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On the Distribution of Positive-Definite
Gaussian Quadratic Forms

GEORGIOS G. TZIRITAS

Abstract —Quadratic signal processing is used in detection and esti-

mation of random signals. To describe the performance of quadra-

tic signal processing, the probability distribution of the output of the
processor is needed. Only positive-definite Gaussian quadratic
forms are considered. The quadratic form is diagonalized in terms of
independent Gaussian variables and its mean, moment-generating function,
and cumulants are computed; conditions are given for the quadratic form
to be x? distributed and distributed like a sum of independent random
variables having a Gamma distribution. A new method is proposed to
approximate its probability distribution using an expansion in Laguerre
polynomials for the central case and in generalized x 2 distributions in the
noncentral case. The series coefficients and bounds on truncation error
are evaluated. Some applications in average power and power spectrum
estimation and in detection illustrate our method.

I[. INTRODUCTION

UADRATIC PROCESSING of signals is used in
Q many problems of statistical communication, detec-
tion; and estimation. The reason is that the logarithm of
the likelihood ratio of two equivalent Gaussian measures is
a quadratic functional of the process, if the covariance
operators differ [25]. The case of detection or reception of
Gaussian signals in Gaussian noise is studied by Kadota
[17], [18]). The quadratic functional is positive-definite and
the properties and methods given here can be applied.
Also, to estimate certain second order characteristics of
Gaussian processes, such as power or power spectrum, one
frequently uses quadratic functionals as estimators.

There is a vast literature on the probability distribution
of a quadratic form especially in the finite-dimensional
case. The more relevant references and results are given by
Johnson and Kotz [16]. In this paper we propose a method
of approximation by expanding the distribution in Laguerre
polynomials in the central case and in generalized non-
central x? distributions in the noncentral case. This method
can be considered as an extension of known techniques
from finite to infinite quadratic forms.

We shall first define the quadratic form we will consider.
It is well-known that we can consider Gaussian signals as
elements of a Hilbert space. This approach gives a geomet-
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ric interpretation that is interesting and advantageous in
problems of classification and estimation. Except in some
degenerate cases, one needs an infinite-dimensional Hilbert
space to represent a continuous-time random process. The
connection between Gaussian signals and Gaussian mea-
sures in a linear space is explained by Rajput and Cambanis
[24].

Let (2, &7, P) be a probability space, H be a complex
or real separable Hilbert space with inner product (-,-)
and % be the o-algebra of all Borel subsets of H. A
random element X with values in H induces a probability
measure v on (H,#) by v(B)y=P{XE€ B}, BE%; v is
the distribution of X [5]. This measure is Gaussian if, for
every y € H, the random variable (X, y) is Gaussian. In
this paper we consider either real or complex random
variables. The mean element m € H of X satisfies, for all
y€H,

(m. y) = E{((X, 1)) = [ (x 9y dv (x)

and the covariance operator K of X satisfies, for all ue H
and vE H, )

(Ku,v) =cov{{X,u),{X,v)}

e mo e mte

K is a nuclear, positive-definite, self-adjoint linear oper-
ator in H [22].

We define a quadratic form (or functional) by the inner
product

Q=(TX, X) 1)

where X is a Gaussian element in H and T is a nonnega-
tive-definite self-adjoint bounded linear operator. We want
to determine the probability distribution of the nonnega-
tive random variable Q. We approximate the probability
density function of Q by expanding it in a series. In the
central case we choose the gamma distribution as the basis,
or first approximation, of the expansion and we use an
expansion in a convergent series of Laguerre polynomials.
To evaluate series coefficients we use the traces of the
operator KT that utilize its eigenvalues in a concise way.
We give conditions for convergence, algorithms for calcu-
lations, and error bounds when approximations by trun-
cation are considered. In the noncentral case we use an
expansion in a series of functions derived from the
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noncentral x? distribution. These methods and derivations
are the object of Section III. In Section II we give the
necessary theoretical background concerning quadratic
forms in Gaussian random elements: a diagonalization in
independent Gaussian variables, the moment-generating
function, and the cumulants of the quadratic form. In
particular, we give a new necessary and sufficient condition
for a Gaussian quadratic form to be x? distributed, central
or not, and to be distributed like a sum of independent
random variables having a Gamma distribution. Finally in
Section IV we give some applications to detection and
estimation problems that illustrate the proposed method,
indicate its efficiency, and permit comparison with other
methods.

II. PROPERTIES OF QUADRATIC FUNCTIONALS

We shall study the properties of the quadratic functional
(1) under the assumptions of the introduction. We can
assume without loss of generality that the covariance
operator K is strictly positive-definite, so the range of its
square root is dense in H (e, R(K/*)=H). We
demonstrate that the quadratic functional Q can be
diagonalized, using the eigenvectors and the eigenvalues of
the compact operator K/2TK'/2, Ibragimov [15], using a
different method, proved that Q has the same distribution
as the sum given below in (2) (convergence in distribution).
We also give expressions for the mean, the moment-gener-
ating function and the cumulants of Q, using the mean of
X and the operator KT.

