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This paper investigates the first and second-order statistical properties of two constrained LMS algorithms, the
usual Leakage Factor (LF) algorithm and a new one called the Stabilizing Factor (SF) algorithm. They have
proved to be especially useful in some specific situations where the LMS algorithm misbehaves.

It is shown that the weight estimates are biased. Then, we prove that convergence speed is increased by the LF
algorithm while it is unmodified by the SF one. Moreover, lower and upper bounds of the variance of estimates
are given. A substancial reduction of this variance may be reached compared with the LMS case. Finally, a
bias-variance trade-off is achieved which is especially interesting when the signal to noise ratio is low and/or an
a priori knowledge is available about the weigths to be identified.

1. INTRODUCTION

“The LMS algorithm is a well-known method to adapt
transversal filters [1]. It allows to estimate a discrete signal y(n) on
the basis of an N dimensional vector X(n) according to:

H(n + 1) = H(n) + p(y(n) - H@)™X(#)X(n), 0 > 0 1.1
where H(n) is the vector of weights of the transversal filter.

Nevertheless, this algorithm is known to lead to misbehaviours
in some specific situations. Such a problem is reported in [2],
concerning the digital implementation of a fractionally spaced
equalizer. The correlation matrix of the observation being ili-
conditioned, the estimation becomes strongly sensitive to round-
off errors. Another example is Adaptive Differential Pulse Code
Modulation (ADPCM), when a backward updating of the predictor
is used. It was evidenced, both for speech [3] and for images [4],
that the LMS algorithm may yield the instability of the decoder
prediction filter, in the presence of transmission errors.

A possible solution to these problems is to introduce a
regularization term into the criterion to be optimized. This leads to
a compromise between a minimum output error and a smoothing
constraint property specific to the problem. According to the form
of the constraint, different kinds of soft-constrained gradient
algorithms are obtained. In this paper, two of them are considered.

The updating equation of the first one is:

H@n+)=(1-poyH )+

Wy(n) -~ HL(n)TX(n))X(n) ,a>0. (1.2)
This form corresponds to the usual Leakage Factor algorithm and
will be denoted LF. A few results about this algorithm can be
found in 5] and [6].

The second algorithm will be called the LMS with a Stabilizing
Factor (SF) and is defined by:

HS(n +1)= Hs(n) +

HIy(n) — (1 + BH ) X)X (n) , B> 0. €1.3)
The demonstration was made that this algorithm improves the
robustness of ADPCM systems [7].

Subsequently, the properties of these algorithm are analyzed in
the stationary case and a parallel is drawn between them. The
eigenvalues of the correlation matrix R 4 E{X(n)X(n)"} are
denoted (A),<:<n, the minimum and maximum values
corresponding respectively to indexes m and M. It is further
assumed that R is non singular but A,, can be chosen as small as
desired.

2. RELATIONSHIPS OF THE SOFT-CONSTRAINED
ALGORITHMS WITH THE LMS ALGORITHM

The LMS algorithm is the stochastic gradient technique to
minimize the mean square error involved in linear estimation:

J(H) = E((y(n) - H'X(n))?) . @1
The soft-constrained algorithms can be obtained in the same
way from modified criteria. For the LF algorithm, the criterion of
minimization is generalized as follows:
Jy(H) =J(H) + cH'H (2.2)

and, for the SF algorithm, it becomes



194

J(H) = J(H) + BHE(X(n) X(m)"}1H . (2.3)
The additional term in (2.2) (resp. (2.3)) is a regularizing
constraint. This means that it becomes of primary importance in
the criterion when IHIl (resp. HTX(n)) takes too large values and
therefore it will favour "reasonable" estimations.

Moreover, it is useful to note that the SF algorithm is directly
related to the LMS algorithm. Indeed, if modified vector of
observations and adaptation step-size are defined according to

X'(n)=(1 + B)X(n) (2.4a)
i
‘= 2.4b
1) T+ p (2.4b)

the SF algorithm reduces to the LMS algorithm.
3. FIRST-ORDER STATISTICAL ANALYSIS
3.1. Assumption

Subsequently, it is considered that
(H1) H(n) and X(n) are independent..
From a physical point of view, this hypothesis is not necessarily
. valid in all applications. Nevertheless, sophisticated mathematical
studies such as ODE methods or statistical analysis [8] have shown
that it is a good approximation, especially if p is small.

