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Abstract

This paper describes a semi-automatic method for moving object segmentation and tracking. This method is suitable
when a few objects have to be tracked, while the camera moves and fixates on them. The user delineates approximately
the initial locations in a selected frame and specifies the depth ordering of the objects to be tracked. First, motion-based

segmentation is obtained through an initial application of a region growing algorithm. The partition map is sequentially
tracked from frame to frame using motion compensation and location prediction. The segmentation map is obtained by
the region growing algorithm. Translational motion is assumed for the moving objects, and local intensity or color

average may be used as additional features. A post-processing procedure regularizes the object boundaries over time.
r 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Motion segmentation is a key step in image
sequence analysis and its results are extensively
used for determining motion features of scene
objects, as well as for coding purposes to reduce
storage requirements [13]. The development and
wide-spread use of the international coding
standard MPEG-4 [12,5], which relies on the
concept of image/video objects as transmission
elements, has raised the importance of these
methods. The semi-automatic segmentation tech-
nique presented here is suitable for video object
extraction for post-production purposes and ob-
ject-scalable coding such as that introduced in the

MPEG-4 standard. It could be also useful in video
content description for video indexing and retrie-
val, and in user-assisted surveillance applications.

Various approaches have been proposed for
motion or spatio-temporal segmentation. A recent
survey of these techniques can be found in [7]. In
these approaches a 2-D motion or optical flow
field is taken as input and a segmentation map is
produced, where each region undergoes a move-
ment described by a small number of parameters.
There are top–down techniques which rely on the
outlier rejection starting from the dominant
motion, usually that of the background. Other
techniques are bottom–up starting from an initial
segmentation and merging regions until the final
partition emerges. Direct methods are reported
too. All these techniques could be considered
automatic, since only some tuning parameters are
fixed by the user.
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In the pioneering work of Adiv [2] a planar
surface is assumed, and affine or 8-parameter
models are used for describing and segmenting the
optical flow field. Wang and Adelson [14] obtained
a segmentation of the optical flow field by fitting
an affine parametric model on the basis of robust
estimation and k-means clustering. Kruse [6]
proposed a motion segmentation method combin-
ing three techniques: (a) randomized Hough
transform for an initial segmentation, (b) merging
of regions with similar motion, and (c) refinement
based on a Markov random field model. Odobez
and Bouthemy [10] proposed a direct segmentation
algorithm consisting of four steps: (a) prediction of
the partition map from the segmentation map of
the previous frame using motion compensation,
(b) robust estimation of a parametric motion
model for the different regions, (c) updating the
predicted partition map using a Markov random
field model for the labels, and (d) detection of new
regions to handle the appearance of new objects.
Moscheni and Bhattacharjee [8,9] proposed a
bottom–up approach starting from an initial set
of regions and then merging them using a
similarity criterion based on both brightness and
motion information. A graph-based hierarchical
clustering algorithm is used to merge regions.
Cheong and Aizawa [4] proposed an algorithm
consisting of two main steps: in the first step a pre-
segmentation of the optical flow field is carried out
based on a probabilistic clustering method; then a
parametric motion model is estimated and regions
with similar motion parameters are merged to
obtain the final partition map. Altunbasak et al. [3]
proposed an iterative technique with three steps:
(a) pixel labeling and parametric motion estima-
tion using the 2-D motion field, (b) pixel labeling
and motion parameter updating minimizing the
sum of squares of the displaced frame difference,
and (c) region clustering by color region-based
intensity matching. Another method is proposed
by Salembier et al. [11] for video coding applica-
tions, which have specific requirements and sub-
sequent implications for the motion segmentation.

The algorithm proposed in this paper exploits,
adapts and extends known techniques in a scheme
where the user is present in the processing loop.
The human operator provides high-level informa-

tion indicating the initial position of the objects.
Thus, the operator defines these objects and gives
their relative depth for handling occlusions. In the
user-guided and semi-automatic motion segmenta-
tion method described in this paper, only transla-
tional motion is handled; it could, however, be
extended to other motion parametric models, for
example the affine model, if they are globally
valid for the corresponding object. The motion
parameters of each object are estimated by a
region matching (RM) technique, which is an
extension of block matching to regions of any
shape and provides the required computational
robustness.

