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Abstract

Luminance, colour, and/or texture features may be used, either alone or in combination,

for segmentation. In this paper luminance and colour classes are described using the corre-

sponding empirical probability distributions. For texture analysis and characterisation a mul-

tichannel scale/orientation decomposition is performed using wavelet frame analysis. Knowing

only the number of the different classes of the image, regions of homogeneous patterns are

identified. On these regions the features characterising and describing the different classes

are estimated. Two labelling algorithms are proposed. The first, a deterministic relaxation al-

gorithm using a quadratic distance measure, yields the labelling of pixels to the different col-

our–texture classes. The second is a new Multi-label Fast Marching algorithm utilising a level

set boundary determination.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Often in image analysis and interpretation tasks, including multimedia applica-

tions and visual inspection, colour textured images must be segmented for recogni-

tion purposes. Most approaches to texture analysis proposed during the past

decades fall into one of three broad categories: statistical, model-based, and signal
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processing techniques (Randen and Husoy, 1999; Reed and du Buf, 1993). The sta-

tistical approaches, such as (Chen and Pavlidis, 1983), were primarily investigated in

the 1980s. Model-based methods include, among others, Markov random field

(Kashyap et al., 1982) and simultaneous autoregressive models (Mao and Jain,

1992). Our approach could be identified as a signal processing method, and in par-
ticular it is based on a joint spatial/spatial-frequency representation of the texture

patterns. A characteristic common to most signal processing methods is that the im-

age is submitted to a filter bank, and then from the filters� outputs some energy mea-

sure is computed. In this context the Gabor filter analysis could be used (Bovic et al.,

1990; Jain and Farrokhnia, 1991; Porat and Zeevi, 1989; Raghu and Yegnanara-

yana, 1996). Having similar properties, but a simpler implementation, wavelet trans-

form representations could also be used.

In (Reed and du Buf, 1993) a concise survey of many recent texture segmentation
and feature extraction techniques are presented. We focus here on some of these,

which are more relevant to our work. Mao and Jain (1992) use a multiresolution si-

multaneous autoregressive model for extracting texture features. These features are

filtered separately and eventually weighted. Then a clustering algorithm determines

the features for a known number of texture classes. The MH index, a modification of

Hubert�s statistic, is used for evaluating the segmentation and for validating the

number of clusters. For the same task the ratio of the within-class variance to the

total variance is also used. Comer and Delp (1999) use a multiresolution Gaussian
autoregressive model for the pyramid representation of the observed image, and as-

sume a Markov random field for the label image. They propose a Multiresolution

Maximisation of Posterior Marginals algorithm for solving the labelling problem,

while an expectation/maximisation method is used for estimating the model�s param-

eters. A similar model is proposed in (Krishnamachari and Chellappa, 1997), where

the Iterated Conditional Modes algorithm is used for labelling pixels.

The multi-channel filtering approach is also adopted by many authors for texture

analysis and segmentation. Jain and Farrokhnia (1991) used a bank of Gabor filters
and each filtered image is subjected to a nonlinear transformation. Using a local en-

ergy computation they obtain feature images, and then a square-error clustering al-

gorithm is used to identify the texture classes. A modification of the Hubert�s statistic
is used as an index to validate the number of texture categories. Raghu et al. (1997)

use also a Gabor wavelet filter-bank. A vector quantizer divides the entire feature

space to a limited finite number of clusters. Then based on the modelisation of

two processes, called partition and competition processes, an energy function is de-

fined and optimised by a deterministic relaxation neural network. The modified Hu-
bert index is again used for validating the number of clusters. Laine and Fan (1996)

use a wavelet packet frame decomposition for texture description. Then they obtain

a segmentation map relying on 2D envelope detection. For that, two algorithms were

proposed: Hilbert transform and zero-crossings localisation.

Many different multi-channel filtering approaches have been compared in (Ran-

den and Husoy, 1999). The global segmentation scheme is similar to that of (Jain

and Farrokhnia, 1991), while the final stage is implemented using a classifier on

the features images. Among the best filters were the wavelet frame approaches and
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the quadrature mirror filter-bank (QMF). In addition, Randen and Husoy (1999)

addressed the problem of filter optimisation for best discriminant capability.

In this paper, the problem of texture segmentation is approached with algorithms

based on the concept of wavelet frames. The aim of the analysis is to determine char-

acteristics corresponding to each texture type, so that each texture pattern is un-
iquely defined. Such a distinction takes place in the frequency domain, where the

input image is equivalently decomposed to different scale levels using the discrete

wavelet frames (DWF). Once these characteristics are deduced, statistical properties

are applied to extract the features which are necessary to describe the texture pattern.

Although this texture analysis approach has been introduced in the past (Laine and

Fan, 1996; Unser, 1995), our scheme differs in the segmentation methodology. The

main advantages of the Wavelet frames representation are that it focuses on scale

and orientation texture features, it decomposes the image into orthogonal compo-
nents, and it is translation invariant. The last property is quite desirable for precise

boundary localisation in the segmentation problem.

Methods for combining colour and texture for segmentation have been proposed

in the past (Belongie et al., 1998), using HSV colour space and primitive texture fea-

tures combined in pointwise expectation maximisation clustering.

In this paper two new approaches for textured colour image segmentation are in-

troduced, the first using a Markov random field model for the label field, and the sec-

ond using a level set method. In both cases at the first stage of the algorithm the texture
and colour feature parameters are determined. For this task an unsupervised method

of feature extraction is proposed. The number of different classes present in the image

is assumed to be known, and the depth of wavelet analysis is given by the user. How-

ever in (Jain and Farrokhnia, 1991) a method is proposed for determining the number

of different categories, which could also be useful in our approach. The depth of scale

analysis is content dependent, and could be determined using the texture similarity cri-

terion introduced here for reliable classification. The analysis could be stopped when a

minimum discrimination distance is achieved for any pair of colour–texture patterns.
Knowing the number of classes, blocks with homogeneous colour and texture pattern

are extracted and grouped, when they are similar. After the hierarchical clustering of

these blocks, the feature vector is estimated for each label. At each image point, dis-

tance measures are defined from the different labels using a logarithmic function of

the likelihood of the corresponding feature vector. When a Markov random model

for the label field is adopted, a deterministic relaxation algorithm is applied. In order

to obtain more robust initial measures, the distances of the content vector at each im-

age point from the feature vectors could be smoothed by a median filter. When a level
set method is used, a propagation speed is defined for each label at each point accord-

ing to the a posteriori probability. A new multi-label fast marching algorithm is intro-

duced and applied for obtaining the final segmentation map. The first work on level

sets for texture segmentation was presented in (Paragios and Deriche, 1999), where

a non-orthogonal filter-bank is used, texture features are user-provided, and the curve

propagation is guided by boundary and region properties.

