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Abstract. We present a novel face detection approach based on a 
convolutional neural architecture, designed to de tec t  and precisely 
localize highly variable face pa t te rns ,  i n  complex real world images. 
Our system automatically synthesizes s imple problem-specific fea- 
ture ext rac tors  f rom a training set of face and non  face patterns, 
without  making  any  assumptions or using any  hand-made design 
concerning the features to extract  or the areas  of the face pattern 
to analyze. Exper iments  on different difficult test sets have shown 
that our approach provide superior overall detection results, while 
being computat ionnal ly  more efficient than most of state-of-the-art 
approaches that require dense scanning and local preprocessing. 

INTRODUCTION 

Human face detection is becoming a very important research,topic, because 
of its wide range of possible applications, like security access control, model- 
based video coding, content-based video indexing or advanced human and 
coinput,er interaction. It is also a required preliminary step t.o face recognition 
and expression analysis. Numerous approaches for face detection have been 
proposed in the last years, which are presented in two interesting recent 
surveys by Yang et al. [12] and Hjelmas et al. [4]. 

Most face det,ect.ion methods are based on local facial feature detection 
and classification using statistical and geomet,ric models of the human face. 
Low level analysis first deals with the segmentation of visual features using 
image properties such as edges, intensity, color, motion or generalized mea- 
sures [11, 31. Then, visual features are organized into a inore global concept 
of face through constellation analysis using face geometry constraints [2]. 

The main drawback of feature-based approaches is that eit,her little global 
constraints are applied on the face template or extracted features are strongly 
influenced by noise, occlusion and variations in face expression or viewpoint. 
In order to handle difficult scenarios where multiple faces of different sizes 
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and poses have to be detected in heavily cluttered background, neural net- 
work based approaches have proved to be very efficient. They have also t,he 
clear advantage of learning underlying rules contained in the highly variable 
face patterns from large training sets of images. The first advanced neural 
approach that reported results on a large and difficult dataset was by Rowley 
et al. [7]. Their system incorporates face knowledge in a retinally connected 
neural network, looking at  windows of 20x20 pixels, where different units look 
at  different areas of the face window. A large number of adjustable weights 
(2,905) are learnt through standard backpropagation. Osuna et al. [GI devel- 
oped a support vector machine (SVM) approach to face detection. A SVM 
with a 2nd-degree polynomial is used as a kernel function and approximately 
2,500 support vectors are obtained and use for face detection. FQraud et al. 
[l] proposed an approach based on constrained generative models (CGM), 
which are large auto-associative fully connected MLPs, trained to perform 
a nonlinear PCA. Classification is obtained by combining and analyzing the 
reconstruction errors of the CGMs.Viola and Jones [lo] proposed a very fast 
method based on a cascade of increasingly more complex classifiers selected 
by a learning algorithm based on AdaBoost. This attentional cascade spend 
most coinputation on face-like regions, quickly discarding bakground regions. 

All these methods are based on exhaustive multi-resolution window scan- 
ning techniques. The input image is successively subsampled by a, factor of 
1.2, giving a pyramid of images. 'Ikaditionnally, in each subsampled image, 
a window (of size 20x20 approximately) is scanned at every position, and 
its content is normalized before being processed by the neural architecture. 
Most techniques [6, 7, 11 perform pre-processing via, lighting correction and 
histogram equalization like in the Sung and Poggio's system [SI. A different 
pre-processing step based on variance normalization is performed in [lo]. 

In this paper, we propose a novel image-based approach based on a con- 
volutional neural architecture [5]. Our approach differs from most of the 
previous ones on several main points. Our system automatically derives sim- 
ple problem-specific feature extractors from a training set of face and non face 
patterns, without using any assumptions or hand-ma,de design concerning the 
features to extract and the areas of the face patt,eru to analyze. Moreover, 
once trained, our system acts like a fast pipeline of simple convolutions and 
subsampling modules that t,reat the raw input image as a whole for each 
analyzed scale and does not require any costly local preprocessing. 