Our approach relies on a seeded region growing
(SRG) segmentation algorithm, initially proposed
in [1] and modified to suit our purposes. We use
this algorithm for the ‘‘initial segmentation’’,
involving two consecutive images of the sequence,
as well as for tracking the resulting regions over
the whole sequence. In the first case, we make no
assumption about the shape or the velocity vector
of objects. An initial segmentation map is provided
by the user-only in a selected frame, often the first
frame in the sequence. During tracking, the
determination of initial sets for each segmented
region is based on the extracted image objects of
the previous segmentation. Furthermore, a simple
user-given layered representation of objects is
introduced, in order to implement the automatic
extraction of the initial sets. Indeed, the depth
layer ordering is supplied by the user and not
deduced from information extracted by the seg-
mentation algorithm.

The remainder of this paper is organized as
follows. In Section 2, the motivation for the
proposed method is presented, the initial segmen-
tation is described, as well as the SRG algorithm,
as modified for the needs of motion-based
segmentation. Section 3 presents how the SRG
algorithm may be used for the temporal tracking
of the initial segmentation. Next, in Section 4, the
post-processing operations that are performed for
the enhancement of the segmentation result are
explained in detail. Finally, in Section 5, we
present the results of applying the proposed
segmentation algorithm to the MPEG-4 test
sequences Foreman and CoastGuard.
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2. User-guided region growing-based motion

segmentation

2.1. Overall structure of video segmentation
algorithms

A common requirement in image sequence
analysis is the extraction of a small number of
moving objects from the background. The key
feature for obtaining the segmented image can be
motion, but the segmentation of a dense 2-D
motion field often leads to over-segmentation.
A fully automatic motion segmentation method
could give results which cannot be directly
interpreted and exploited for editing and post-
production, or for image content description. The
presence of a human operator, called here the user,
can greatly facilitate the segmentation work, for
obtaining a semantically interpretable result.

The more demanding stages of the whole
process of object localization and tracking are
the localization in the first frame, the possible
topology changes due to motion and the tracking
of objects when they become occluded/unoc-
cluded. The proposed algorithm incorporates an
active user for segmenting the first frame, and for
subsequently dealing with occlusions during the
moving object tracking.

For each object, including the background, the
user draws a closed contour entirely contained
within the corresponding object. For each object
thus specified by the user, a 2-D motion vector is
estimated by region matching, considering essen-
tially rigid translational motions. Finally, a region
growing algorithm expands the initial objects to
their actual boundaries. The region growing is
based on a dissimilarity criterion which includes
two terms, the displaced frame difference and a
local difference from the labeled objects.

Having obtained the segmentation of the first
frame, the tracking of any moving object can
be done automatically. Only the layered repre-
sentation of the scene is needed. For this the
user must specify the depth ordering for all
the objects. In the simplest case of two objects
the foreground should be discriminated from the
background. This is needed for correctly handling
overlaps.

In the first step the motion vector of each object
is re-estimated, since its movement may not be
temporally constant: motion amplitude and/or
direction might change from frame to frame. As
some errors may occur in the moving object
localization stage, this motion estimation is
performed after shrinking the objects, in order to
ensure that object contours lie within the objects.
The contracted objects are projected onto the next
frame using motion compensation. Thus, they are
projected onto their predicted position. From that
predicted position the region growing algorithm is
applied.