The presented work is organized as follows: in Section 2, the underlying theory of

the basic filters, the necessary decomposition by upsampling and the use of DWF, as
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applied to 2D signals, are described. The feature extraction algorithm is presented in

Section 3. Two segmentation approaches are then introduced: a Markov random

field model which leads to the use of the deterministic relaxation algorithm of Iter-

ated Conditional Modes (Section 4), and a level set boundary method (Section 5).

This last was presented in a general framework of Bayesian level sets in (Sifakis et
al., 2002), where the Multi-label Fast Marching algorithm was first introduced. Var-

ious results are shown on synthetic images containing textures from the Brodatz al-

bum (Brodatz, 1966) and from the Vistex database, and on various natural scenes.
2. Texture and colour characterisation

2.1. Texture analysis

The fundamental tools used for processing the texture images are a filter bank and

the concept of wavelet frames. Such an analysis is translation invariant, which is a

quite desirable property, in particular for the accurate localisation of region bound-

aries. In addition, the filter bank decomposes the image into orthogonal compo-

nents. A low-pass filter HðzÞ and its conjugate high-pass filter GðzÞ are taken as a

pair of prototype filters for generating the whole filter bank by upsampling, so that

the whole range of bands is covered. Cubic splines having suitable scaling properties
could be used for designing the pair of prototype filters (Unser, 1995). Here the

fourth-order binomial filter and its conjugate filter are used,
HðzÞ ¼ 3

8
þ 1

4
ðzþ z�1Þ þ 1

16
ðz2 þ z�2Þ; ð1Þ

GðzÞ ¼ zHð�z�1Þ; ð2Þ

in the frequency domain, and
hðnÞ ¼

6=16; n ¼ 0;
4=16; jnj ¼ 1;
1=16; jnj ¼ 2;
0; jnj > 2;

8>><
>>: gðnÞ ¼ ð�1Þ1�nhð1� nÞ ð3Þ
in the spatial domain. The filter bank is obtained iteratively, indexed by the scale

factor i ¼ 0,. . .,I,
Hiþ1ðzÞ ¼ Hðz2iÞHiðzÞ; ð4Þ

Giþ1ðzÞ ¼ Gðz2iÞHiðzÞ; ð5Þ

where H0ðzÞ ¼ 1.

Therefore, the input signal can be decomposed into wavelet coefficients corre-

sponding to different scales. Thus the DWF can handle important texture character-

istics, such as periodicity and translational invariance. The resulting representation is
overcomplete because the filtered images are not subsampled. This approach places
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fewer restrictions on the choice of the prototype filters, and furthermore generates

orthonormal basis functions, a very important feature for texture classification.

The above low-pass filter is zero-phase, guaranting good localisation in boundary de-

termination. It also ensures a good orthogonalisation, as it can be measured by the

correlation coefficient between the two output signals, as follows:
cLHðmÞ ¼
P

k

P
l hðkÞgðlÞcsðmþ k � lÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k

P
l hðkÞhðlÞcsðk � lÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

P
l gðkÞgðlÞcsðk � lÞ

p ; ð6Þ
where csð�Þ is the autocovariance function of the input signal. For a fully correlated

input signal, cLHðmÞ is zero-valued for any m, because the sum of all gð�Þ coefficients

is zero. An interesting and important indication of the output correlation is given by

the maximum value of cLHðmÞ under the assumption of a first-order Markov process

for the input signal. As at each layer the input signal processed is an approximation
signal with strong correlation, we provide here the maximum cLHðmÞ value for

q ¼ 0:9,
max
m

cLHðmÞ ¼ 0:027;
which is sufficiently small for considering the interband decorrelation hypothesis to

be valid in practice. Other filter choices are possible, and a study of the best filter

bank for separating specific texture classes is open for future investigations.
All of the above may be extended into 2D, thus becoming applicable to textured

images whose features must be extracted. This can be accomplished by taking as

wavelet bases the cross product of separable bases in each direction. Thus, the anal-

ysis is computationally less complicated, since rows and columns of the image are

processed separately, as if they were 1D signals. Finally a set of N components is ob-

tained, fyiðm; nÞ : i ¼ 1; . . . ;Ng, with N ¼ 3I þ 1, where I is the number of analysis

levels. The Nth component is the approximation at the Ith scale level, while the other

N � 1 are the details in the different orientations and scales.
Of course, other filter prototypes could be used in the same processing scheme,

including non-dyadic decompositions. In addition to wavelet frames decomposition,

Gabor analysis could also be used in the following sections considering the segmen-

tation problem. We prefered the Discrete Wavelet Frames analysis because of the

separability, which makes it simpler.

2.2. Colour description

Lab colour space, designed to be perceptually uniform, was used for colour fea-

ture extraction. Because the luminance component L is used in texture analysis

and is contained in the approximation component, only the chromaticity compo-

nents ða; bÞ are used. In our work the local 2D histograms of the ða; bÞ components

were used as features. When some model of the distribution of the ða; bÞ histograms

is fit (e.g., Gauss or Laplace) the parameters of the model are used as the features.

