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Abstract – In this paper, an adaptable neural network 
model is used for real time video delivery over 
communication networks of low and variable bandwidth, 
such as the wireless ones. The scheme performs video 
delivery in content domain in contrast to the previous 
approaches in which only temporal frame skipping is 
adopted. The proposed method requires no buffering of 
video frames and thus imposing no frame delay. In 
particular, in case of low bandwidth conditions, the 
proposed scheme estimates the number of frames that best 
represent the sequence within a time segment and transmit 
this number for delivery instead of a temporal frame 
skipping. Multiple key frames are considered by optimally 
approximating the real bandwidth availability with a 
rational fraction. Key frame estimation is accomplished 
using a neural network model  capable of predicting the 
indices of the most appropriate key frames that are to be 
delivered without being available the video information. 
The model takes into account the previous information as it 
has been evaluated by the already delivered information. 
The proposed scheme is based on an efficient recursive 
estimation algorithm since the network weights cannot be 
considered constant throughout video transmission. This is 
due to the fact that content as well as bandwidth 
characteristics vary from time to time.  

I INTRODUCTION 
Efficient video delivery and transmission over low and 

time variable networks, (e.g., the wireless networks), 
require to tailor video information with a minimal reduction 
of its quality. Conventional time sampling algorithms 
discard audiovisual information, with respect to bandwidth 
constraints, without taking into account content 
characteristics. As a result, useful information maybe 
discarded since humans perceive video quality as a function 
of video content fluctuation rather than video temporal 
variation.   

Adaptation algorithms for video delivery have attracted 
many researchers in the past. Examples include the Fine 
Granularity Scalability (FGS) [2] scheme of the MPEG-4 
standard [1]. The FGS scheme decomposes video into a 
base layer (BL) and one or several enhancement layers 
(EL’s). In the base layer, the basic video quality is delivered 
whereas video quality is improved by the information 
carried on the enhancement layers.  

Other works for video adaptation include spatial and 
temporal scalable algorithms, such as the ones presented in 
[3]-[6]. In particular, [3] proposes the so called FC-DCT 
method while [4] the FM-DCT one. Both techniques are 
applied on the MPEG compressed domain. In [5] the 
temporal scalability is achieved through an efficient 
management of B frames, while in [6] a new frame is 
introduced in levels based on the FSG approach and the 
temporal variation of the bandwidth.  

The above mentioned methods tailor video quality either 
by reducing the spatial or the temporal information that 
cannot be delivered. However, in the recent algorithms of 
video abstraction and summarization, video information are 
organized audiovisual data with respect to the content 
characteristics. Algorithms for shot detection can be 
considered as the first attempts towards a content-based 
video adaptation [7], [8]. Other more complicated 
approaches are based on the extraction of multiple key-
frames from a shot, able to effectively describe the shot 
content [9]. In [10], video is decomposed into a sequence of 
“sub-shots” and a motion intensity index is computed for 
each of them. Then, all indices are quantized into 
predefined bins, with each bin assigned a different sampling 
rate and key-frames are sampled from each sub-shot based 
on the assigned rate.  

The main drawback, however, of all the above 
mentioned methods, is that content organization is 
performed in a static way preventing content adaptation in 
terms of bandwidth variations. This means that the amount 



of the delivered audiovisual content is not restricted by the 
network channel characteristics, and the terminal devices 
requirements. Bandwidth adaptability has been reported in 
many works such as the [11], [12] and [13]. In particular, in 
[11] when the bandwidth is lower than the required one, the 
first video frame is delivered, while the remaining are 
skipped until bandwidth requirements are satisfied. Such an 
approach, however, performs only linear adaptation, since 
content information is not taken into account. Another 
policy, considering the variation of motion activity between 
the sequence where a frame is transcoded and the sequence 
where that frame is skipped, has been proposed in [12]. A 
dynamic method for frame skipping has been proposed in 
[13]. However, despite its dynamic nature, the 
aforementioned methods do not exploit content information.  

A content-based video adaptation scheme has been 
proposed in one of our earlier works [14] which adaptively 
discards the audiovisual content that cannot be afforded by 
the network, (e.g., due to the bandwidth variations), at a 
minimum content cost. In particular, the algorithm optimally 
estimates the amount of information that best represents the 
content of a given time segment by extracting a single key 
frame which is then delivered. The algorithm assumes that 
the frames which are to be delivered are available so that at 
any time the best representative frame can be calculated. 
This implies either a buffering delay or that the total video 
information is accessible since it is stored in a file. Thus, 
the above mentioned scheme cannot be applied to a real 
time video capturing procedure.  In addition, only a single 
key frame is extracted quantizing bandwidth variation into 
rational fractions of 1/N.  