As the motion estimation module is common to
both the first segmentation and tracking, we give a
concise description now, fixing the notation used
herein and the exact formulation of the technique
applied. We assume that each moving region
undergoes a simple translational planar motion,
represented by a 2-D velocity vector (u; v).
We need to estimate this vector using the
intensity functions of two consecutive frames Ik

and Ik�1; without making any assumptions about
the shape or size of the region. Since the region
matching technique used is a standard one, we give
here only the matching or ‘‘distance’’ criterion.
The estimation of the velocity vector ð #u; #vÞ is
based on the sum of absolute displaced frame
differences:

ð #u; #vÞ ¼

arg min
ðu; vÞAS

X

ðm; nÞAR

Ikðm; nÞ � Ik�1ðm � u; n � vÞj j;

ð1Þ

where S is a set of possible displacement vectors
defining the search area, and R the set of region
points considered for region matching and motion
estimation. The search area is defined with respect
to a predicted displacement vector, in which case
only the vector update is searched, limiting
significantly the computational cost, even if sub-
pixel accuracy is required.

2.2. Object initialization

The initial regions required by the region
growing algorithm must be provided, or at least
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approved, by the user. The region growing
algorithm requires the input of some initial
uncompleted sets of points. A tool has been built
for drawing a polygon as desired inside any object.
Then points which are included within these
boundaries define the initial sets of object points.
This concept is illustrated in Fig. 1, where the
input of initial sets for the frame 58 of the sequence
CoastGuard is shown. The user provides an
approximate pattern for each object in the image
that is to be extracted and tracked.

Once the initial sets have been specified, the
velocity vector of each set can be computed. Since
there is no previous information about the objects’
motion, the region matching in Eq. (1) is often
performed in a large search area and may be
computationally expensive. Fortunately, this seg-
mentation is rarely applied, normally once or twice
over the whole sequence. The next and final step,
described in the following subsection, involves the
application of the region growing algorithm to the
unlabeled points. The region growing method is
called seeded because all the initial regions are
supplied by the user.

2.3. Motion segmentation

2.3.1. Dissimilarity measure
As mentioned above, the choice of a particular

dissimilarity measure dð�; �Þ depends on the seg-
mentation feature used. In our implementation,
the main feature is the velocity vector of initial set
Ai; which also characterizes the final segmented
region Ri: Hence, the distance of pixel p ¼ ðx; yÞ
from set A; characterized by the displacement

vector ð #u; #vÞ; is defined as

d1I ðp; AÞ ¼ jIkðx; yÞ � Ik�1ðx � #u; y � #vÞj; ð2Þ

where Ik; Ik�1 are the corresponding intensity
functions for frames k and k � 1: In other words,
d1I ðp; AÞ measures how well the displacement of
pixel p is described by the velocity vector that
has been computed for set A: However, if the
information provided by the motion of sets is not
sufficient for an acceptable segmentation result, we
may use a criterion that takes into account the
difference between the intensity value of p and the
average intensity mW ðpÞ-A of points of region A in a
small window centered at p: Then, the dissimilarity
criterion becomes a weighted sum of the two
dissimilarity measures:

d2I ðp; AÞ ¼ ð1 � lAÞd1I ðp; AÞ

þ lAjIkðx; yÞ � mW ðpÞ-Aj: ð3Þ

The parameter lA expresses the relative signifi-
cance of the second term in the composite measure
d2I ð�; AÞ for the set A; and it should be related to
the variance of the two terms of the weighted sum.
The parameter lA could be set to the ratio of the
mean absolute deviation of the displaced frame
difference to the mean absolute local intensity
deviation.

Similarly, in cases where the intensity informa-
tion is not sufficient, we may use the information
provided by the color of images k � 1 and k;
denoted by ~Ik�1 and ~Ik,

d1Cðp; AÞ ¼ 8~Ikðx; yÞ � ~Ik�1ðx � #u; y � #vÞ8 ð4Þ

Fig. 1. User provided input of initial sets for CoastGuard’s frame 58.
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and

d 2Cðp; AÞ ¼ ð1 � lAÞd1Cðp; AÞ

þ lA8~Ikðx; yÞ �~mWðpÞ-A8: ð5Þ

The parameter lA has the same role as for the
criterion based on intensity alone. Window dimen-
sions depend on the objects’ intensity/color dis-
tribution near their border. Hence, window W
should be kept small enough to represent the local
intensity around the initially unlabeled pixels of
each object.