Proposition 1: The quadratic functional Q can be diag-
onalized

)

where {A;} and {e;} are the eigenvalues and eigen-
vectors of the operator K'/2TK'/?, and the Gaussian
variables Z, = (X, K"/%,) are independent with mean
(m, K~/%,) and variance 1. The mean of Q is

E{Q} =(Tm,m)+t[KT],
its moment-generating function is

®(s) = E{exp(-sQ)}

exp(-— s< T(I+ sKT) 'm, m>)
N det(I+ sKT) “)

for all s with A, Re [s]>—1, where A, is the largest
cigenvalue of K/2TK'/2, and its cumulants are

« = (n=1)tu[(KT)" ]+ n(T(KT)"""m, m). (5)

0= Z}‘i|zi|2’

(3)

Proof: Since T is bounded, nonnegative-definite, and
self-adjoint, and for all u€ H, (KY?TKYu, u) <
T Ku, u), using a theorem by Douglas [7], we deduce
that there exists a unique bounded operator U, such that

(K1/2TK1/2)1/2 = KUy (6)

and the null space /" (U) = N ((KY*TK'/?)!/%). Then we
can write

2
FAX KV e = T X, kAR ATR ) e )|
= ZKX’ Uei>|2
= Y KU*X, e.)> = |U*X||?

=(TX, X),

since by (6), K/*TK'?*= K2UU*K*'/2, which implies
that T =UU*, and since the set of the vectors {e;} is
a complete orthonormal basis in #(K 127K 1/2), When
X is complex, the complex Gaussian variables Z;=
(X, K~"/%,) have mean p,=(m, K~?%,) and covariance
E{(Z,—pNZ;— ”j)*} = <KK_1/2e,-, K_1/2ej> = (e, ej>
=§,,. Hence they are independent. Using (2) and the
method used for the diagonalization of Q, we obtain

E{Q} = LA (wf? +1) = (Tm, m) + u[KT].
The moment-generating function is
®(s) = E{exp(—sQ)}
- [0+ e[~ w1+ 51)) O

for every s € € such that A, Re[s]> —1. The operator
KT has the same eigenvalues as the operator K 12TKY/2,
and the operators (1 +sKT)~! and (I + sK12TKV/2) ™1
exist for s as above. Let us consider the exponent in the
expression of the moment-generating function (7). When
m e R(K/?), we can write

inlf"ilz/(l'*' s>\i)

— Z <m, K~1/2K1/2TK1/2ei>

(K1 + sKV2TKY?) Ye;, m)

=Y. (K'?*Tm,e;)

e, (1+ S*KVATKY2) ' K~12m)

—(KV2Tm,(1+ s*KV2TKY?) 'KV m),

since m € R(KV?), K/*Tm € R(K'/*TK'/?), and there-
fore

S (KY2Tm, ey (e, uy=(K'*Tm,u)
for all  in H. It is easily shown that
(I+sK'2TKV?) " 'KY/*TK'/?
= KY2TK V(1 + sKV2TKY?) ™!

— KY2T(I+sKT) 'KV2.
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Using also the fact that by definition
[T +s)\,) =det(I+sKT)

(where det(-) is the Fredholm determinant), we obtain the
expression (4). Thus we have demonstrated (4) for m €
R(K'/?). Since T(I + sKT)™! is bounded and #(K'/?) is
dense in H, this holds by continuity for all m. The
cumulant-generating function is obtained using the follow-
ing relation In(det(/ + V)) = tr[In (I + V)] for each nuclear
operator V' [27]. The cumulants are obtained by expanding
in series the operators (I +sKT)™! and In(I + sKT) for
N marls] <1. QED.

Remark 1: If the Hilbert space H is real, we obtain the
following expressions, with A ., Re{s] > —1/2:

O(s) = [det(1+2sKT)] /*

-exp(—-s<T(I+2sKT)‘1m,m>). (8)

6y =2 [(n =Dt [(KT) "]+ n{ T(KT)" s, m)|.
9

In what follows we give a necessary and sufficient
condition for Q to have a x? distribution. First we consid-
er the central case. Khatri [19] gives necessary and suffi-
cient conditions for Q to have a x? distribution in this
case. The following proposition is equivalent, but it is
simpler and more useful.

Proposition 2: When X is a zero-mean complex (real)
Gaussian vector, then Q is distributed like bx2(k) if and
only if

w[(kT)]uw[kT] = (e [(kTY])’, (10)

and in this case the number of degrees of freedom is

k= 2(u[KT)ie [ (kTY] 1)

and the variance per degree of freedom is

b= tr[(KT)"]/ztr[KT] (12)
(and in the real case k /2 and 2b, respectively).

A demonstration of this proposition follows immed-
iately from the following lemma.

Lemma: With g, = tr[( KT )"] = XN}, we have for n > 3,

qn/qnﬁl 2 qn—l/qn—l (13)

and

hm qn/qn—l = Amax' (14)

n—>o0

If 9;/9,=q,/q,, then all eigenvalues are equal to A and
4,/4,_1=A for all n,

Proof: 1t is sufficient to prove that

2
TNEN s (TN,

897

which follows from Schwartz’s inequality

2

Z (02 E (e 272)" > (En(n+n-2)2)
i i i

with equality, iff A/2 = cA\"~2/2 for every i. The equality

is true, iff all nonzero eigenvalues are equal. Since ¥ A; <

o0, only a finite number of eigenvalues can be nonzero. We

have

qn/qn—l= ZA':/ZA’:—1_> Amax

as n —o0. To obtain the equality it is sufficient to have
two terms equal. QED.