Often though no such modeling is feasible, in which case local histogram estimation

is required, making the procedure time consuming. The histograms are smoothed
with a Gauss kernel to improve statistical robustness.
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2.3. Dissimilarity measure

In the feature extraction procedure and for some clustering operations dissimilar-

ity measures are needed. The Bhattacharya distance was proven suitable for the tasks

of feature extraction in our work. The Bhattacharya distance is strongly linked to the
minimum classification error for the two-classes case. It is in fact a special case of the

Chernoff bound for the Bayes error (Young and Fu, 1986) and it is well known that

the Chernoff information gives the highest achievable exponent for the error proba-

bility. The definition of the Bhattacharya distance is
dBðp1; p2Þ ¼ � ln

Z
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ðxÞp2ðxÞ

p
dx

� �
; ð7Þ
where p1; p2 are probability density functions of vector x of any dimension under two

hypotheses indexed by 1 or 2. The Bhattacharya distance satisfies the symmetric

property,
dBðp1; p2Þ ¼ dBðp2; p1Þ;

while the triangle property is satisfied only in specific configurations.

In our case this distance could be defined on empirical probability distributions.

The discrete expression is
dBðh1; h2Þ ¼ � ln
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1ðiÞh2ðiÞ

p !
; ð8Þ
where i is an index into the bins of the normalized histograms h1; h2.
In the case that we have a model for the feature�s distribution, a simpler expres-

sion for the Bhattacharya distance can be deduced. Statistical analysis of experimen-
tal results have shown that the probability distribution of the high-frequency

components could be the generalised Gaussian (Mallat, 1989)
pðxÞ ¼ c
2rCð1=cÞ e

�ðjxj=rÞc ; ð9Þ
where the parameter r is related to the variance and c reflects the sharpness of the

probability density function. For c ¼ 2, we obtain the Gaussian function, and for

c ¼ 1, the Laplacian function. Taking into account that we have in practice an in-

terband decorrelation, the Bhattacharya distance will be the sum of the corre-
sponding distances on all the components
dB
1;2ðyÞ ¼

1

c

XN
i¼1

ln
rc
i;1 þ rc

i;2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc
i;1r

c
i;2

p ; ð10Þ
where N is the dimension of the feature vector and r2
i;1 and r2

i;2 the feature variances.

When texture features and colour histogram features need to be combined, the

last model-based expression is used for texture features and the initial expression
is used for histograms. Each term for each feature is summed independently of the

expression of the distance, because the decomposition is approximately orthogonal.
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3. Feature extraction

In this work, only the number of different colour–texture classes is assumed to be

known. The segmentation can be based on any combination of luminance, colour,

and texture, either fixed or user-selected. A method for determining the number of
texture categories is proposed in (Jain and Farrokhnia, 1991). The empirical proba-

bility distributions for luminance and colour, and the variances of the texture com-

ponents are estimated using a learning process, which is described below. The mean

value of the approximation component is also estimated and taken into consider-

ation, if it is sufficiently discriminating. The option of two different approaches is al-

lowed. Fig. 1 illustrates the whole procedure for texture segmentation, and shows at

which point the two approaches diverge. The feature parameter estimation stage is

the same for both. The determination of the pixel�s label differs, even though it is
based, in both cases, on the a posteriori probability of the label. The first one adopts

a Markov random field model for the labels, while the other assumes that the region

boundaries are suitably defined level sets. In the following paragraphs the various

feature extraction modules are described in detail, while the two segmentation algo-

rithms are treated in the two following sections.

3.1. Rejection of heterogeneous blocks

Crucial to the segmentation process is the identification of image regions contain-

ing the best representative colour–texture characteristics for all the classes. For this
Fig. 1. Texture feature extraction and segmentation algorithms.
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purpose, the image is divided into blocks. The block size should be large enough to be

statistically reliable, but not so large as to prohibit the segmentation of small regions.

Typically a block should be about 1–2% of the image, that is for a 256� 256 image a

suitable block size would be 32� 32, giving 64 sub-images. It is evident that blocks

containing two or more different classes (heterogeneous blocks) should be not used
for estimating the characteristics of any class. If a block is homogeneous, with high

probability it will be similar to the majority of its neighbouring blocks. The similarity

is measured by the Bhattacharya distance defined in the previous section. As the ab-

solute distance depends on the texture pattern it will be more efficient to compare the

median dissimilarity to the minimal one, thus defining an homogeneity criterion
MðB0Þ ¼ med
n

dBðB0;BnÞ �min
n

dBðB0;BnÞ; ð11Þ
where B0 is the block under examination and the median and the minimum are taken
over its eight neighbouring blocks Bn. The next step is to find a threshold for dis-

tinguishing the homogeneous blocks from the heterogeneous ones. We can assume a

bimodal distribution for MðB0Þ corresponding to the two categories of homogeneous

and heterogeneous blocks. The problem is then to identify the breaking point be-

tween the two categories. We sort the blocks according to the homogeneity criterion

M , expecting an abrupt change between the two categories. As an indicator of the

change we use a measure deduced from the numerical approximation of the second

derivative as calculated from the sorted data
MðBnþ1Þ � 2MðBnÞ þMðBn�1Þ:

We take the maximum of the indicator, in the interval between 10 and 50% of the

blocks, as the breaking point. Fig. 2 illustrates the thresholding procedure applied to

a textured image. On the left is the input mosaic textured image; on the right are

blocks detected as heterogeneous, shown in white. The threshold is automatically set

as shown on the plot of the sorted homogeneity criterion. On the vertical axis the
homogeneity measure is given, while on the horizontal axis the index of the block,

according to the order in the sorted list is given.

3.2. Hierarchical clustering for feature estimation

The procedure described in the previous subsection rejects all heterogeneous

blocks. Following this, to obtain the best representative blocks from the remaining

homogeneous ones, the homogeneous blocks are sequentially grouped into pairs
Fig. 2. Rejection of heterogeneous blocks.
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using again the Bhattacharya distance and starting by the closest ones. A pair is formed

only if the blocks are neighbouring and their distance is smaller than a threshold set

according to the homogeneity screening explained in the previous paragraph
Fig.
Tp ¼
max
B02BM

med
n

dBðB0;BnÞ þ min
B02BM

med
n

dBðB0;BnÞ

2
; ð12Þ
where the maximum and the minimum are taken over all homogeneous blocks B0

retained in the previous phase (BM being the set of homogeneous blocks).