2.3.2. The seeded region growing algorithm
Motion segmentation is carried out by a seeded

region growing algorithm which was initially
proposed for static image segmentation using a
homogeneity measure on the intensity function [1].
It is a sequential labeling technique, in which each
step of the algorithm labels exactly one pixel, that
with the lowest dissimilarity. Letting n be the
number of objects (classes), an initial set of
connected components A0

1; A0
2; y;A0

n is required.
These are sets of image points, such as the
manually drawn segments of Section 2.2, referred
to as seeds. At each step m of the algorithm,
let Bm�1 be the set of all yet unlabeled points
which have at least one immediate neighbor
already labeled, i.e., belonging to one of the
partially completed connected components
fAm�1

1 ; Am�1
2 ; y;Am�1

n g: In this work 8-connec-
tion neighborhoods are considered. Then one pixel
of the border set Bm�1; that with the lowest
dissimilarity, is selected and labeled. Thus the
number of the connected components remains n;
preset by the initial seeds, and we have the
following sets of points fAm

1 ; Am
2 ; y;Am

n g: Finally,
when the border set becomes empty after a number
of steps equal to the number of initially unlabeled
pixels, a segmentation map ðR1; R2;y;RnÞ is
obtained with Am

i DRi (for all i; m) and Ri-Rj ¼
|ðiajÞ; where

Sn
i¼1 Ri ¼ O is the whole image.

When the seeded region growing algorithm is
applied to motion segmentation, first, the velocity
vector ð #ui; #viÞ of each set A0

i is estimated by the
region matching technique. This vector is the
primary segmentation feature and remains un-
changed for all the steps of the sequential

algorithm until all pixels are labeled. The process
continues, as described above, by successively
labeling all unlabeled pixels. For each pixel
pABm�1; let us denote by iðpÞAf1; 2; y; ng the
index of the set Am�1

i that p adjoins. If the
characterization of the sets is not updated during
the sequential labeling process, the dissimilarity
will be dðp; A0

iðpÞÞ according to Eq. (2) or (4).
Otherwise, the dissimilarity is measured from the
features describing the set Am�1

iðpÞ : If p adjoins two
or more of the sets Am�1

i ; we define iðpÞ to be the
index of the set that minimizes the criterion
dðp; Am�1

j Þ over all neighboring sets Am�1
j : In

addition, we can distinguish a set F of boundary
pixels and add p to F when p borders more than
one set. In our implementation boundary pixels p
are flagged as belonging to F and at the same time,
they are associated with the set that minimizes the
dissimilarity criterion over all sets on whose
boundary they lie. The set of boundary points F
is useful for boundary operations, as we shall see
in Section 4. Then we choose among the points in
Bm�1 one satisfying the relation

z ¼ arg min
pABm�1

fdðp; Am�1
iðpÞ Þg ð6Þ

and append z to Am�1
iðzÞ ; resulting in Am

iðzÞ: This com-
pletes one step of the algorithm and the process
terminates when all pixels have been labeled.

For the implementation of the SRG algorithm,
a list that keeps its members (pixels) ordered
according to the criterion value dð�; �Þ is used,
traditionally referred to as sequentially sorted list
(SSL). With this data structure available, the
complete SRG algorithm is as follows:

S1 Label the points of the initial sets.
S2 Estimate the motion vector ð #ui; #viÞ of each

initial region (for all i).
S3 Insert all neighbors of the initial sets into the

SSL (B0).
S4 While the SSL is not empty:

S4.1 Remove the first point y from the SSL
and label it.

S4.2 Test the neighbors of y and update the
SSL:
S4.2.1 Add neighbors of y which are

neither already labeled nor
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already in the SSL, according to
their value of dð�; �Þ:

S4.2.2 Test for neighbors which are
already in the SSL and now
border on an additional set be-
cause of y’s classification. These
are flagged as boundary points.
Furthermore, if their dð�; �Þ is
reduced, they are promoted ac-
cordingly in the SSL.

