the sum of the number of
the detected people (for all blobs) at framet using the rules
of Table 2 (see Section 3.2). The estimation of number of
people byNt is more robust than byTPt, since it takes into
account the quality factor. Figure 5(b) presentsNt numeric-
to-symbolic conversion which provides the BBAmNt

de-
fined for three sets: low number of people (I), middle num-
ber of people (I∪ M ), and high number of people (M).

L

H

Lh

(a)

Nt

mNt

1

1 2.5

I IUM

0

M

1.5 5

(b)

Qt

mQt

1

0.6

Bad

0

Good

0.25   0.4 0.75

BadUGood

(c)

Figure 5:(a)Group model.(b), (c)From numerical features
to belief. (b) Number of people,(c) Quality factor.

Beliefs concerning both the number of people and qual-
ity (obtained from the previous steps), i.e.mNt

andmQt
,

are combined using the rules in Table 3 resulting in the be-
lief mass denotedmΩ

t .

I I ∪ M M

Bad I ∪ T I ∪ T I ∪ T

Bad ∪ Good 0.5/I I ∪ T 0.5/T
0.5/I ∪ T 0.5/I ∪ T

Good I I ∪ T T

Table 3: Table of rules for individuals/groups detection.

4.2. Short time belief and decision
In order to take temporal aspects of beliefmΩ

t into account,
we combine it with the previous belief of the system con-
cerning the category of the video using the TBM conjunc-
tive rule of combination [9]. By doing it, we assume that
the belief does not evolve between two successive frames.
Note that a method was proposed in [11] for belief func-
tions filtering and that includes a model of evolution be-
tween successive frames. The fusion process is performed
frame by frame for each propositionX yielding a new local
massm̂Ω

t (X):

m̂Ω
t (X) = m̂Ω

t−1
∩©mΩ

t (X)

=
∑

C∩D=X

m̂Ω

t−1
(C) · mΩ

t (D) (3)

This belief mass quantifies the system’s belief concerning
the categorization of the video in the frame of discernment
Ω = {I, T} previously defined. Using the aforementioned
fusion process, the mass on the empty set (m̂Ω

t (∅)), called
conflict, is going to increase to one, while the masses on
the other propositions are going to decrease to zero. This
effect is due to the fact that the empty set is abortive by
the ∩©-rule. When the conflict is high, the trapezes used in
the numeric to symbolic conversion are modified manually
in order to decrease the conflict (by adding doubt for in-
stance). When the conflict is not too high, we have used the
Dubois & Prade’s conflict redistribution rule [12] in order
to manage conflict yielding to:̂mΩ

t (∅) = 0:

m̂Ω

t (C ∪ D) =
∑

C∩D=∅

m̂Ω

t−1
(C) · mΩ

t (D) (4)
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This rule is called adaptive because it redistributes the value
of conflict onto the union of hypotheses that cause conflict.

4.3. Final decision
The final decision concerning the whole video sequence is
taken by “equivalent” fusion of the beliefs at each frame.
Thereby, at framet, the mean mass̄mΩ

t (X) of the proposi-
tionX is computed by getting the mean of the local decision
massm̂Ω

k (X) over the frames{1, 2, · · · , t}:

m̄Ω

t (X) =
1

t
·

t
∑

k=1

m̂Ω

k (X) (5)

Finally, the decision is taken using the pignistic probability
(BetP) proposed by Ph. Smets [13]. The above decision rule
is equivalent with the selection of the propositionX with
the highest mean mass̄mΩ

t (X) (because the frame of dis-
cernment is made of two hypotheses). Using the aforemen-
tioned scheme, the value of the selected mean mass provides
a final decision confidence value. This value corresponds to
the probability of the final decision.

5. Experimental Results
We have tested the proposed algorithm on a data set con-
taining 252 athletic videos captured from broadcast TV: 161
video sequences from individual sports like pole vault, high
jump, shot, javelin, etc. and 91 video sequences from team
sports like running and hurdling. The database is charac-
terized by its heterogeneity with a panel of view angles
as well as unconstrained indoor or outdoor environments
(other moving people can appeared) and athletes (male, fe-
male with different skills and skin colors).