In the noncentral case a similar argument may be used
to prove that the same conditions are necessary and suf-
ficient for Q to have a noncentral x? distribution. The
noncentrality coefficient is then

c={2u[KkT ]/t [(KT))| }(Tm, m)

and c/2 in the real case.

We shall prove now a more general proposition, giving a
necessary and sufficient condition for Q to be distributed
as a sum of independent random variables having Gamma
distribution.

Proposition 3: The quadratic functional Q of (1) is
distributed like the sum ¥7_,b,Y;, where Y; are independent
random variables having a standard Gamma distribution
I'(a,), if and only if

91 9, n+1
9 q3 9n+2 =, (15)
qn+1 qn+2 q2n+l

Proof: Let us suppose that there exist b,#0 (i=
1,---,n) such that Q=1%7"_,bY, (in law). Then we can
write, for every k =1, I7_,(a, + 1)b¥ = q,. Let us consider
the equations from k=1 to k=n+1, with q,+1 as

unknown variables. Then we obtain

b, b, b, q;
b% b3 b} 9 |=0
byt byt Bt G

and we can write A\g, + A,q, + -+ + A, 19,1 =0, where
{A;} are determinants depending on {b;}. One can
continue and obtain the following set of equations

Agi+A8,q0+ - +4,,,4,,,=0,
A, +A,q,+ - +4,,19,,,=0,

...........................

Aigpi1+85G,0+ - +4,,145,.,=0.

To have a nonzero solution for {A,;}, condition (15) is
necessary and sufficient. QED.
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It is obvious that the condition of Proposition 2 is a
particular case of the above condition, for n=1.
III. EXPANSION OF PROBABILITY DENSITY
FuncTtioN

We begin with some remarks concerning the probability
density function (pdf) of a quadratic functional of a zero-
mean vector using certain ideas of de Acosta [2}. If the
dimension of the range of KT is zero, then with probabil-
ity 1, 9 =0. Let us consider the case of a real vector first.
If dim[#(KT)}=1, then Q= AZ2, where Z is a real
standard Gaussian variable. Then the pdf of Qis

£(1) =exp(—t/20\)V2mhe;  A>0,1>0, (16)

which is an unbounded function for ¢ — 0. If dim[2(KT)]
—2, then Q =\, Z2+A,Z3 and its pdf is

7(1) = (17288, )exp [ = (1/4) (A + 23]

L((t/H(AT+A5Y), >0 (17)
where I,(-) is the modified Bessel function of the first
kind [1], and is a bounded uniformly continuous function.
If 3 < dim[#(KT)] < o0, using bounds in Fourier analysis,
one can demonstrate that the pdf is a bounded uniformly
continuous function (Appendix C).

Let us consider now the case of a complex vector. If
dim[#(KT)] =1, then Q= A|Z|?, where Z is a complex
standard Gaussian variable, and its pdf is

£(2) =exp(— t/N)A; (18)

which is a bounded uniformly continuous function. If
2 < dim[ % (KT)] < oo, this means at least a dimension 4 in
the corresponding real space and then the pdf is a bound-
ed uniformly continuous function.

We shall study the expansion of the pdf when it is a
bounded uniformly continuous function, ie. for all cases,
except the case of a real vector with dim[2(KT)] =1,
where the pdf is well known. An appropriate probability
density function is chosen as initial approximation and an
expansion in a series of functions is considered. This is a
general method for approximating a probability distribu-
tion and particularly the distribution of a sum of random
variables. As initial approximation we choose a pdf which
is exact, in the case of a finite number of equal eigenval-
ues. This choice gives in the central case a gamma pdf

pu 5 olx) =xexp(—x/b)[[b** ' T(a+1)],

A>0,t=0,

x>0,
(19)

and in the noncentral case
p s (x) = (x92/bc*)exp( = (x + ¢*)/b)
1,((2¢Vx /b)),

The parameters a, b, ¢ can be chosen in order to have the
two (or three if ¢+ 0) first moments identical. The first
expression (19) is given by Rice [26] as an approximation
for the pdf of a nonnegative quadratic form in central case.

x>0. (20)
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In this case the parameters a and b have an interesting
interpretation by the choice of gamma distribution as
initial approximation: we have 2(a +1) “equivalent de-
grees of freedom” with b/2 “average variance per degree
of freedom” for the quadratic form. These parameters are
given by

a+1l=«l/k,, b=rx,/K;. (21)

A. The Central Case

We propose the following series expression for the pdf

f(x):
() = xexp (= x/0)/ [ T(a + D] L e,2(5/8)
2

where £(4)(+) are the generalized Laguerre polynomials.
The new parameter f is introduced to obtain the conver-
gence of the series (22). The orthogonal polynomials for
the pdf p, , o(x) in [0, 00) are L (x/b). But the corre-
sponding series does not converge for all pdf f(x). As we
shall see, the necessary and sufficient condition for the
series (22) to converge is