Note that motion parameters of each set are
computed only once at the beginning of SRG
(Step 2). In other words, we assume that the choice
of initial sets is such that it leads to a sufficiently
accurate estimation of the objects’ motion using
region matching on the initial regions. Conse-
quently, we consider that the insertion of points
into a set during SRG execution does not change
the estimation of its parameters. These assump-
tions allow us to use RM only once for each set.
Furthermore, there is no need to reorder the SSL
elements, if their dð�; �Þ value does not change
during SRG execution. Hence, the execution time
of SRG is greatly reduced. When SRG is
completed, every pixel p is assigned a label
iðpÞAf1; 2; y; ng; while boundary information is
maintained in set F : The output of the algorithm
also includes the velocity vector for each set.

3. Tracking

We now describe how the result of the initial
segmentation (set map i0) is tracked over a number
of consecutive frames. We assume the result has
been tracked up to frame k � 1 (set map ik�1) and
we now wish to obtain the set map ik correspond-
ing to frame k (partition of frame k). The initial
sets for the segmentation of frame k are provided
by the set map ik�1: The description of the tracking
algorithm follows, while the motivations and the
steps of the algorithm have already been presented
in Section 2.1.

However, for the purpose of tracking, a layered
representation of the sets, rather than the planar
one implied by SRG, is introduced in order to be
able to cope with real world sequences which

contain multiple motions, occlusions (caused, for
example, by the motion of one object in front of
another), or a moving background. Thus, we
assume that sets are ordered according to their
distance from the camera:

8i; jAf1; 2; y; ng;

Ri moves behind Rj if and only if ioj: ð7Þ

In this way, set R1 refers to the background, set R2

moves in front of set R1 and behind the other sets,
etc. We further assume that this set ordering is
supplied by the user.

Having this set ordering available, for each set
RAfR2;R3;y; Rng of set map ik�1; we perform
the following operations in order of proximity,
beginning with the most distant:
* The first step involves dilating the border

between R and its neighboring sets-objects,
denoted as qR: In this way, set R as well as
the sets that adjoin it are shrunk along qR;
providing the set of seeds A for R: Thus, this
operation provides the labeled points that are
needed by SRG. The degree of shrinkage is
specified by the user. Although this approach is
simple and rapid, it cannot retain important
‘‘thin’’ elongated parts of objects that may be
contained in the object’s morphology. For
images that include such objects we have
implemented a more complex dilation opera-
tion, which preserves connected components.

* The next step is to determine A’s new position
in image k: This localization requires the
estimation of the displacement ð #uk; #vkÞ describ-
ing the translation of A from image k � 1 to
image k: It is assumed that the velocity of every
object remains almost constant over time.
For this reason, we assume that set R moves
with the velocity ð #uk�1; #vk�1Þ; which was ex-
tracted for it by the segmentation k � 1 and we
further compute a vector ð #du; #dvÞ; which
represents the estimated difference between the
vector ð #uk�1; #vk�1Þ and the true displacement
ðuk; vkÞ for the segmentation k: Thus, RM (with
sub-pixel accuracy) can be limited to a small
search area around the vector ð #uk�1; #vk�1Þ
which in turn leads to low computational
cost.
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* Once the displacement ð #uk; #vkÞ of A has been
estimated, the ‘‘shrunken’’ version A of region
R is moved from image k � 1 to image k
according to this displacement.

The last step, before applying SRG, is the
estimation of the background’s velocity vector.