3.2. LF algorithm

Taking the expectation of each side of (1.2) and using (H1)
leads to:

E{H (n+ 1)} = [I - u(od + R)] E{H, ()} + pRA 3.2.1)

where H is the best mean square linear estimate of the weights.
Then, if

2
n< (3.2.2)
o+ Ay
E{H, (n)} converges exponentially toward
H =RI+R) . (3.2.3)

Therefore, the price to be paid for the introduction of the leakage
factor is a bias on the estimates of weights.

Equation (3.2.1) shows also that the convergence factor associated
to the i* eigenvector of the correlation matrix is

W@ =1-o+A). (3.2.4)

Thus, .when R is ill-conditioned and the m™ eigenvector
corresponds to a near singular direction (A,, = 0), a minimum
convergence factor 1 — po is secured. On the contrary, the LMS
algorithm does not allow to forget the initial values in the singular
directions.

3.3. SF algorithm

Owing to the modifications (2.4), it is easily shown that if

2
n< WM_ (3.3.1)
E{H(n)} converges toward the biased estimate
H=01+p)™ . (3.32)
The convergence factors of the algorithm are
T =1-pu1+PHa . (3.3.3)

As the influence of 3 upon ; is multiplicative, 15(f) remains close to
1 when A, is negligible and the behaviour of the algorithm is
comparable to the LMS behaviour.

4. SECOND-ORDER
THE LF ALGORITHM

STATISTICAL ANALYSIS OF

4.1. Framework

Let us define the deviation vector Vi (n) 4 H, (n) - ﬁL. It comes
from (1.2) that

Vi(n+ 1) = [I- ol + X(n)X(n)T)]VL(n) +
WXP)X ()~ WC(r)
Cn) = XWX (m)" ~ R)(H, - )

(4.1.1a)
(4.1.1b)

where b(n) & yn)— H™X(n).

This Section is devoted to the study of R, (n) 4 E{VL(n)VL(n)T}. To

this purpose, the following assumptions are made:

(H2) X(n) is a zero-mean Gaussian vector ;

(H3) b(n) is zero-mean with variance 6,2, i.i.d. and independent of
X(n).

Hypothesis (H2) is convenient to take into account the fourth-

order statistics of the observation. In the same time, (H3) helps
simplifying the analysis without being very restrictive in practice.

4.2. Transient behaviour

The transient part Vi(n) of V;(n) may be defined by



V2(0) = V(0
Vo(n+ 1) = (I - p(od + X(mXn)HIV ()

4.2.1a)
(4.2.1b)

Combining (H1), (H2) and (4.2.1) allows to find the recurrence
satisfied by R9(n) A E(VmVImT). It is then straightforward to
show that

0Ly tr R9(n) < tr RY(n + 1) < B (M) tr RY(n) 4.2.2)

with 8,()) & AR + 4 + [1 - o+ AT
The sequences bounding tr R9(n) are exponentially vanishing if

2(0 + Ay)
p<
bt R+ Ap)+ (@ + Agg)?

4.2.3)

This condition is more restrictive than (3.2.2) and is close to the
convergence condition as it is seen from reference [9] in the case
of the LMS algorithm (o = 0). It must be emphasized that the
leakage factor narrows the interval into which t can be chosen.

Moreover, when = [ALr R + A+ (@ + AT (@ + A, 8.(D)
reaches a minimum value which is a decreasing function of a.
Therefore, the leakage factor allows to improve the convergence
speed of the algorithm,

4.3. Steady state performances

Finding the asymptotic covariance matrix Ry of Vy(n), when n
endsio +oo, is a more difficult problem. By using (H1) and (H2),
(4.1.1) leads to

I +R)R+ R (cd+R) - wtrRRR +
RR (o +R) + (oI + IR R + o2 Ry ]
=p (0 R +Re). “4.3.1)
with R¢ & E{C(m)C(n)"}. In the Karhunen-Logve basis where R
is transformed in a diagonal matrix, the above linear equation takes
a simpler form and the exact expression of tr R may be evaluated.
Unfortunately, this expression is not easily tractable and it is useful

to find lower and upper bounds. After some calculations, it may be
proved that

vi(m) < tr Ry < v(M) (4.3.22)
’where
w(® & vim) + vEem) (4.3.2b)
2
vim 8 KNAG, (4.3.2¢)

200+ A) — pAAr R+ A) + (o0 + A%
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viod
poX(N + DAAHAIP
(0 + A0 + M) (200 +A) — RIALr R +4) + (0 + )71}
(4.3.2d)

Two points are worth being noted about these inequalities:
(i) if o = 0, the inequalities reduce to results consistent with those
already known for the LMS algorithm [9] ;
(i) if R = o1, the inequalities obviously become equalities.