B> 2(b = (Aad) )
,3“>2(b*1—(2>\max)_1) (23)

This is a consequence of the equiconvergence theorem for
Laguerre series [30]. In the above form this condition is
given also by Calvez [6]. Thus one can take B =25, if
2b> A, for a complex vector, and b > A, for a real
vector. Knowing that in the complex case b represents an
average of the eigenvalues (A;} (cf. (5) and (21)), this
condition indicates that the parameter B is needed, if A,
dominates the other eigenvalues. (An example of a finite-
dimensional vector follows: A, = 0.4, A, + Ay, = 0.06; then
b =0.196 < A, /2.) Laguerre series have been used by other
authors [11], [13], [14], [20] to expand the pdf of a quadratic
functional of a Gaussian vector. The method of Kotz et al.
[20] is applicable only to finite-dimensional vectors and
with @ +1=n /2, where n is the dimension of the vector.
One cannot use this method for an infinite-dimensional
vector. The general series presented by Gideon and
Gurland [10] could include the series (22). But the choice
of series parameters in [10] is such that only finite-dimen-
sional vectors can be considered. :

In what follows we determine the coefficients c, and
bounds on approximation error by truncation. We use a
standard method similar to that of Kotz ef al. [20] and
Gideon and Gurland [10].

Determination of pdf Series’ Coefficients: Since series
(22) is converging uniformly by Laplace transform and
using [9, (28), p. 174] for Laguerre polynomials, we obtain
the moment-generating function

1 o0
L ()

for complex X

for real X.

(24)
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with z=1—b/B(1+ sb). Using the expression

1 ® v, —Sb)
(1+sb)"" % P L

n=1
with y, = (n —1)!(a +1)b", we obtain the relation

O(z)=exp 3 & (1_/3(11)_2)),,

n=1

g (a+n) n

(25)

Putting
x b\"k Ky~ Ya
1__
g( ,8) np" ’
_ - Y ¢ m+n—1)
A= TR L ()68 ,
(26)
we have
exp ), A,z"= Y cn(a:n)z”. (27)
n=0 n=0

By derivation in z we obtain the recurrent relation

n!
— +1
Cnt1= F(a+n+2) Z (m+1)
F(a+n—m+1)
. (n_m)' m+1Cn—m> n >0,
co=expA,. (28)

To summarize the procedure for determining the coef-
ficients: we compute the cumulants (9), then the coef-
ficients A, of (26), and finally the ¢, of (28).

If we can choose B =b (2b > )\max for a complex vector),
the following simplification is possible:

Ay=0, o=
Kr_.Yr _ r n—l)
(Y (r—l

and so the coefficients c, require the knowledge of cumu-
lants up to order n only.

One can also prove, using the expression of the cumu-
lants vy,, that

7 (=1)" a+1
Z Yr th? ( _1 ) == N
=1 rb" \r n
Thus we obtain a further simplification of the expression
for 4, that is
n
n—1 a+1
; 'b’ (r -1 ) * n o’

Error Bounding: Here we study the error in approximat-
ing f(x) by truncating the series (22). We use a standard
method, also used by Kotz et al. [20]. We first search for a

899

rP
2om1-52
1—6 K\ll-; |

Fig. 1.

Region of convergence of series (25).

bound for the coefficients c,. The sum in (24) must con-

verge uniformly in the half-plane 1+A, . Re[s]>0 (for a

complex vector). The region of convergence on the z-plane

is a circle. The center of the cucle in the z-plane is
0=1-38/2, with 8 '=B(h 1 —A_L), and the radius is
=4/2.

To obtain the convergence of the coefficients c, to zero,
as n — 0, & must be such that 1 - §,/2 < 0. Using Cauchy ]
integration formula, one can prove that the coefficients are
bounded by

(a+n)|c|<m;1x|<b(zo+pe Jem+! (29)
for n> N(e) and with 1/(2p—1)<e<land 1<p< 8/2.
In [20] the following inequality for Laguerre polynomials is
given:

|29 (x)| < exp (xR /(1+ R))/[(1 ~R)“"'R"| (30)

for any R with 0 < R <1. The error of approximation in
absolute value is given by

ex(x)=x%exp(— x/b)/[b”“I‘(a +1)]

E i)

n=N+1

An upper bound using (30) can be expressed in terms of a
hypergeometric function as follows:

en(x) <xexp(—x/b)/[b**'T(a +1)]

" [1 R a+1RN+l(a+N+l)]
D}I},a)(( ) N+1

pPMgeV*?exp (xR /B(1+ R)),

(31)

where D(e,8)={p,R: 1<p<8/2, 1/(2p— 1)<e<R<1}
and Mg =sup, _, . ,|®(z, + pe™)|, for 1<p<8/2. It is
obvious that the error converges to zero as N — oo.