Finally, SRG is applied to points that remain
unlabeled after the above operations. In the case
of tracking, SRG’s similarity criterion has been
modified to take into account information about
occluded pixels provided by the set map ik�1 and
the velocity vectors of objects ð #uk; #vkÞ: Let us
suppose that the unlabeled pixel p ¼ ðx; yÞ must be
inserted into the SSL according to its distance
d1ðp;AiÞ from its neighboring set Ai with motion
vector ð #ui; #viÞ: Pixel p is considered to be
‘‘occluded’’, if

ik�1ðx � #ui; y � #viÞaikðx; yÞ: ð8Þ

In that case, p is inserted into the SSL using
the criterion d2I ð�; �Þ (d2Cð�; �Þ; if color infor-
mation is used) with lAi

¼ 1: Otherwise, the
criterion that has been specified at the beginning
by the user for set Ai is used. In other words, since
for occluded pixels there is no motion information
at all, the criterion used is based only on the local
intensity/color information of set Ai around
pixel p:

4. Post-processing

The operations described below are applied to
the segmentation result in order to regularize the
object boundaries over time. They could be used in
two ways:

C1. Independently, for the enhancement of the
final segmentation result for all frames, or

C2. as part of the processing loop, in which case it
is expected that they contribute to an
improvement of the segmentation result by
reducing boundary noise, as the result is
temporally propagated.

Boundary smoothing involves only the set F of
boundary pixels as defined in Section 2.3. First,
the boundary is extracted and traced in order to

obtain an ordered list of the boundary points.
Then, a low-pass filter is applied to both pixel
coordinates. Boundary points that become unla-
beled are assigned to the set onto which they
adjoin. The boundary smoothing may alter the
shape of some objects by over-smoothing the
angles that they possibly contain. The method
described below overcomes this difficulty.

Shape averaging improves the set map ik using
information provided by previous segmentation
maps. The number of such maps LS is specified
by the user and we denote the maps by
ik�LS

; ik�LSþ1
; y; ik�1: The improvement is ob-

tained by computing an ‘‘average’’ shape for each
image object, assuming that the shape of objects
does not change over time. The output of this
process is also a set map similar to that of SRG’s
output, denoted as Sk: Again, we consider the
layered representation of objects as described in
Section 3 and by Eq. (7), to cope with multiple
motions and occlusions.

The nearest object can only occlude the others
and will never itself be occluded. If a majority
rule is used for the ‘‘average shape’’ operation,
this object is definitely allocated to a point,
if in the majority of the set maps this point is
given the greatest label. We continue in the same
way with the next object, having acquired the
decision for the nearest object, and so on,
progressing from the nearest object to the back-
ground. We describe in some technical detail
these rules.

The procedure begins by setting SkðpÞ ¼ 1 for
each pixel p: Then, for each set Ri ði > 1Þ in order
of proximity, beginning with the least distant, we
perform the following operations:
* First, each set map ik�l ð1olpLSÞ is warped to

its respective position in the map ik: In this way,
for each set map ik�l ; we construct a new set
map Mk�l;Ri

; with the property that the set Ri

has been moved to the position that it is placed
by the map ik:

* Once the motion-compensated set maps Mk�l;Ri

have been extracted, for each pixel p; we
compute the number of maps nfRj :joigðpÞ; in
which the pixel p is included in a set which
moves behind the set Ri: Then, we compute the
number of maps nRi

ðpÞ in which Mk�l;Ri
ðpÞ ¼ i:
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* In the last step, the result of a simplified
temporal filter that is applied on each pixel p;
is allocated to the set map Sk:

SkðpÞ ¼ i; if nfRj :joigðpÞonRi
ðpÞ: ð9Þ

5. Experimental results

We now present the segmentation results
obtained for real image sequences. We first show
results on the MPEG-4 Foreman sequence. In this
sequence the camera tries to fixate on the
Foreman’s head while he moves, performing a
complex motion which, at the beginning, is nearly
translational, and later involves an additional
important rotational component. Hence, the back-
ground appears to move also.

The first user-guided segmentation is applied
to the first pair of frames. Fig. 2 shows the
partition result on the first frame (a). The
tracking algorithm is performed in those parts
of the sequence where the motion of objects is
described by the translational model, without
any user intervention. For the needs of SRG, we
use the similarity criterion d2Cð�; �Þ; which
involves colour information, because the intensity
of the frames is not sufficient to distinguish the
foreman from his background objects; lA has been
set to 0.3. In Fig. 2 two other frames of the
sequence are given. The whole sequence of
segmented images is accessible at http://

www.csd.uoc.gr/Btziritas/animations/man-

lays.gif.