Then, the variance vectors for texture and colour distributions are estimated for

each pair of blocks thus created. In order to estimate the features of the different clas-

ses in the image, a hierarchical clustering algorithm (Duda and Hart, 1973) is applied
to the features of the grouped pairs. This algorithm, in each step, merges the two

nearest clusters by estimating the new features from the corresponding blocks. Each

step thus reduces the number of clusters by one. The procedure terminates when the

number of clusters becomes equal to the number of the different classes in the image

to be segmented. The texture parameters are estimated at the end of this procedure,

as well as the colour histograms. Results illustrating the effectiveness of the estima-

tion algorithm are given for the synthetic image of Fig. 2 containing four different

textures (top-left: D19, top-right: D9, bottom-left: D3, and bottom-right: D5), which
was analysed to four scale levels yielding 12 detail coefficients. We present in Fig. 3

the blocks retained for the feature vectors estimation (left-hand image), as well as the

corresponding result for another mosaic image containing five different texture pat-

terns (Fig. 7a). The estimated variance vectors of each texture pattern are given, both

for the supervised (Table 1) and unsupervised (Table 2) procedures. The unsuper-

vised procedure uses the automatic clustering technique described above, while the

supervised procedure estimates the features from the known texture patterns.

3.3. Distance estimation and filtering

Taking into consideration all parameters characterising a colour/texture pattern, a

point belongs to a given class if its distance from the class is minimal. The distance is
3. Blocks automatically retained for feature vectors estimation for two mosaic textured images.



Table 1

Variance vectors for texture pattern supervised feature extraction

Subband D19 D9 D3 D5

3H 5.96 2.03 2.94 0.95

3V 0.08 0.37 0.96 0.12

3D 0.03 0.06 0.07 0.05

2H 0.89 3.42 6.00 2.29

2V 0.61 1.86 1.98 0.39

2D 0.03 0.05 0.05 0.02

1H 1.24 3.62 7.70 4.62

1V 1.46 3.12 7.60 1.62

1D 0.06 0.19 0.17 0.10

0H 2.61 2.24 12.43 8.47

0V 1.78 2.33 3.30 2.68

0D 0.07 0.19 0.44 0.22

Table 2

Variance vectors for texture pattern by unsupervised feature extraction

Subband D19 D9 D3 D5

3H 6.13 1.75 2.92 0.90

3V 0.08 0.41 0.41 0.14

3D 0.02 0.05 0.06 0.04

2H 0.91 3.42 5.84 2.23

2V 0.61 1.77 1.76 0.34

2D 0.02 0.05 0.04 0.01

1H 1.32 3.42 8.19 4.30

1V 1.47 3.26 7.31 1.26

1D 0.06 0.20 0.16 0.10

0H 3.13 2.01 13.48 9.20

0V 1.76 2.42 2.61 2.67

0D 0.07 0.19 0.42 0.23
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defined using the likelihood function of the class label. The more probable a class is,

the less the distance is for a given point, according to the inverse of the logarithm of

the likelihood function. Assuming that the probability density function of the texture

features is Gaussian, the distance of a point ðm; nÞ represented by the vector

yðm; nÞ ¼ ½y1ðm; nÞ . . . yNðm; nÞ�T from a class with variances r2
i;j and mean value lj

is determined as follows:
djðyðm; nÞÞ ¼
XN�1

i¼1

y2i ðm; nÞ
r2
i;j

 
þ log r2

i;j

!
þ
ðyN ðm; nÞ � ljÞ

2

r2
N ;j

þ log r2
N ;j: ð13Þ
Indeed, all the components of vector yðm; nÞ as used in the above equation are zero-

mean independently of their class. The discrimination results from the difference in

the variance of the components. If another assumption is adopted, e.g., the gen-
eralized Gaussian, the above equation must be suitably adapted. If the probability

density function of the colour features is also Gaussian, the two corresponding
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components are added in Eq. (13). Otherwise, the empirical probability distribution

is used for the colour features
djðyCðm; nÞÞ ¼ � ln pjðyCðm; nÞÞ; ð14Þ

where yCðm; nÞ is the vector of ða; bÞ colour components. Following these assign-

ments, due to statistical errors on the distance measure, a 2D median filter (typically
of size 9� 9) could be applied to each distance array of pixels from each class, as a

pointwise distance measure is highly noisy. Averaging the distances provides a more

reliable distance measure, and in the presence of region boundaries the median filter

should be preferred over a linear filter. The median filter is applied separately for

each class (index j) and yields smoothed distance arrays, thus compensating for

statistical errors.
4. Pixel labelling using deterministic relaxation

Minimising the distance of an image point from the candidate texture classes gives

the most probable texture for the given point. As the point classification could give

many erroneous classifications, a relaxation algorithm for pixel labelling may be

used. A Bayesian approach is adopted based on a Markov random field (MRF)

model of the colour/texture labels.

Indeed, many problems in image analysis can be formulated as a scene labelling
with contextual information. In such a statistical framework, there are

• a set of sites S ¼ fðm; nÞg;
• a set of possible labels for each site L ¼ fl1; l2; . . . ; lqg;
• a set of observations Y ¼ fyðm; nÞg, associated with S;

• a neighbourhood relation, G, over the sites.

The problem is to assign to each site a label in such a way that the solution is

consistent with the constraints and the available observations set.

Let c denote a clique of the neighbourhood G, that is, a set of sites in which all
pairs are mutual neighbours. In Fig. 4 is shown an 8-connected neighbourhood

and the retained cliques. A global discrete labelling x assigns one label

xðm; nÞ 2 L at each site. A Gibbs distribution (Geman and Geman, 1984), is defined

by the so-called clique potentials VcðxÞ, for every possible c and every possible label-

ling. Following theHammersley–Clifford theorem and the equivalence between MRF
Fig. 4. Second-order neighbourhood: a possible choice of effective cliques.
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and Gibbs distributions (Besag, 1974), the probability of a global labelling x is given

by the following formula (Geman and Geman, 1984):
P ðxÞ¼D 1

Z
e�ð1=T ÞU1ðxÞ; ð15Þ
where T is a regularising constant, and
U1ðxÞ¼
D
X
c2C

VcðxÞ; Z ¼
X
x

e�ð1=T ÞU1ðxÞ: ð16Þ
In the above formula C denotes the set of totally connected cliques with respect to

the neighbourhood definition G and Z is a normalising constant, called partition

function. In statistical terms, U1ð�Þ is the energy (cost) function of the system, while