SYSTEM ARCHITECTURE 

The convolutional neural network, shown in Fig. 1, consists of a set of three 
different kinds of layers. Layers Ci are called convolutional layers, which 
contain a certain number of planes. Layer C1 is connected to the retina, 
receiving the image area to classify as face or non face. Each unit in a plane 
receives input from a small neighborhood (biological local receptive field) in 
the planes of the previous layer. The trainable weights (convolutional mask) 
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forming t.he receptive field for a plane are forced to be equal at all points in 
t,he plane (weight sharing). Each plane can be  considered as 'a feature map 
that has a fixed feature detector that corresponds to a pure convolution with 
a trainable mask, applied over the planes in the previous layer. A trainable 
bias is added t o  the results of each convolutional mask. Multiple planes are 
used in each layer so that mult.iple features can be detected. 

Once a feature has been detected, its exact location is less important. 
Hence, each convolutional layer Ci is typically followed by another layer Si 
that performs local averaging and subsampling operations. More precisely, 
a local averaging over a neighborhood of four inputs is performed followed 
by a multiplication hg a trainable coefficient and the addition of a trainable 
bias. This subsampling operation reduces by 2 the dimensionality of the 
input and increases the degrees of invariance to translation, rotation, scale, 
and deformation of the face patterns. 

In our implementation, layers C1 and C2 perform convolutions with train- 
able masks of dimension 5x5 and 3x3 respectively. Layer C1 contains 4 feature 
maps and therefore performs 4 convolutions on the input image. Layers S1 
and C2 are partially connected. Mixing the outputs of feature maps helps in 
combining different features, thus in extracting more complex information. 
In our system, layer C2 has  14 feature maps. Each of the 4 subsampled fea- 
ture maps of S1 is convolved by 2 different trainable masks 3x3, providing 8 
feature maps in C2. The other 6 feature maps of C2 are obtained by fusing 
the results of 2 convolutions on each possible pair of feature maps of S1. 

Layers N1  and N2 contain simple sigmoid neurons. The role of these layers 
is to perform classification, after feature extraction and input dimensionality 
reduction are performed. In layer N1, each neuron is fully connected to every 
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Figure 2: Some samples of the training set. 
alarms produced during bootstrapping. 

points of only one feature map of layer S2. The unique neuron of layer N2 is 
fully connected to all the neurons of the layer N1. The output of this neuron 
is used to  classify the input image as face or non face. For training the 
network, we used the classical backpropagation algorithm with momentum 
modified for being used in convolutional networks as described in [ 5 ] .  Desired 
responses are set to  -1 for non-faces and to  +1 for faces. 

In our system, the dimension of the retina is 32x36. Because of weight 
sharing, the network has only 951 trainable parameters, despite the 124.741 
connections it uses. Local receptive fields, weight sharing and subsampling 
provide many advantages to solve two important problems at the same time: 
the problem of robustness and the problem of good generalization, which is 
critical given the impossibility of gathering in one finite-sized training set all 
the possible variations of the face pattern. This topology has another decisive 
advantage. In  order to  search for faces, the network must be replicated (or 
scanned) a t  all locations in the input image, as done in the above mentioned 
approaches [l; 6, 7, 81. In ow approach, since each layer essentially performs 
a convolution with a small-size kernel. a very large part of the computation 
is in common between two neighboring face window locations in the input 
images. This redundancy is naturally eliminated by performing the conro- 
lutions corresponding to  each layer on the entire input image at once. The 
overall computation amounts to  a succession of convolutions and non-linear 
transformations over the entire images. 

The last row shows face-lie false 

TRAINING METHODOLOGY 

The face examples used to  train the network were collected from various 
sources over the Internet or scanned images from newspapers. This collection 
effectively capture the variability and the richness of natural data in order to 
train our system for operating in uncontrolled natural environments. Some of 
the 3,702 original collected face patterns are shown in the first row of Fig. 2. 
Using manually labeled eye and mouth positions, face images mere cropped 
and normalized to the size of 32x36 pixels, after de-rotation and re-scaling in 
order to position roughly the two eyes around the same locations inside the 
retina. The central part of the face was roughly set to  20x20 pixels, leaving 
space for the borders of the face and some background portions. The system 
is therefore fed with some additional information about the face shape and 
some border effects that may arise in the convolutions are canceled. 
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1. Create a validation set of 400 faces and 400 non-faces randomly ex- 
tracted and excluded from the initial training set. It will be used to 
choose the best performing weight configuration during steps 3 and 8. 