In this paper, we extend the work of [14] by eliminating 
the above mentioned constraints. In particular, we consider 
a) a real time capturing process so that frames that are to be 
delivered cannot be transmitted before their capturing, b) 
multiple key frames can be delivered within a time interval 
by approximating the real bandwidth availability with any 
rational fraction that is closer to it.  

In particular, key-frame prediction is performed by the 
use of an adaptable neural-network model. The model takes 
into account content fluctuation in previous times and the 
current content conditions and recursively estimates the 
new network weights used in the prediction process. This is 
due to the fact that content as well as bandwidth 
characteristics vary from time to time.  

The proposed network weight updating is performed in 
an optimal way so that a) the network response is 
approximately equal to current conditions (after the 
adaptation, the network should correctly predict the actual 
key frames as they are estimated right after the capturing of 
the respective time segment) and b) a minimal degradation 
over the previous network knowledge is accomplished. The 
proposed adaptive neural network architecture actually 
simulates a recursive implementation of a non-linear 
autoregressive model (RNAR), which is suitable for 
complex and non-stationary processes, such as the key 
frame indices. In contrast to conventional neural network 
training algorithms, where generally require long training 

periods, the computational complexity of the proposed 
scheme is very small and can be applied to real time 
applications.  

This paper is organized as follows. Section II formulates 
the key frame prediction problem. Section III presents the 
adaptable model used for key frame prediction, while 
section IV the optimal weight updating algorithm. In 
section V, the algorithm adopted for the actual key frame 
selection is described while in section VI we illustrate the 
proposed real time video content adaptation. Experimental 
results and comparisons with other approaches are shown in 
section VII. Finally, section VIII concludes the paper.     

II KEY FRAME PREDICTION 
Let us assume that at a time t=n, the encoder should 

deliver a number of video frames lower than the captured 
ones since the current network bandwidth, say B(n), is 
lower than the minimum required for video transmission Bo. 
The ratio L(n)= B(n)/B0 expresses the proportion of the 
bandwidth reduction compared to the minimum required. 
Thus, L(n) expresses the number of frames that should be 
skipped. Since L(n) is a real number but the number of 
frames that should be skipped is integer, we bound L(n) by 
a rational fraction, the numerator of which expresses the 
number of frames that should be delivered, while the 
denominator the frame (time) segment within which the 
frame delivery should be completed. Let us denote this 
rational fraction as oo MN / , where oo MN <  since only 
lower bandwidth characteristics are of interest. In order to 
avoid long time segment which significantly increases the 
computational complexity of the proposed scheme, we 
constraint the denominator to be smaller than maxM  i.e., 

maxMM o < .   
Thus, oN  is the number of frames that can be delivered 

within a time segment of  oM  frames bounded by the 

maxM .  In the framework of this paper, the oN  frames that 
should be delivered are selected with respect to the content 
domain. In particular, the most representative frames within 
the time segment oM  are selected and these frames are 
transmitted through the low and variable bandwidth 
network. Thus, in the proposed scheme video delivery is 
performed using a content-based sampling by discarding 
frames the content of which can be represented by other 
frames. 

Since, however, we are referring to a real time capturing 
system, the key frames cannot be selected unless capturing 
of the respective time segment is performed. For this 
reason, a prediction model is adopted in this paper, able to 
provide a reliable estimate of the key frame indices. In 
particular, a neural network model is used as key frame 
predictor approximating a Non-linear AutoRegressive 
model (NAR). The network receives input information 
derived from the previous time segment as well as the 
evaluation of the current key frame prediction.     

It should be mentioned that in such dynamically changed 
environments, the neural network parameters cannot be 



considered constant throughout video transmission. This is 
due to the fact that the content characteristics may vary 
from time to time and thus the corresponding network 
weights. For this reason, following network prediction, an 
evaluation model is activated exploiting the actual results so 
that in next prediction steps better exploitation of the 
current content fluctuation is accomplished.   