Vcð�Þ is called potential function and corresponds to the contribution of the local

interactions to the global energy. A very crucial issue in this process is to incorporate

the prior knowledge with the available observations, in order to create a new form

for the energy function. This form is a combination between the expected spatial
properties (homogeneity) of the label field and adequacy between observations and

labelling decisions. Under the above hypotheses the joint probability density func-

tion of the label field and the field of texture features is proportional to the following:
P ðxÞ
Y

ðm;nÞ2S
e�dðyðm;nÞ;xðm;nÞÞ;
where the adequacy of a feature vector to a texture class is given in Eq. (13). The

maximisation of the a posteriori probability is equivalent to the maximisation of this

joint probability density function, and it leads to the minimisation of the energy

function given by
Uðx; yÞ¼D 1

T

X
c2C

VcðxÞ þ
X

ðm;nÞ2S
dðyðm; nÞ;xðm; nÞÞ¼D U1ðxÞ þ U2ðx; yÞ; ð17Þ
where the term dð�Þ expresses this adequacy demand.

For the labelling according to the colour/texture pattern, following the signal de-

composition presented above, the adequacy between observations and labelling de-

cisions can be expressed using the distances of Eq. (13)
U2ðx; yÞ ¼
X

ðm;nÞ2S
djðyðm; nÞÞ; where xðm; nÞ ¼ lj: ð18Þ
The maximisation of the maximum a posteriori probability (MAP), or equivalently

the minimisation of the cost function may be performed using either stochastic re-

laxation algorithms (Geman and Geman, 1984), or deterministic relaxation algo-

rithms as the Highest Confidence First (HCF) algorithm (Chou and Brown, 1990), or

the Iterated Conditional Modes (ICM) algorithm (Besag, 1986). In our work we have

used the ICM algorithm.
We have applied our method to three synthetic images containing two, four, and

five different textures, all derived from the Brodatz Album (Brodatz, 1966). The first

image to be segmented (composed of textures D3 and D9) and the result of the



Fig. 5. Segmentation for the synthetic image (a) which contains two textures D3 and D9. (b) Labelling

with distance only. (c) Assignments after smoothing with median filter. (d) Final segmented image after

applying the ICM algorithm.
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segmentation are shown in Fig. 5. The classification error percentage is 18.2% based

on likelihood only, 6.5% after median filtering, and 0.6% after ICM relaxation. The

above algorithm was applied to a synthetic image containing four different textures

(Fig. 6a). Fig. 6b illustrates the segmented image with assignments to labels deduced

using only the distance measure in Eq. (13) with 36.0% classification errors. In

Fig. 6c, the label assignments resulting from distance smoothing using the median
filter are shown reducing the classification errors to 11.4%. The final segmented im-

age after applying the ICM algorithm is presented in Fig. 6d, with 4.8% misclassified

pixels. The initial image was analysed to four frequency levels yielding 12 detail co-

efficients. An additional example was considered, where the segmentation algorithm

was applied to the image illustrated in Fig. 7a which contains five different texture

types. As in the previous example, the label assignments based on the distance mea-

sure are shown in Fig. 7b (35.2% classification errors), the result after smoothing of

the distance values is presented in Fig. 7c (5.5% classification error) and the result
following application of the ICM algorithm is illustrated in Fig. 7d, with 2.9% mis-

classified pixels. The decomposed frequency layers in this example were 3, thus pro-

ducing nine detail coefficients.

Results of this algorithm are shown in Fig. 8 where the SeaStones image is seg-

mented in three classes using three levels in DWF decomposition and colour mod-

eled as a Gaussian distribution, yielding 11 distinct features. Substantial

improvement was observed when colour features were added, since the used model
Fig. 6. (a) Initial synthetic image composed of D19, D9, D3, and D5 of the Brodatz album. (b) Labelling

with distances only. (c) Assignments after smoothing with median filter. (d) Final segmented image after

applying the ICM algorithm.



Fig. 7. (a) Initial synthetic image composed of D77, D55, D84, D17, and D24 of the Brodatz album. (b)

Labelling with distances only. (c) Assignments after smoothing with median filter. (d) Final segmented

image after applying ICM.

Fig. 8. Segmentation of the SeaStones image using the ICM algorithm.
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is an acceptable approximation of the actual data distribution. The inherent diffi-

culty in segmenting the current image should be noted, which is augmented by the

heterogeneity of the upper class which occurs in both texture and colour.
5. Pixel labelling using level sets

We now introduce a new labelling algorithm based on level sets and on the fast

marching algorithm. In a subsequent paragraph we describe how to use the new al-

gorithm for labelling according to the texture features, and their distances from the

estimated class features.

5.1. Multi-label Fast Marching Algorithm

The fast marching level-set algorithm introduced by Sethian (1996) computes a

constructive solution to the stationary level set equation
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jrT ðx; yÞj ¼ 1

vðx; yÞ ; ð19Þ
where vðx; yÞ corresponds to the velocity of the moving front, while T ðx; yÞ is a map

of crossing times. At a given time the location of the evolving active contour is

determined. The resulting segmentation is interpreted by means of the velocity field

used. Given the limitation of a constantly positive velocity function and a suitable

discrete gradient definition, the fast marching algorithm can construct a solution

T ðx; yÞ which satisfies Eq. (19) over the entire image without resorting to iterative

methods. The running time of the fast marching algorithm is of order n log n over the

image size, classifying it as a very efficient segmentation technique. A thorough
presentation of the level set method is given in (Sethian, 1996), and a review of the

fast marching algorithm appears in (Sethian, 1999).

The proposed algorithm is a variant of the fast marching algorithm, which, in ad-

dition to maintaining the properties of the original, is able to cope with multiple clas-

ses (or labels). Execution time is effectively made independent of the number of such

classes by handling all the propagations simultaneously and dynamically limiting the

range of action for each label to the continuously shrinking set of pixels for which a

final decision has not been made. The propagation velocity may also be formulated
differently for each class.