The accuracy of the team sports detection was96.9%
(156/161) and the accuracy of the individual sports was
96.7% (88/91). We have performed several tests in order
to make comparisons between the proposed scheme ver-
sus several variations of this scheme. First, we tested the
proposed scheme without using quality criterion (setting
quality factor equal to one), getting93.8% for individual
sports and97.8% for team sports. We tested the proposed
scheme without using TBM framework, deciding using a
threshold (Thr) on the mean ofNt over the frames, get-
ting about3% less performance. Conclusively, the afore-
mentioned comparisons show the importance of using qual-
ity Qt, TBM framework and the robustness of the pro-
posed features under several decisions rules. Some videos
and experimental results by the proposed method are avail-
able at the Web addresseswww.csd.uoc.gr/˜cpanag/

DEMOS/actionActivityRecognition.htm and www.

lis.inpg.fr/pages_perso/ramasso .
Figures 6 and 7 show frames from the original sequences

and the corresponding results of the proposed scheme. The

people in group are connected with straight lines. In Figure
6, two athletes are initially appearing in the scene making
the method confusing to decide (at first frames). Finally, the
camera tracks one of them and the system responds that it
was an individual sport video (N = 1 at the end (Fig. 6-
xiii), N varies between1 and2.5 within the sequence). The
belief massm̂Ω

t (X) gives an instant decision for a current
frame. According to thêmΩ

t (X) until the frame 35 multi-
ple people are appearing in the scene, which is very close
to the ground truth. The global decision for a period can be
taken usingm̄Ω

t (X). According to this mass, after the 70th
frame, the video is classified as an individual sport, since it
contains more frames of single athlete rather than multiple
athletes. Figure 7 illustrates a 100 m running video, which
is correctly classified into team sports. First, the8 athletes
are separated providing high accuracy results to the people
counting procedure and high values onQt. After the mid-
dle of the sequence, a lot of occlusions and bad quality sil-
houettes are appearing. The occluded athletes correspond
to one or two groups of people, and at the same timeQt

has low values. This example shows the accuracy of people
counting procedure under several conditions (N= 8 at the
beginning of the sequence (Fig. 7-xiii), thenN decreases
due to the view angle). It show the usefulness ofQt in or-
der to be able to give a confidence value about the people
counting at each frame. Thus, the value of quality is very
close to what a human expert will decide for a quality func-
tion, since it is maximized when athletes are well detected
(without noise). Accurate assessment of number of peo-
ple is hard to perform because one needs to build a ground
truth and, besides, single view camera used in our applica-
tion limits occlusion handling (see Fig. 7). However, the
evolution ofNt on both figures shows that the system can
detect precisely the number of people.

6. Conclusion

We have proposed a shape based method for unsupervised-
automatic people detection and counting applied to ath-
letic videos in order to classify them to videos of indi-
vidual sports and team sports. Robust, adaptive, indepen-
dent from the camera motion and well understandable by
humans features, are estimated using silhouettes. Finally,
the features are combined within Transferable Belief Model
(TBM) framework for video categorization yielding at the
same time confidence values about the final decision.

The main contribution of this work concerns the defini-
tion of appropriate robust features and the TBM based fu-
sion of them, using a quality function, yielding high per-
formance results without any given feature or initialization
under low quality - real conditions videos. The proposed
method can be easily applied to other types of videos. In
particular, the trapezes as well as tables of rules could be
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Figure 6:(i), · · · , (viii) Triple jump original sequence with
126 frames.(ix), · · · , (xvi) The results of the people detec-
tion and counting procedure. The small black boxes corre-
spond to the mass center detected humans.(xvii) Nt, Qt.
(xviii) The belief masseŝmΩ

t (X), m̄Ω
t (X).

estimated according to the type of videos using for instance
majority rule algorithm [14] but this need an heavy step for
manual annotation in order to prepare the learning set.
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