Let us denote as T
M nynyn )]()([)(

max1 L=y  the neural 

network output that predicts the indices of key frames at 
time t=n within a time segment of oM  frames. Since Mmax 
is the maximum possible time segment, the neural network 
outputs are bounded by Mmax.  

Let us assume, without loss of generality, that 
1)(0 ≤≤ nyi .  Values of )(nyi  close to one indicate that the 

respective frame presents high probability of being selected 
as representative. On the contrary, values close to zero 
corresponds to frames whose the probability of being 
selected as key frames are low.   

By examining the number L(n) the model can estimate 
the closest rational fraction oo MN /  that approximates the 
real number L(n) as much as possible under the constraint 
that maxMM o < . This can be mathematically expressed as  
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}&{ max M
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 (1) 

 
Having estimated the numbers oo MN , , we can calculate 

the number of key frames that should be delivered. Thus, 
among all values of )(nyi , the oN elements with the highest 
values are selected as key frames since these indices 
represent the highest probability of being these frames the 
content representatives.  

The neural-network model predicts the key frame indices 
based on the knowledge already obtained in the network by 
considering the fluctuations of the previously delivered 
content. In particular, let us denote as if  the feature vector 
of the ith frame of the sequence. Vectors if  are calculated 
in our case as in [14] so that the processing is applied 
directly on the MPEG compressed domain. More 
specifically, the color histogram in the Y Cr Cb color space 
and the histogram of the MPEG motion vectors are used as 
appropriate features. These descriptors can be directly 
calculated from the MPEG compressed stream without 
requiring video decoding, a process that is tedious and time 
consuming. In particular, to estimate the color histograms in 
P and B frames with a minimal decoding, the method of [8] 
is used. More specifically, the method of [8] exploits the 
motion information of P and B and the known DCT 
coefficient of the reference I frame to calculate the color 
characteristics of the P and B frames. 

In addition, motion vectors are only available in P and B 
frames and not in I frames. For the I frames, the same 
vectors as the ones estimated in the exactly previous P or B 
frame are taken into account. This assumption is based on 

the fact that, almost the same motion activity will be 
encountered within successive frame unless of a shot 
change.  

 As a result, real time estimation of the feature elements 
can be obtained. Figure 1 illustrates a graphical description 
of the proposed content-based sampling scheme. In 
particular, at time t=n, the current bandwidth availability is 
calculated and the numbers oo MN ,  are estimated as in (1). 
Then, the neural network model is used to estimate the key 
frame indices as will be described in the following and 
before capturing the referring frames. After the frames’ 
capturing, evaluation of the prediction results is 
accomplished and new network weights are estimated to 
improve prediction accuracy for the following frames.  

 
n n+1 n+2 n+3      

Neural Network Prediction Model

No=2, Mo=4

n n+1 n+2 n+3   n+4

No=3, Mo=5

Key frame prediction

Neural Network Adaptation

Actual Key 
frames 

Figur
e 1. A graphical description of the proposed scheme. 

III NON-LINEAR AUTOREGRESSIVE  
MODEL FOR OPTIMAL KEY FRAME 

PREDICTION  
Let us assume in the following that the key frames 

selection depends on the previous content characteristics 
within a time interval p. That is,   

  
 )())(),...,2(),1(()( nepnnngn +−−−= zzzy   (2) 
 
where )(⋅g  is a non-linear function, and )(ne  an 
independent and identically distributed (i.i.d) error. The 
variable p denotes the order of the model, i.e., the size of 
the previous time window that should be used so as to 
provide a reliable key frame prediction. Vectors z(i) 



expresses the magnitude of the respective feature vector 
if i.e., ii fz =)( .  

The main difficulty in implementing the non-linear 
model of (1) is that function )(⋅g  is actually unknown. 
However, in [15], it has been shown that a feedforward 
neural network, is able to implement such a model, within 
any acceptable accuracy. 