The algorithm described below assumes the existence of an initialisation for

T ðx; yÞ, specifically its zero level set. There are three possible states for each pixel.

An ‘‘alive’’ pixel represents a fixed arrival time value, A ‘‘trial’’ pixel constitutes a

candidacy for a specific label with an arrival time value subject to change. ‘‘Far

away’’ pixels have not yet been processed. When no more trial pixels remain the alive

pixel with the smallest arrival time is used to label each pixel. The result of the algo-

rithm is not only the resulting T ðx; yÞ but the corresponding labelling as well.
The symbolic description of the algorithm follows:
InitTValueMapðÞ
InitTrialListsðÞ
whileðExistTrialPixelsðÞÞ f

pxl ¼ FindLeastTValueðÞ
MarkPixel AliveðpxlÞ
UpdateLabelMapðpxlÞ
AddNeighborsToTrialListsðpxlÞ
UpdateNeighborTValuesðpxlÞ
g

The algorithm is supplied with a label map partially filled with decisions. The ar-
rival time for the pixels containing decisions is set to zero while for all other pixels it

is set to infinity. A map with pointers to linked lists of trial pixels is also maintained.

Those lists are initially empty except for the sites being neighbours to initial deci-

sions. For those sites a trial pixel is added to the corresponding list for each different

label of neighbouring decisions and an initial arrival time is assigned. All trial pixels

are held in a common priority queue, based on their arrival time.

Until no more trial pixels exist, the trial pixel with the smallest arrival time is se-

lected and turned alive. If there is no other alive pixel for this site, its label is copied
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to the final label map. For all non-alive neighbours of this site a trial pixel of the

same label is added, if it does not already exist, in the corresponding trial lists. Fi-

nally all neighbouring trial pixels of the same label update their arrival times accord-

ing to the new data.

Although it might seem that trial pixels can exist per site for all different labels, in
fact these can be no more than four since a trial pixel is only introduced by a finalised

neighbouring decision. In practice trial pixels of different labels coexist only in region

boundaries, giving an average number of label candidacies per pixel of at most two.

Even in the worst case it is evident that the time and space complexity of the algo-

rithm is independent of the number of different labels. Experiments have illustrated a

running time no more than twice the time required by the single contour fast march-

ing algorithm.

5.2. Label initialisation and propagation

An initial map of labelled sites is obtained using statistical tests which classify

points with high confidence. The probability of classification error is set to a small
value. At first all pixels are classified according to their distance from the different

labels. The distance of a point from a label is measured using the Bhattacharya dis-

tance of the distribution of the data of a block centered at the given point and the

features of the label. Then a square block of dimension ð2wþ 1Þ � ð2wþ 1Þ centered
again at the given point is considered. The mean distance is used for classifying it to

one of the possible labels. This classification gives an estimate of the number of pixels

of the sets for all labels. Decision with highest confidence provide the initial sets of

labelled points. A small percentage is generally sufficient. The confidence criterion
results from the comparison of the distance of the candidate label to the distance

of the best label among all the others
Xw
i¼�w

Xw
k¼�w

min dlðmþi;nþkÞðmþ i; nþ kÞ � djðmþ i; nþ kÞ;
where the minimum is taken among the labels lðmþ i; nþ kÞ 6¼ j, and the confidence
is higher if the above quantity is greater. The multi-label fast marching level set al-

gorithm, presented in the previous section, is then applied for all sets of points ini-

tially labelled. The contour of each region propagates according to a motion field

which depends on the label and on the distance of the considered point from the

candidate label. The exact propagation velocity for a given label is
vjðm; nÞ ¼ Prðj jyðm; nÞÞ ¼ pðyðm; nÞjjÞPrðjÞPL
l¼1 pðyðm; nÞ j lÞPrðlÞ

¼ PrðjÞPL
l¼1 PrðlÞedjðyðm;nÞÞ�dlðyðm;nÞÞ

: ð20Þ
The expression of the propagation speed is motivated by the maximum a posteriori

probability criterion. The candidate label is propagated according to the a posteriori

probability, which is expressed using the likelihood function of each label. Indeed, a
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label should be propagated faster towards pixels which could be classified to the

candidate label with high probability. The propagation should be rather stopped in

case of low probability.

We use the fast marching algorithm for advancing the contours towards the un-

labelled space. The dependence of the propagation speed only on the pixel proper-
ties, and not on contour curvature measures, is not a strong disadvantage here.

5.3. Experimental results

In Fig. 9 the segmentation result for the zebra image is presented. Only the lumi-

nance histograms are used for the segmentation. In Fig. 10 the segmentation result

on the GrassPlants natural scene (MIT Media Lab Vistex data set) is shown, where

either colour (Fig. 10b) or texture (Fig. 10c) alone is used. In the case of colour, only
the histograms of the chromaticity components ða; bÞ are used. For texture-based

segmentation the variances of the DWF analysis are used. In Fig. 11 the segmenta-

tion result on the natural scene of a Corridor (MIT Media Lab Vistex data set) is

presented, where only the chromaticity histogram is used. In Fig. 12 the segmenta-

tion result on the natural scene of a City (MIT Media Lab Vistex data set) is shown,

where the histograms of intensity and chromaticity are used.
Fig. 9. Segmentation of the zebra image: the original image, the initial labelling, and the final segmenta-

tion map.

Fig. 10. Segmentation of GrassPlants: (a) original image, (b) initial sets for colour-based segmentation, (c)

final colour-based segmented image, (d) initial sets for initial sets for segmentation, and (e) final texture-

based segmented image.



Fig. 11. Segmentation result on the Corridor image: the original image, the initial labelling, and the final

segmentation map.

Fig. 12. Segmentation result on the City image: the original image, the initial labelling, and the final seg-

mentation map.
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In Fig. 13 the result of segmentation is shown on two-texture images presented

in (Randen and Husoy, 1999). The percentage of classification errors is 1.3% for

the D004D084 image, and 1.0% for the D005D092 image. The respective errors
Fig. 13. Segmentation of two-texture images: (a) D004D084 from Brodatz album, (b) D005D092 from

Brodatz album, (c) segmentation of D004D084, and (d) segmentation of D005D092.