Cumulative Distribution: Given the uniform convergence
of the sum (22), we can integrate term-by-term and obtain
the probability distribution '

-Fl(l,N+1;a+N+1;e/R))

(B/ )H+1 x/B ,
T & A

-exp(—Bt/b).iPn(“)(t) dr. (32)

F(x)=f0xf(y)dy
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In Appendix B we calculate the integral

I(n,a) =fx/ﬁt“exp(—Bt/b)Yn(”)(t)dt‘
0
We obtain, for n>1,

I(n,a)=exp(—x/B) Z (x/B)* T T & O (x/B)
=0

(1)( ) (n—k—1)!

-1
LY 1—5) 10, a+n), (33)
n! b
where
1(0,a+n) =T(a+n+1)(b/B)* """
dp(x/Va+n+1 ,a+n)
and I.(-,-) is the incomplete gamma function, tabulated

by Pearson [23]. If the choice 8 = b is possible, then (33) is
simplified in

1 X a+l X
I(n,a)=;exp(—x/b)(;) fn(ffl)(;),

nx>1,

(34)

which is also given in [20] for a particular case. The
truncation error is bounded by

[oe]

Ey(x)<(B/b)"/T(a+1) X Il

n=~N+1

| [ emenp (— pe/p) 2o 0 (0) de

0

< (B/b)*"'/T(a+1)
. a+ a+l
Jinf |- R)" (875~ R/G+ R))

1
+N+1
RN+1(aN+1 )] PM¢€N+ZIEVZ

-F,(1,N+1;a+ N+1;¢/R) (35)

with I, = It(x(B/b— R/(1+ R))/(BVa+1), a) and
B/b>R/(1+ R).

Remark 2: The method for expanding the probability
distribution of Y% ,\,|Z|* in Laguerre polynomials is
valid also for a sum of independent Gamma I'(a;) vari-
ables £ ,b,Y,, with b,> 0. The condition for the almost
sure convergence of the above sum is 2% ;(a; + l)b <0,
and the cumulants of the series are, for n=1,2,-

= Z (ai+1)bin'
i=1

B. The Noncentral Case

We propose to expand the pdf of Q in the noncentral
case in a series of functions similar to (22) using the
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expression of the moment-generating function in (24). We
can write this formula in the form

_ 1 d a+n
o) =y Zol )

n

X (o)

k=0 (1+ b)

By inverse Laplace transform we obtain, using the notation
in (19),
[e o] + n n &
F) =T a5 T (R 5/B) Parisolx).
n=0 k=0

Thus in the noncentral case we propose the expansion of
f(x) in the series

£(x) fc,,("Z")éO(Z)(—b/ﬁ)kpm,b,c(x)

It

= Z dkpa+k,b,c(x)' (36)
k=0

The first term of the series (for k =0) is p, , .(x). This
expansion is related to the noncentral chl-squared series in
[20]. Again the difference is in the choice of series
parameters; in [20], a +1 depends on the space dimension,
which must be finite. By Laplace transform we obtain the
moment-generating function (4 or 8)

exp(—sc2/(1+sb)) i . (a+n)

(1+sb)“™*!
b "
.(1———_,3(14-Sb)) . (37)

Then the coefficients ¢, are evaluated by the same proce-
dure as in (26)—(28), with «, as in (5 or 9) and

O(s) =

y, = (n=1)!(nc*+a+1)b".

The coefficients ¢, are again bounded, if (23) is valid, by
the same expression (29) with the new function ®(z)
determined by the new cumulants.

To obtain a bound on the truncation error

S o) e(x)

n=N+1

e,(x) =

we have to determine a bound of the functions in the
expansion (36), that is, for the functions

wu(0) = T ()= /8) puvin ) GO

We give a bound for ¢,(x) in Appendix A. The truncation
error is bounded by

() = pup.o(x) ind pMye®*7/(1-0)
(¢,8)

+ inf epMy(e/R)" log(x; R)/(1—¢€/R).
(€,8)

(39)
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In what follows we discuss the cumulative distribution
F(x). We integrate the series in (36) term-by-term and we
obtain :

F) = B 5, ), (40)
where
()= [0.0) &= T (1)(=0/8)"0,01.(x)
(a1)

and Q,, (x) is the cumulative distribution (Marcum’s
function) of the probability density function Pa,p,(x). We
give a bound for w,(x) in Appendix A. Using this bound
and the bound for ¢, we obtain the following expression
for the truncation error

PR BYE

< Quno(x) inf epMy(c(b~p)/p)""

/[1-e(b~8)/B]

+Dinfﬁ)equ,(e/R)Nqu(x;R)/[l—e/R]. (42)

EN(X) =

This expression completes our method of approximation.

IV. APPLICATIONS IN ESTIMATION AND DETECTION
PROBLEMS

Here we give some applications to detection and esti-
mation problems. These examples illustrate the method
proposed and its efficiency. We consider only the central
case. The applications include the estimation of the average
power

Q=/01|X(z)12dt=<x, X)

and certain problems of detection. Some theoretical
statements concerning the above quadratic functional are
given by Varberg [32]. We also give two examples of
power spectrum estimation using the method of smoothed
periodograms.