Let us denote as T
piii ww ][ 1,1, += Lw , li L,2,1=  the 

1)1( ×+p  vectors containing all weights kiw , , pk ,,1L=  
which connect the ith hidden neuron to the kth input 
element and 1, +piw  the biases of the ith neuron. In this 
notation, we assume a network of l hidden neurons. Let us 
also define as Ti

l
iii vvv ][ )()(

2
)(

1
)( L=v , with i=1,2,…,Mmax, an 

1×l  vector, which contains the network weights, say )(i
jv , 

connecting the jth hidden neuron to the ith output neuron 
and as )(iθ  the respective bias. Then, vector 

T)(M)(T
l

TT ][ max1
21 θvvwwww LL=  represents all network 

weights and biases among all the Mmax outputs. In this case, 
the network output ith network output, i.e., the ith key 
frame index, say )(iy  is predicted as 
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where W is a lp ×+ )1(  matrix, the columns of which 
correspond to the weight vector iw , that is 

][ 21 lwwwW L=  and )(⋅h  a vector-valued function, the 
elements of which correspond to the activation functions, 
say )(⋅h , of hidden neurons. In our case, the sigmoid 
function is used as )(⋅h . Vector g denotes the neural 
network input and in our case it is given as the magnitude 
of the feature vectors of the p previous frames, i.e., 
     
 [ ]Tpnnn 1)()2()1( −−−= zzzg L   (5) 
 

The g is a 1)1( ×+p  input vector containing the p-
previous samples )()2()1( pnnn −−− zzz L  plus a unity to 
accommodate the bias effect and the number of activated 
neurons.  

IV OPTIMAL WEIGHT ADAPTATION   
In the previous implementation, the model parameters, 

i.e., the network weights, are considered constant 
throughout video transmission. However, in dynamic 
environments, where the system characteristics change 
through time, this assumption deteriorates the prediction 
accuracy, since the model response cannot be adapted to 

current conditions [16]. After capturing, the neural network 
output can be evaluated and thus the prediction results. In 
this case, the network weights can be updated so that the 
prediction is adjusted to the current content fluctuations.  

Let us denote as cS a set, which contains the actual 
indices of the key frames in the oM  time segment after the 
capturing of all oM frames, the extraction of the feature 
vectors if  and thus the ii fz =)(  and the application of the 
key frame selection algorithm which is described in the 
following section. Key frame selection are defined similarly 
to the prediction index y(n). That is,   

 
 }),),((,{ LL i

c diS z=  (6) 
 
where )(iz  is the magnitude of the feature vector of the ith 
frame of the oM  time segment refers to the query feature 
vector, and id  the respective probability of this frame of 
being key frame or not. High values of id  indicates that the 
probability of the ith frame to be a key frame is high. On 
the contrary, as the value of id  decreases, the probability of 
selecting the ith frame as key frame is also decreases.   

Let us denote by )(nw  the network weights before the 
adaptation at time t=n. Similarly, let )1( +nw  denote the 
network weights after the adaptation. This means that the 
following key frames sample will be estimated using the 
new weights )1( +nw , while the previous ones have been 
predicted based on the previous weights )(nw . At time t=n, 
the bandwidth is measured and the number of key frames 
required to be transmitted is estimated based on the rational 
approximation of the real number L(n). Then, the new 
weights )1( +nw  are estimated by minimizing the following 
equation   
 
 i

n
i dy ≈+ )1(w ,  for all cSi∈   (7) 

 
Equation (7) expresses the fact that after capturing, we 

wish the new network weights to perfectly predict the actual 
key frames as they have been estimated by the algorithm 
described in section V. We have added the superscript 

)1( +nw  in the network output yi to indicate its dependence 
on the new network weights )1( +nw . 

Usually, the number of samples of set cS  is much 
smaller than the number of coefficients )1( +nw  that should 
be estimated. Therefore, equation (7) is not sufficient to 
uniquely identify the parameters )1( +nw  To achieve 
uniqueness in the solution, an additional requirement is 
imposed, which takes into consideration the variation of the 
similarity measure. In particular, among all possible 
solutions, the one that satisfies (7) and simultaneously 
causes a minimal modification of the network weights is 
chosen. That is  

 
  )(:)1(ˆ )1( izyn n

i =+ +ww  (8a) 



 )1(min.. +nts w
w

 (8b) 

In equation (8), we denote as )1(ˆ +nw  the optimal 
network weights. The constraint term of equation (8a) 
indicates that, the proposed on-line learning strategy 
modifies the similarity measure so that, after the adaptation, 
the current content fluctuation is satisfied as much as 
possible. On the contrary, the term of (8b) expresses that 
the adaptation is accomplished with a minimal modification 
of the already estimated network knowledge. 

IV.1 Recursive Estimation of the Network 
Weights 

In this section, a recursive algorithm is presented to 
perform the constraint minimization of (8). Therefore, the 
scheme yields to a Recursive Weight Estimation algorithm.   