Fig. 14. Segmentation of five-texture images: (Ox) original image, (Sx) segmentation using the multi-label

fast marching algorithm with supervised feature extraction, (Ux) segmentation using the multi-label fast

marching algorithm with unsupervised feature extraction, and (ICMx) segmentation using the ICM algo-

rithm with unsupervised feature extraction.
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for the best filter reported in (Randen and Husoy, 1999) are: 1.9 and 2.5%. In

Fig. 14 the result of segmentation is shown on the five-texture images presented

in (Randen and Husoy, 1999). In Table 3 we give the classification error results

of our methods compared to the results reported in (Randen and Husoy, 1999)
for the best filter. We give results for both the supervised (SMLFM) and the un-

supervised (UMLFM) feature extraction algorithms, and for the ICM algorithm

described in the previous section. In the case of supervised feature extraction we

use the known segmentation map for estimating the unknown parameters. In the

cases of unsupervised feature extraction and of the ICM algorithm we consider

the number of labels to be known and we apply the method of Section 3 for esti-

mating the parameters. In (Randen and Husoy, 1999) the features of the classes

have not been extracted from the image to be classified, but from disjoint patches
of the same texture.



Table 3

Comparison of the classification errors.

Image SMLFM UMLFM ICM Randen and Husoy (1999)

(Oa) 5.8% 5.7% 9.4% 8.2%

(Ob) 4.9% 5.4% 6.5% 17.2%

(Oc) 5.4% 5.5% 9.3% 18.9%

(Od) 8.8% 9.1% 10.6% 22.6%

(Oe) 8.3% 5.7% 13.7% 18.4%
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In Fig. 15 the result of segmentation is shown on the 10-texture images presented

in (Randen and Husoy, 1999). Here the feature extraction procedure was supervised.

The classification error is 6.5% for (Oa) and 5.6% for (Ob). The respective errors gi-

ven in (Randen and Husoy, 1999) using the best filter (QMF) are 32.3% for (Oa) and

28.5% for (Ob).

In Fig. 16 the result of segmentation is shown on the 16-texture images presented

(Randen and Husoy, 1999). Again the feature extraction procedure was supervised.

The classification error is 8.3% for (Oa) and 10% for (Ob). The respective errors gi-
ven in (Randen and Husoy, 1999) using the best filter (QMF) are 36.4% for (Oa) and

41.7% for (Ob). Fig. 17 illustrates the segmentation results of the multi-label fast

marching algorithm on the same set of synthetic images presented in the previous

section. For the first mosaic with the two Brodatz textures the percentage classifica-

tion error is 0.7%. For the mosaic image with four (resp. five) Brodatz textures the

percentage classification error is about 2.8% (resp. 2.5%).

In Fig. 18 results of combined use of both texture and colour in the SeaStones im-

ages (Fig. 8) are presented. In Figs. 19–23 we show results on natural scenes from the
Corel Photo Gallery. In general, a three-level wavelet frame analysis was used, lumi-

nance was quantized into 32 values and chrominance was quantized into 64 values.
Fig. 15. Segmentation of 10-texture images: (Ox) original image, (Sx) segmentation using the multi-label

fast marching algorithm with supervised feature extraction.



Fig. 16. Segmentation of 16-texture images: (Ox) original image and (Sx) segmentation using the multi-

label fast marching algorithm with supervised feature extraction.

Fig. 17. Segmentation results of the multi-label fast marching algorithm on the synthetic images.

S. Liapis et al. / J. Vis. Commun. Image R. 15 (2004) 1–26 21
Initially 30–40% points were labelled according to the technique of Section 5.2. In

Fig. 23 we show the final segmentation result for three different numbers of classes.

The result is semantically acceptable for the three cases, while for a lower number of

labels the classes are not simply merged, but mixed, resulting to false segmentation

maps.



Fig. 18. Original SeaStones image, blocks selected for feature extraction, initial map, and final result of

level set segmentation.

Fig. 19. Original Village image, blocks selected for feature extraction, initial map, and final result of level

set segmentation.

Fig. 20. Original Leo image, blocks selected for feature extraction, and final segmentation.

Fig. 21. Original Tree image, initial map, and final segmentation.
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Fig. 22. Original Road image and final segmentation.

Fig. 23. Original Elephant image (a), result of level set segmentation with seven labels (b), six labels (c),

and five labels (d).
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6. Discussion and conclusions

In this paper we have addressed the problem of image segmentation based on col-

our and texture features. For texture description DWF are used for decomposing the

image into different frequency bands. The components of the wavelet frames analysis
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were shown to be particularly effective in exploiting periodicities of the texture pat-

terns, as these patterns are expressed in different scales and different orientations.

The wavelet frames decomposition used in our work is extremely simple, imple-

mented using 5-tap 1D filters. In the future it will be interesting to find better fil-

ter-banks for segmenting given textured images. Colour was described in the Lab

coordinate system by 2D histograms of the ða; bÞ components; the intensity histo-

gram can be also used, if relevant for the segmentation.

New segmentation methodologies have been proposed, using both the wavelet

frame analysis and colour histograms. In the first stage the parameters of the tex-

ture patterns are automatically extracted. This procedure starts by subdividing the

image into equally sized blocks and then rejecting those blocks found to be heter-

ogeneous with respect to their colour–texture content. The texture parameters are

estimated after applying a hierarchical clustering procedure in the remaining
blocks. The proposed scheme assumes only that the number of different colour–

texture classes is known. Often this is a small number. In some cases a hierarchy

of relevant segmentation maps could be obtained for different numbers of classes

(Fig. 23).

The problem of automatically determining the number of labels is an important

open issue. Among various approaches we have investigated a cluster validation test

and a confidence test of the segmentation result. For cluster confidence we search for

an indicator of the clustering performance. The validity of the segmentation can be
measured by the minimum description length criterion, which takes into account the

likelihood distance and the complexity of the resulting segmentation map. The last

approach might be considered computationally expensive, but it has the advantage

of global assessment for all parameters, not only the number of labels. Experiments

we have made until now, show that this approach could be used for validating the

result of the segmentation procedure.