In the case of average power estimation the operator T
of the quadratic functional is the identity. Thus we have
KT = K. The detection problem is formulated as follows:
H;: X is a complex Gaussian process, with K=K _+ K,;
Hy: X is a complex Gaussian process, with K = K. It is
well-known that, if R(K,+K,) =%(K,) and the oper-
ator (K, + K,) "'~ K 1)K /2 is defined in a dense sub-
set of H and is Hilbert-Schmidt, then the sufficient sta-
tistics are given by [17], [25] Q=(TX, X), with T such
that K = (K + K,)TK,. Thus, under hypothesis H,
(evaluation of probability of detection), K7 = K.K1
which is a nuclear operator [25]. Under hypothesis
H, (evaluation of false alarm probability), KT=(1+
K,K;)"'K, K, which is also a nuclear operator. The

n oo

moment-generating function of Q is, for 1+ Amax Re[s]1>0
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(A max being the largest eigenvalue of K K1),

0,(s) = (det (1 + sKsKgl))hl under H,,

@0(s)=(det(1+s(1+KJK;I)_lKSK;I))_l under H,.

Then we obtain

Oo(s) =det (I +K,K;')(det(I + KK + 5K K1)
=det(I+K,K;')®,(1+5).

The probability density functions of Q under the two
hypotheses are therefore related by

fo(x) =det(I+ KK Y e f,(x).

This relation is also given in [21] for the finite-dimensional
case. One can use the results given in this article to
determine the probability of the two kinds of error. Which
of f1(x) and f,(x) is easier to evaluate depends on whether
it is easier to calculate the traces of KT under hypothesis
H, or H,. Apart from the likelihood criterion, the deflection
criterion is also considered in signal detection [4]. For a
random signal in independent Gaussian noise, the opti-
mum operation T is defined by T=K- 'K,K; ', when
certain conditions hold [4]. Then under hypothesis H,, we
have KT'= K K. We can therefore use the results given
here to set the false alarm threshold. The following results
are directly useful in detection problems, if the eigenvec-
tors of the signal and the noise are the same and the
eigenvalues of the signal are proportional to the square of
those of the noise. (This is of course a strong, although
plausible, assumption, which for stationary processes means
that the power spectrum of the signal is approximately
proportional to the square of the power spectrum of the
noise.) Then KT = K, under hypothesis H,.
Stationary Markov Process: The covariance function is
normalized as in the following:
K(t,u) =exp(—~ p|t — u|); O<rux<l.

We give approximations of the probability density function,
in Figs. 2 and 3, of the cumulative distribution of the

3.0

2.4

) X
b, 7 J%o
0.0 0.5 1.0 1.5 200
Fig. 2. Probability density function for complex stationary markov

process (p =1, 5, 10, 30, 50).
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Fig. 3. Cumulative distribution for complex stationary markov process  Fig 5. Probability density function for real stationary markov process
(p=1,5, 10, 30, 50). (p =1, 5,10, 30, 60).

average power for p=1, 5, 10, 30, 50 for the case of
complex variables. We have calculated the cumulants using
a recurrence formula [31]. We give here the three first
cumulants given also in [21]:

Kk, =1,
oo = (2 + e =1)/(20),

k= 3[(p—1)+(p+1)e .
One can see that for p— 0, the parameters a +1 and b
both tend to 1. Also, for large p,a +1 is asymptotically
like p +0.5. On the other hand, ¢,/¢, —1, for p— 0, and
it is asymptotically like 3 /(2p +1) for large p. This means
that for p — 0 we obtain a x? distributed random variable

with 2 degrees of freedom and variance 0.5 per degree of
Fig. 6. Cumulative distribution for real stationary markov process (p=
freedom. 1, 5, 10, 30, 60).

0.0 1.0 200 3.0

In Fig. 4 we illustrate the successive approximations of
the probability density function over a portion of the range
for p=5. We give Rice’s approximation and those using have applied our method in this case and we give in Figs. 5
N, =3-8 (N aumber of coefficients). We have observed and 6 the probability density function and the cumulative
that as u grows, the convergence is reached with less distribution, respectively. These results as well as those in
coefficients. [28] are fairly accurate approximations of the probability

The case of real variables is studied by Slepian [28] and distribution.

Grenander et al. [12] using two different methods. We  Brownian Motion: The covariance function is

K(t,u)'=min(t,u); 0<t,u<l.

005

For complex variables we give in Fig. 7 the exact cumula-
tive distribution of the average power and the approxi-
mation using our method with 20 coefficients. One can see
that the two curves coincide for the precision of the figure.
For complex variables we give in Fig. 8 the exact proba-
bility density function of the average power and the ap-
proximation using out method (N, = 20).