Let us consider that at time t=n the network is 
represented by the weights )(nw .  

Let us now assume, that the model parameters at the 
(n+1)th iteration, i.e., the )1( +nw , are related to the model 
parameters )(nw  at the nth iteration as  

  
 www Δ+=+ )()1( nn  (9) 

 
where wΔ  refers to a small increment of the model 
coefficients. Equation (9) indicates that a small 
modification of the coefficients is adequate to satisfy the 
current content fluctuation as expressed by (8a). 

In the following, we deal with the analysis of equation 
(8a), i.e., the constraint of the minimization. In particular, 
based on equation (9), linearization of the non-linear 
activation functions )(⋅h  is permitted using a first order 
Taylor series expansion. Then, equation (8a) can be 
decomposed in a system of linear equations, as indicated by 
the following theorem  

 
Theorem 1: The constraint expressed by equation (8a) 

under the assumption of (9) is decomposed to a system of 
linear equations of the form wAc Δ⋅= )()( nn , where vector 
c(n) and matrix A(n) depends only on the neural network 
eights at the following iteration.    

 
The proof of Theorem 1 is given in [17]. 
� 
Vector c(n) expresses the difference between the desired 

probability of a frame to be selected as key frame and the 
one provided by the system before frame capturing, i.e., 
using the weights )(nw . In particular, vector c(n) is given 
as  

 
 T

i ncn ])([)( LL=c  (10)  
with  
  )()( )( nydnc n

iii
w−=  (11) 

Furthermore, matrix A(n) is given as  
  
 [ ]LL )()( nn i

T aA =  (12) 

    
where the columns )(nia  are appropriately defoned with 
respect to the previous network weights )(nw ,  
   
 TTTTrn

iii rnydn ])(})())({(vec[)( )()( uga w ⋅−=  (13) 
where  
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with T

L

hh
43421

K

times

)]()([)( ⋅⋅=⋅h  a vector containing the activation 

functions )(⋅h . Vector g(n) is given as follows  
 
 )()()( nnn vDg ⋅=  (15) 
 
with matrix D(n) expresses the derivatives of the elements 
of vector u(n), i.e.,  

 
 )}(,),({)( 1 nndiagn Lδδ L=D  (16) 

In (16) }{⋅diag  refers to a diagonal matrix.  
Based on the previous equations, it can be seen that, 

vector c(n) and matrix A(n) are only related with the 
coefficients )(nw at the t=n time segment.  

The second constraint as expressed by (8b) is analyzed 
using Lagrange multipliers. In this case, the aforementioned 
minimization problem is written as   

 
 ( )))()(()(argmin wAcλwww

w
Δ⋅−⋅+Δ⋅Δ=Δ

Δ
nnTT   (17) 

 
where the elements of vector λ  corresponds to the 
Lagrange multipliers. Differentiating equation (17) with 
respect wΔ and λ  and setting the results equal to zero, we 
obtain    
 
 )())()(()( 1 nnnn TT cAAAw ⋅⋅⋅=Δ −   (18) 
 

Δw1

Δw2

Δw

c-aTΔw=0

 
A two-dimensional graphical representation of the 

proposed approach is shown in Figure 2.  
Figure 2. A graphical representation of the proposed optimal 

small weight perturbation.  
 

V INITIAL NEURAL NETWORK TRAINING-
ACTUAL KEY FRAME ESTIMATION 

The desire actual key frames are estimated in our case as 
follows. Let us also denote as J(k) the energy of shape 



coefficients to the kth previous frame among the p 
available. Thus, index k=1,…,p. To calculate the desire 
values, initially, the first derivative of signal J(k), say )(kJ ′ , 
is evaluated with respect to time index k. Since, however, 
variable k takes values in discrete time, the first derivative 
is approximated as the difference of feature vectors between 
two successive frames )()1() kJkJJk −+= .However, the 
previous operator is rather sensitive to noise since 
differentiation of a signal stresses the high pass 
components. For this reason, a weighted average of the first 
derivative, say wJ ′ , over a window, is used to eliminate the 
noise influence. Particularly, the weighted first derivative is 
given as 

 

 
( )∑
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)()1()(
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klw lJlJwkJ