Two new segmentation algorithms have been introduced. The first one is based on

the deterministic relaxation algorithm; the second is called multi-label fast marching,
an extension of the classical fast marching algorithm, and is based on a level set

method, where the propagation speed is determined by the a posteriori probability

of the labels. Both algorithms gave very good segmentation results on synthetic tex-

ture images and on natural scenes, where texture and colour are often combined for

obtaining the best label field. Globally the multi-label fast marching algorithm was

more performant on segmenting natural scenes.

As expected, in the absence of an objective criterion, a number of parameters

must be selected by the user. Our method has the advantage of combining in a
simple way intensity, colour and texture features. Still the user must decide which

feature is most relevant for segmentation. We show results (Fig. 10) demonstrat-

ing that different features lead to similar segmentation maps. In other cases, dif-

ferent features have additional contributions for semantic segmentation. In

general, if the wavelet frame decomposition is used, a maximum number of three

or four levels could suffice, depending on the image size. In any case the human

operator has a primordial role in image segmentation useful for semantic inter-

pretation.



S. Liapis et al. / J. Vis. Commun. Image R. 15 (2004) 1–26 25
References

Belongie, S., Carson, C., Greenspan, H., Malik, J., 1998. Color- and texture-based image segmentation

using em and its application to content based image retrieval. Int. Conf. Comput. Vision.

Besag, J., 1974. Spatial interaction and the statistical analysis of lattice systems (with discussion). J. Roy.

Statist. Soc. B 36, 192–326.

Besag, J., 1986. On the statistical analysis of dirty images. J. Roy. Statist. Soc. 48, 259–302.

Bovic, A.C., Clark, M., Geisler, W.S., 1990. Multichannel texture analysis using localized spatial filters.

IEEE Trans. Pattern Anal. Machine Intell. 12 (January), 55–73.

Brodatz, P., 1966. A Photographic Album for Artists and Designers. Dover, New York.

Chen, P.C., Pavlidis, T., 1983. Segmentation by texture using correlation. IEEE Trans. Pattern Anal.

Machine Intell. 5 (January), 64–69.

Chou, P., Brown, C., 1990. The theory and practice of Bayesian image labeling. Int. J. Comput. Vision 4,

185–210.

Comer, M., Delp, E., 1999. Segmentation of textured images using a multiresolution Gaussian

autoregressive model. IEEE Trans. Image Process. 8 (March), 408–420.

Duda, R., Hart, P., 1973. Pattern Classification and Scene Analysis. Wiley, New York.

Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. IEEE Trans. Pattern Anal. Machine Intell. 6, 721–741.

Jain, A., Farrokhnia, F., 1991. Unsupervised texture segmentation using Gabor filters. Pattern

Recognition 24, 1167–1186.

Kashyap, R.L., Chellappa, R., Khotanzad, A., 1982. Texture classification using features derived from

random field models. Pattern Recognition Lett. 1, 43–50.

Krishnamachari, S., Chellappa, R., 1997. Multiresolution Gauss–Markov random field models for texture

segmentation. IEEE Trans. Image Process. 6 (Feb.), 251–267.

Laine, A., Fan, J., 1996. Frame representation for texture segmentation. IEEE Trans. Image Process. 5

(May), 771–780.

Mallat, S.G., 1989. A theory of multiresolution signal decomposition: The wavelet representation. IEEE

Trans. Pattern Anal. Machine Intell. 11 (Jan.), 674–693.

Mao, J., Jain, A., 1992. Texture classification and segmentation using multiresolution simultaneous

autoregressive models. Pattern Recognition 25, 173–188.

Paragios, N., Deriche, R., 1999. Geodesic active regions for supervised texture segmentation. Int. Conf.

Comput. Vision.

Porat, M., Zeevi, Y.Y., 1989. Localized texture processing in vision: analysis and synthesis in Gaborian

space. IEEE Trans. Biomed. Eng. 36, 115–129.

Raghu, P.P., Yegnanarayana, B., 1996. Segmentation of Gabor-filtered textures using deterministic

relaxation. IEEE Trans. Image Process. 5 (December), 1625–1636.

Raghu, P.P., Poongodi, R., Yegnanarayana, B., 1997. Unsupervised texture classification using vector

quantization and deterministic relaxation neural network. IEEE Trans. Image Process. 6 (October),

1376–1387.

Randen, T., Husoy, J.H., 1999. Filtering for texture classification: a comparative study. IEEE Trans.

Pattern Anal. Machine Intell. 21 (April), 291–310.

Randen, T., Husoy, J.H., 1999. Texture segmentation using filters with optimized energy separation. IEEE

Trans. Image Process. 8 (April), 571–582.

Reed, T., du Buf, J.M.H, 1993. A review of recent texture segmentation and feature extraction techniques.

CVGIP: Image Understanding 57 (May), 359–372.

Sethian, J., 1996. A marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci.

93, 1591–1595.

Sethian, J., 1996. Theory, algorithms, and applications of level set methods for propagating interfaces.

Acta Numer., 309–395.

Sethian, J., 1999. Fast marching methods. SIAM Rev. 41, 199–235.

Sifakis, E., Garcia, C., Tziritas, G., 2002. Bayesian level sets for image segmentation. J. Visual Commun.

Image Representation 13, 44–64.



26 S. Liapis et al. / J. Vis. Commun. Image R. 15 (2004) 1–26
Unser, M., 1995. Texture classification and segmentation using wavelet frames. IEEE Trans. Image

Process. 4 (November), 1549–1560.

Young, T., Fu, K.-S. (Eds.), 1986. Handbook of Pattern Recognition and Image Processing. Academic

Press, New York.


	Colour and texture segmentation using wavelet frame analysis, deterministic relaxation, and fast marching algorithms
	Introduction
	Texture and colour characterisation
	Texture analysis
	Colour description
	Dissimilarity measure

	Feature extraction
	Rejection of heterogeneous blocks
	Hierarchical clustering for feature estimation
	Distance estimation and filtering

	Pixel labelling using deterministic relaxation
	Pixel labelling using level sets
	Multi-label Fast Marching Algorithm
	Label initialisation and propagation
	Experimental results

	Discussion and conclusions
	References