The exact cumulative distribution is obtained from
J the moment-generating function. Knowing that Aj'=
(i —0.5)%72, we obtain [1]

o(s) = T1(1/+5\) = (1/coshis). ()

0.0 025 050 i=1

B
_ |

0.3

0.02]

004

Fig. 4. Approximations of cumulative distribution for complex station- . . . ,
ary markov process (4 =5; N =0, 3-8). This expression was given by Dugué [8] for the case of a
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0.0 0.5 1.0 1.5 2.0

Fig. 7. Exact cumulative distribution and our approximation (N, = 20)
for complex Brownian motion,

0.0 0.5 1.0 1.5 2.0

Fig. 8. Exact probability density function and our approximation (N,

= 20) for complex Brownian motion.
real process. By inverse Laplace transform [9], (43) leads to
o0
F(x)=2Y (- 1)"erfe((n +0.5) /vVx),
n=0

where erfc is the complement of the error function,
Brownian “Bridge”: The covariance function is as fol-
lows:

K(t,u) =min(t,u)— tu; O0<t,u<l.

The real version of the quadratic form in this case is the
limit of the von Mises statistics used in certain goodness
of fit” criteria [3]. For complex variables we give in Fig. 9
the exact cumulative distribution of the average power and
the approximation using ten coefficients. The exact expres-
sion is obtained as in the preceding case. The moment-
generating function is evaluated knowing that A, =1 J(im)?
[3] and using the expansion of sinh|[1]

[ee]

B(s) = H (1/1+sA,) =Vs /sinhys .

i=1

(44)

This expression was given by Smirnov [29] for the case of a
real process. By inverse Laplace transform [9], (44) leads to
F(x)=(2/Vmx) ¥ exp(—(n +O.5)2/x).

n=0

903

2000 +500

Fig. 9. Exact cumulative distribution and our approximation (N, =10)
for complex Brownian « bridge.”

For complex variables we also give in Fig. 10 the exact
probability density function, the approximation using our
method with 14 coefficients, and Rice’s approximation.
For real variables we give in Fig. 11 the probability
density function and the cumulative distribution (N, =14).
This case has been studied by Anderson and Darling [3]
who give an expression of the cumulative distribution

0.0 0.2 0.4 0.6 0.8

Fig. 10. Exact probability density function, Rice’s and our approxi-
mation (N, =14) for complex Brownian “bridge.”

2.0 3.0 400

Fig. 11.  Probability density function and cumulative distribution (N, =

14) for real Brownian “bridge.”
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using the modified Bessel function. The numerical table in
[3] confirms the efficiency of our method.

Power Spectrum Estimation: The smoothed periodogram
as an estimator of the power spectrum is a positive-definite
quadratic form of the process. The properties of quadratic
forms can be used to study this estimator. We have applied
our method to evaluate the probability distribution of the
smoothed periodogram of a time series at frequency 0, that
is,

N N
Q= Z Z Wi-inXj-
i=1j=1
We study Q for a real time series with covariance given by
E{XX}=p"", 0<p<l
We consider two different windows:
a) Hanning window
w,_;= N~tcos?((i — j)m/2M,);
b) sinc? window

W= N~Ysinc? ((i — j)m/M,).

li— Jjl <M,
li—Jjl= M,

A.0

08

i
AN

N/

-]

040 1.0 2.0 3.0

Fig. 12. Probability density function for smoothed periodogram using
Hanning window {p = 0, 0.1, 0.25).

]

A

0.0 1.0
Fig. 13.

2.0 3.0 490

Cumulative distribution for smoothed periodogram using
Hanning window (p = 0, 0.1, 0.25).
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TIA
ZEN
N

0.0

\s

2.0 3.0

0.0 1.0 450

Fig. 14. Probability density function for smoothed periodogram using

sinc? window (p = 0, 0.1, 0.25).

0.95

/
J

0.0 1.0

2.0 3.0 4s0

Fig. 15. Cumulative distribution for smoothed periodogram using sinc?
window (p =0, 0.1, 0.25).

We give numerical results for N =20, M, =5, M, =8, and
three values of p=0, 0.1, 0.25. For the Hanning window
these results are given in Figs. 12 and 13 and for the sinc?
window in Figs. 14 and 15. The last case is also studied in
[12]. Our results are close to the fairly accurate curves
given in [12].

The cases presented here illustrate that our method is
efficient and gives correct results. The criterion of mini-
mum quadratic error over the entire domain of the pdf
requires many coefficients to obtain a good approximation
at all points. One could use a different number of coef-
ficients at each point, since the series converges at all
points. We have not tried to apply this idea, but we have
remarked that the convergence is slower for small values of
the pdf because the weight function in the quadratic error
of approximation is more important for these values. Thus,
we have used a minimax-like criterion for the number of
coefficients in the most unfavorable case. We have used a
maximum of 20 coefficients to obtain a good approxima-
tion of probabilities. '

V. SUMMARY

In this paper, we use only traces of the operators that
define the quadratic form, not eigenvalues. This yields two
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advantages: 1) the properties of the form are better used,
because the traces use all eigenvalues in a more concise
way, and 2) in certain specific cases it is more difficult to
compute the eigenvalues than to compute the traces
numerically. Our study is complete for the case of
positive-definite quadratic forms in (Gaussian variables.
That is, we give algorithms for evaluating the coefficients,
conditions for convergence of the series, and a bound for
the error of approximation by truncation. The applications
given here are chosen to illustrate the method and to
compare with results of other authors.

ACKNOWLEDGMENT

The author wishes to thank Professor C. R. Baker for
many helpful discussions, and Professor S. Cambanis for
suggesting Proposition 3. He is also grateful to a reviewer
for suggesting a simpler proof of Proposition 2.