5. SECOND-ORDER
THE SF ALGORITHM

STATISTICAL ANALYSIS OF

5.1. Framework

The deviation vector to be considered is now Vg(n) a Hy(n) -
H. According to Section 2, the study of Rs(n) BE(VmVs)T)

under assumptions (H2) and (H3) may be derived from the results
available for the LMS algorithm.

5.2. Transient behaviour

Owing to (4.2.3) and (2.4) the covariance matrix :R.g(n) of the
transient part V(r) of V() satisfy

B5(m) tr RY(n) < tRY(n + 1) < B5(M) tr RY) 5.2.1)
where 05() 2 12(1 + BPAER +A) + [1 - p(l + PAJ>
The condition of convergence is given by
n 2 (5.2.2)

< (1 + BY(rR + 20y

and, when p = [(1 + B)(tr R + 2Ay)]™", B5(?) reaches a minimum
which is independent of . This means that the SF algorithm is of
no use to increase the convergence speed.

5.3 Steady state performances

According to (4.3.2) and (2.4), the asymptotic covariance matrix
R of Vg(n) is such that

Vs(m)strR'sSVS(M) (5.3.13)

where
A UNG,?
Vs(l)— .
(1 + B2 - p(1 + BXtrR + 21)]

(5.3.1b)

6. BIAS-VARIANCE TRADE-OFF
6.1. SF algorithm

This case is first studied as it is easier. The overall mean square
error of the algorithm is then asymptotically I~ HI? + r Ry
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According to (3.3.2), the bias term is given by

WFL — FIP 2 b = (B(1L + By PIEIP . (6.1.1)
Hence, it increases with f. In the same time, the expression
(5.3.1b) shows that vs(i) decays for lower values of B, the
minimum corresponding to a division of the variance of the LMS
algorithm by a factor close to [2u(tr R + 2A)]™

Furthermore, it is straightforward to prove that bg(B) + vs(i) is
minimum for a value () of the stabilizing factor which achieves
the bias-variance trade-off. For instance, if the adaptation step-size
is chosen in order to maximize the convergence speed (see Section
5.2), then B@) = [(rR + 22)1! HIPNo,” and the mean square error
is decreased by a factor 1 + B(#) compared with the LMS algorithm.
The improvement appears important mainly when the signal to
noise ratio is low.

6.2. LF algorithm

The overall mean square error is now I flL ~HIP+tr R,y
According to (3.2.3), we have

bu(M) < I, - HIPS by (m) 6.2.1)

where by (i) = [a(A; + o) 'JPIF N2 This last quantity is also an
increasing function of o

Since v (i) has a complicated form, futher informations can be
hardly found from an analytical study. Nevertheless computer
simulations of this function shows that behaviours similar to the
SF ones are obtained. In particular, an interesting bias-variance
trade-off is reached, when the signal to noise ratio is low.

7. USE OF AN A PRIORI KNOWLEDGE

Sometimes, an a priori knowledge H, is available conceming
the weights which must be identified. This knowledge may be
introduced in the algorithm to assess better performances. If
criteria (2.2) and (2.3) are modified in the following way

JL'(H) =JH) + (H - HO)T(H -Hy) (7.1a)
JJ(H) = J(H) + BH — Hy)"E{(X(n)X(n)"}(H - Ho) (7.1b)
the algorithms become
HL'(n +1D=(1-pow HL'(n) +
HO(n) — H ()X (m)X(n) + pod, (7.22)
HS'(n + 1= Hs‘(n) +
HIY(m) — (1 + BYH (1) X(m) + B H'X(mIX(n) . (7.2b)

Then, the limits of the average estimated weights are

H,'=R(cd +R)'H + ofod + R)'H,
H=Q1+p)"H+pa+p)'H, .

(7.3a)
(7.3b)

Therefore, o and B may be interpreted as weighting factors
between the a priori knowledge and the best mean square estimate.
It is casily checked that the results of the previous Section are still

valid if WHI? is replaced by W — Holl>. Hence a good choice of H,
P

such that I — Hyll < IF 1, is beneficial to the bias-variance trade-
off.

8. CONCLUSIONS

In this paper, we have studied the LF and SF algorithms which
are two constrained LMS algorithms. We have shown that the LF
algorithm allows to improve the transient behaviour while the SF
algorithm has no effect on it. We have evidenced that these
methods lead to biased estimates of the weights but that, in the
same time, the variance of the estimation may be decreased. Then,
it is possible to achieve a bias-variance trade-off which is
especially interesting when the signal to noise ratio is low and/or
an a priori knowledge is available about the weights.

Note that the above investigations do not take into account the
better stability properties of the SF algorithm [7].
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