β

α
,k=0,…,p-2     (19) 

       
where ),0max()(1 wNkk −=α , and ),2min()(1 wNkpk +−=β  
and 2*Nw+1 is the length of the window, centered at frame 
k. It can be seen from (19) that the window length linearly 
reduces previous segment limits used for key frame 
prediction. The weights wl are defined for },{ ww NNl −∈ ; in 
the simple case, all weights wl are considered equal to each 
other, meaning that the derivatives of all frame feature 
vectors within the window interval present the same 
importance,   
 

 )12(
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=
w

l N
w ,  l=-Nw,…,Nw       (20)  

Similarly the second weighted derivative, )(kJ w′′ , for the 
k-th frame is defined as 
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where  )()1()( kJkJkJ ′−+′=′′ ,    k=0,…,p-3 and 

),0min()(2 wNkk −=α , ),3min()(2 wNkpk +−=β  
As explained previously, the local maxima and minima 

of J ′′  are considered as appropriate curve points, i.e., as 
time instances for the selected key-frames. Note that J ′′  is a 
discrete time sequence. Hence, as the value of the weighted 
second derivative reaches zero, the highest (closest the one) 
the probability of selecting the respective frame as key 
frame. On the contrary, as the weighted derivative increases 
the probability of the frame to be selected as representative 
decreases. Using such a notation, the probabilities are 
examined and the set of probable actual key frames is 
defined to estimate the desire vector di.     

VI REAL TIME VIDEO CONTENT 
ADAPTATION 

In this section, we describe the concept behind the 
algorithm for transmitting selectively frames over a network 
of low and time-variable bandwidth. 

Without loss of generality, let us assume that the first 
key frame among the No in the time segment Mo is the one 
with index J, where J is an integer 0≤J<Mo equal to the time 
segment interval. It is clear that, upon a key frame selection 
(i.e., selection of the most representative frame among the 
candidate for skipping), all the previous frames should be 
discarded since a later transmission of a previous frame 
cannot be allowed. However, during the transmission of the 
J frame, it is probable for the network bandwidth to change. 
Two different cases can be discriminated.  

The first concerns an increase in the network bandwidth, 
whereas the second a decrease. If the network bandwidth 
increases, the transmission of the representative frame will 
be completed at a time t<Mo. On the contrary, if the 
network bandwidth decreases, the representative will be 
delivered at a time t≥Mo. In the first case, however, frames 
whose indices are smaller than J cannot be considered, 
though the bandwidth increase may allow such as delivery. 
Let us denote as c the completion time of the representative 
frame. Then, the new time t=n is updated as follows 

 

       ),max( cJnnew =  (22) 

where c≥Mo for a bandwidth decrease, while c<Mo-1 for a 
bandwidth increase.  

At times t=nnew a new network adaptation is activated 
and the recursive algorithm proposed in the following 
sections is activated. 

VII EXPERIMENTAL RESULTS 
In this section, we evaluate the proposed scheme by 

comparing it with the standard frame - skipping method and 
the method proposed in [11] (the Single Key Frame 
Method) and [14]. It should be mentioned that the proposed 
technique can be applied in case of a real-time video 
capturing instead of the compared approaches which require 
frame buffering (i.e., frame delay). In the experiment 
conducted, we use a concatenation of the well known 
sequences “foreman”, “container”, “mobile” and “tempete”, 
which include color variation and motion giving. Thus, a 
sequence of 1,155 frames duration is created.  

We modeled B(n) as a normal distribution with mean 
value μ varying from 0.1 μ to 0.5 μ. The bandwidth was 
changing value every Y frames, where Y was getting values 
from a normal distribution with mean value equal to 30 and 
standard deviation 10. No buffer is used instead of the 
method of [14], yielding a real-time video capturing. For 
each frame, the features described in section II are extracted 
without requiring decoding of the video sequence.    

An objective evaluation criterion is adopted which 
compares the actually delivered video sequences, by 
skipping frames that cannot be afforded due to network 
bandwidth variations with the real ground truth sequences. 
The comparison is performed on the feature–based space 
since this better represents video content. Let us denote as 

a
if  the feature vectors of the ith frame of the ground 

sequence and as d
if  the feature vector for the ith frame of 



the actually delivered sequence, using some video 
adaptation scheme, (for example the proposed method or 
the technique of [14]). Then, as evaluation criterion, say E, 
we define 

 ∑
=

−=
N

i

d
i

a
iN

E
1

1 ff  (23) 

It should be mentioned that, in the delivered sequence, 
there are frames that have not been transmitted due to 
bandwidth constraints (frame loss). For these frame, vector 

d
if  does not exist. We assume that the feature vectors of the 

lost frames are the same as the vectors of the exactly 
previously transmitted frames, i.e., the video freezes. 