On the other hand, when Foreman’s motion
is not translational, the motion feature will be
unreliable as a segmentation criterion. We there-
fore reduce the role of the motion feature, and use
the first segmentation algorithm between two
frames with the same similarity criterion, but with
a large value for lA; implying that the segmenta-
tion is based primarily on the spatial color
information. After each segmentation the bound-
ary smoothing operation is performed in order to
keep the boundary stable over time.

We also applied our method to the MPEG-4
CoastGuard sequence. In the first 120 frames of the
sequence, a ship and a boat move, one against the
other. Furthermore, the boat moves in front of
the ship, as shown in Fig. 1. The overall scheme
can be represented by three layers, one for the
background, one for the ship and one for the boat,
in that depth order. In the remaining frames, the
boat slides out of the image, the ship appears to
be stationary and the background undergoes a
translational motion due to the camera track.
Object motions remain translational over the
entire sequence. This allows the tracking of the
first segmentation result over a large number of
images and therefore decreases the number of
needed applications of the first segmentation. The
user-guided initialization was given, as shown in
Fig. 1, on frame 58, all three layers being present
in that scene.

The initial sets required for SRG’s execution are
obtained by the ‘‘conditional’’ dilation operation.
In this manner, the mast and the hull of the ship
retain their connectivity. The similarity criterion

Fig. 2. Results for the Foreman sequence.

I. Grinias, G. Tziritas / Signal Processing: Image Communication 16 (2001) 977–986984



we use for the segmentation is d1I ð�; �Þ for the
background set and the ship, which takes into
account only motion information. For the neigh-
boring pixels of the boat, we use the criterion
d2I ð�; �Þ with lA ¼ 0:3; since the boat’s intensity is
uniform. This selection of criteria improves the
segmentation result of frames in which the boat
moves in front of the ship.

The post-processing of this sequence does not
include the boundary smoothing method, for it
may alter the shape of the objects, while the
movement is approximately translational. Further-
more, when there is only background motion, this
operation does not give the required boundary
stability. Shape averaging, however, not only
regularizes the object boundaries, but also im-
proves the segmentation result of frames contain-
ing occlusions, providing a very good layered
representation. Fig. 3 shows the tracking results on
three frames of the sequence, where the shape
averaging filter was used with LS ¼ 12: The
whole sequence of segmented images is accessible
at http://www.csd.uoc.gr/Btziritas/anima-

tions/coast lays.gif.

6. Conclusions

We have described a segmentation method
based on object motion throughout a sequence.
Object motion was assumed to be translational in
the plane. The estimation of motion parameters
was obtained by a region matching technique.
Other features such as the intensity or the color
of image objects are used in order to obtain a
better segmentation result. The segmentation

algorithm is a seeded region growing algorithm,
which was originally introduced for the segmenta-
tion of static images and extended here for the
extraction and tracking of moving objects. For the
needs of tracking, we introduce a layered repre-
sentation of the image objects in order to be able
to deal with sequences including multiple motions,
moving background and occlusions. The order of
layers is supplied by the user. Two post-processing
procedures have been developed in order to
improve the segmentation result.

The user guides the whole process, providing the
initial object patterns, their layer ordering and
parameter values for the segmentation criteria.
Furthermore, the user decides how many times the
boundary smoothing operation will be applied and
how many previously derived segmentation
results should be used by the shape averaging
procedure.

The segmentation method can be extended to
deal with motions that are not described by the
simple translational model assumed herein. In
addition, we could let the user provide unique
parameters for each individual sequence object,
since, for example, the number of previous set
maps that are needed in order to obtain a
good ‘‘average’’ shape may be different for each
object.
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Fig. 3. Results for the CoastGuard sequence.
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