APPENDIX A
BOUNDING A SERIES OF FUNCTIONS

Let us consider a series of functions { f,(x)}. We introduce the
generating function of the series

o0

G(1,x)= ¥ "f,(x).

n=0

(A1)

If the sum exists for [f] < T, we can write, using Cauchy’s integral
formula, for n=0,1,2,---,

f,(x) = (1/2m')fF G(t,x)/t"*V dt

= (1/27) ["G(Re", x) /R7e" df  (A2)
0]

where T is the circle |{] = R < T. We can bound this function by

|£,(x)|< inf sup |G(Re, x)].

A3
0<R<TR"g.p<on ( )

In what follows we apply this method for the series of func-
tions in expansion (36) and also in expansion (40). The functions
in the first case (36) are given by (38), and then the generating
function for |tj<1 is

Go(tix) = 3 1 (x)

n=0

= (x"/z/bc“)exp(—(x+ cz)/b)

L X (1) /(80) L (20l /)

=0

=[x/be’ (1~ t)] exp(—(x + ¢?) /b)
L (= blxe/1Be1 ) "Len (2605 /1)),

(A4)

We can evaluate this sum in a simpler way in the complex plane
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after Laplace transform

oo

go(1,8)=(1~1)" EO(—bt/[B(l—t)])"(1+sb)—(a+n+1)

n=

-exp( — sc?/(1+ sb))

—(-n exp( — scz/(ij-lsb))
(1+sb)

(1=bt/[B(1—1)+ bt +5bB(1—-1)]).

By inverse Laplace transform we obtain
Go(t,x) =(1=1) ' pup (x) = t[BA=0)]"" Py c(x)
sexp(—x(b71+:[BA-1)]7"), (A6)

where * means the convolution. For the first term and for all
n=0,1,2,---, we have

(zm)“[F [1-n)ye+] tar=1,

(A5)

0< R<1.

Then for the bound of functions {¢,(x)} we can write

I(ptr(x)lspa,h,('(x)+ inf O'O(X;R)/R", (A7)
0<R<1

where

o (x; R) =R[B(L=R)] 'pup.c(x)
vexp(~ x(b '~ R[BA+R)] 7))
=[BA-R)] "exp(~x(b7' = R[BA+R)] ")
— [b) (1= BR[b(1+ R)] 7))
{(B(1+R)/bR)"™

where O, , .(x) is the cumulative distribution (Marcum’s
function) for the probability density function p, , .(x).

We also apply this method for bounding functions {w,(x)} in
(41). In this case the Laplace transform of the generating func-
tion of {w,(x)} is

Qa,B(1+R)/R,cﬂ(1+R)/bR(x)’

gl(t’s) =go(1,5)/s.

Using the same method as above we obtain the bound of functions

{@,(0)}:

|, (D) < [(5=B)/B)"Qupo(x)+  inf_a(xi R)/R",
(A9)

(A8)

where o,(x; R) is determined as in the preceding derivation.

APPENDIX B
CERTAIN INTEGRALS OF LAGUERRE POLYNOMIALS

We want calculate the integral in (32). Using, for n>1,
tie” L (1) dt =d(1° e LT (1)) /n, (BL)

we obtain

I(n,a)=n""(x/B)" " exp(— x/B) £V (x/B)

—n U(n-1,a+1). (B2)
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We apply this relation » times and we have, for k=0,1,---,n~1, [6]
I(n—koa+k)=(n—k)"(x/B)""* " Texp(= x/B)
Lk (x/B) —(n— k) (1= B/b) [7)
~l(n—k—-1,a+k+1) (B3)
and thus 8l
n-—1
Y (=1)*(n-k)(1-B/b) I(n—k,a+k)
k=0 (9]
n—1
a+l k (10]
=(x/B) exp(—x/B) ¥ (-1 (n—k-1)!
k=0
kK gpla+k+1) (11]
(x/B(1=B/b)) LTV (x/B)
n—1 [12]
I N VA O S (R 70
k=0 (13]
I(n— k—1,a+k+1),
. (14]
from which (33) follows.
ApPPENDIX C (3]
BOUNDING THE PDF FOR DIM[Z(KT)] = 3
. [16]
One can write, from (8),
0 _ 17
f(x)= (1/277)/ ['n‘/l+2jw>\,] Yexp(— jwx) do.
— 0o
If A, >A,>A;> -, we have (18]
1 -
f(x) s—fw [T (1+408) " do [19)
20 -0 i=1,2,3
1 (e —~3/4
o 232 20
shf_w(1+4w ) do [20]
For all &> 0, we obtain
H(x) < [" (1402, ) w2 (1+402N ) dw] -
T 2m V- ’ h ’
<L e+ [T (en)" de —1(h+(2a>\3)’””‘) 2
- = T .
T f } 7 3 23]
This last function is minimized for A =1/(2A;). Finally f(x)can g
be bounded by f(x) < 3/(27A;). Similar arguments can be used
to demonstrate that f(x) is uniformly continuous. [25]
[26]
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