Having defined the criterion E, we can define next the 
improvement ratio I as the “gain” of our method compared 
to the other approached. More specifically, I is given as 

  
 I = (Ecomp-Enet)/Ea   (24) 
 
where Enet is the error of (23) achieved using our technique, 
while Ecomp the error of (23) obtained using another 
compared method.    

A feedforward neural network is used to predict the key 
frames. The network is trained using the proposed adaptable 
algorithm as described in sections III-V, whereas the 
network structure, i.e., the number of neurons, remains the 
same. In the specific experiments, a neural network of 30 
hidden neurons is chosen. For the initial training of the 
network, content characteristics of 20 shots, different than 
that used in the experimental sequence and with an average 
duration of 202 frames, are taken into account. For each 
shot, the color and motion features of the MPEG sequence 
are exploited.  
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Figure 3. The improvement ratio I versus L(n)  for a 

bandwidth variation of 0.1 μ. Solid line: The improvement ratio of 
the method of [14] compared to the method of [11]. Dotted line: 
The improvement ratio of the proposed method compared to the 
method of [11]. 

 
Figure 3 illustrated the improvement ratio I with respect 

to the current bandwidth condition, as expressed in 
percentage compared to the Bo. More specifically, the 
horizontal axis is the number L(n). The results have been 
derived for a bandwidth variation of 0.1 μ standard 
deviation. As is observed, there is an increase of the 

performance for all L(n) values, whereas the proposed 
method outperforms both the compared ones. For high 
values of the bandwidth, i.e., closer to Bo the improvement 
decreases while for values close to Bo it reaches zeros, i.e., 
the proposed scheme presents the same performance as of 
[14 and [11] (the Single Key Frame Method). The solid line 
of Figure 3 indicates the improvement ratio I as derived by 
the method of [14] compared to the method of [11] (the 
Single Key Frame Method). It is clear that for all values of 
L(n) the ratio I is lower than that derived from our method, 
indicating that the proposed neural network model correctly 
predicts the sequence key frames. The slight deterioration 
of I is due to the fact that in [14], only a single frame is 
extracted and thus content fluctuation cannot be efficiently 
described. It should be mentioned that in this case, a buffer 
of 30 frames length is adopted since real time video 
capturing is not compatible with the algorithm of [14].  
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Figure 4. The improvement ratio I versus L(n)  for a 

bandwidth variation of 0.2 μ. Solid line: The improvement ratio of 
the method of [14] compared to the method of [11]. Dotted line: 
The improvement ratio of the proposed method compared to the 
method of [11]. 
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Figure 5. The improvement ratio I versus L(n)  for a 

bandwidth variation of 0.5 μ. Solid line: The improvement ratio of 
the method of [14] compared to the method of [11]. Dotted line: 
The improvement ratio of the proposed method compared to the 
method of [11]. 

 
The same conclusions are drawn from the Figures 4 and 

5 which show the improvement ratio I with respect to the 
values of L(n) but for different values of bandwidth 
variation. In particular, in Figure 4 the results have been 
obtained using a bandwidth variation of 0.2 μ, while in 



Figure 5 of 0.5 μ. In all cases, the proposed neural network-
based scheme better exploits bandwidth resources by 
delivering a sequence the content follows the actual content 
variations and characteristics.      

VIII CONCLUSIONS 
In this paper, a new content-based sampling algorithm is 

proposed appropriate for video delivery of low and variable 
communication networks, such as the wireless ones. The 
algorithm requires no buffer and thus it can be applied for 
real-time video capturing instead of the most of the 
previous approaches which introduce buffer delays. An 
adaptable neural network model is used for key frame 
prediction based on the previous content variation. The 
network weights are updated each time the frame capturing 
is completed so that the network trusts the current content 
fluctuation as much as possible while on the other hand a 
minimum variation of the already network knowledge is 
accomplished.  

Experimental results indicate the out-performance of the 
proposed scheme compared to the algorithm of [11] and our 
earlier approach of [14]. The improvement ratio is more 
evident in cases of low bandwidth conditions and thus of 
high congestion.     
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