2. Set BIter = 0, ThrFa = 0.8. 
3. Train the network for 60 learning epochs. Use an equal number of 

positive and negative examples in each epoch. Set BIter = BIter + 1. 
4. Gather false alarms from a set of 692 scenery images with network 

answers above ThrFa .  Collect a t  maximum 5,000 new examples. 
5. Concatenate the newly created examples to the non-face training set. 
6. If ThrFa 2 0.2 set Th.rFa = ThrFa - 0.2. 
7. If BIter < 6 go to step 3. 
8. Train the network for 60 more learning epochs and exit. 

TABLE 1: THE PROPOSED BOOTSTRAPPING SCHEME. 

No preprocessing wa,s applied on the cropped faces unlike in [l, 6,7,8,  lo]. 
In order to create more examples and to enhance the tolerance t,o small 
rotations and variations in intensity, a series of transformations were applied 
to the initial set of face examples, including mirroring, rotation, smoothing 
and contrast reduction. The last two transformations help in teaching the 
system how to cope with situations where the retina is fed with a weak signal 
(e.g. over-smoothed or with weak edges). Some examples of the transformed 
patterns are shown in the second row of Fig. 2. Finally, the tra,ining set 
reached the number of 25,212 face patterns, partially occluded (glasses, hair, 
etc...), unequally lighted, turned up to it30 degrees, rotated up to i 2 0  degrees 
and with average intensity values varying from dark to light. 

Collecting a representative set of non-faces is more difficult as virtually 
any non-face image could belong to it. A practical solution to this problem 
consists in a bootstrapping strategy [8 ] ,  in which the system is iteratively 
re-trained with false alarms produced when applied to a set of scenery im- 
ages, that do not contain faces. In the proposed approach, we improved this 
strategy. Before proceeding with the bootstrapping, an initial training set 
of 6,422 non-face patterns was built by selectively cropping images. Most 
of these images contain part of faces as it was noticed in some early experi- 
ments that these images are a serious source of false alarms. The proposed 
bootstrapping procedure is presented in table 1. 

In step 1: a validation set is built and used for testing the generaliza- 
tion ability of the network during learning and, finally, selecting the weight 
configuration t,hat performs best on it. This validation set is kept constant 
through all the bootstrapping iterations, in contrast with the training set 
which is updated. In step 3, the backpropagation algorithm is used with the 
addition of a momentum term for neurons belonging t.o the N1 and N2 layer- 
s. Stochastic learning was preferred versus batch learning. For each learning 
epoch, an equal number of examples from both classes are presented to the 
network giving no bias toward one of the two classes. 

The generation of the new patterns that will be added to the non-face 
training set is carried out by step 4. The false alarms produced in this step 
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(a) (b) 
Figure 3: The evolution of the proposed training-bootstrapping procedure 

force the network, in the next iteration, to refine its current decision boundary 
for the face class. At each iteration, the false alarms, giving network answers 
greater than ThrFa, and therefore strongly misclassified, are selected. As 
the network generalizes from these examples, ThrFa is gradually reduced 
until reaching 0. In this way, some redundancy is avoided in the training 
set. The learning process is stopped after six iterations, where convergence 
is noticed, i.e. when the number of false alarms remains roughly constant. 
This procedure helps in correcting problems arising in the original algorithm 
proposed in [8] where false alarms were grabbed regardless of the strength 
of the network answers. Finally, the controlled bootstrapping process added 
19,065 non-face examples to the training set. Some of them are shown in the 
last row of Fig. 2. 

The performance of the bootstrapping procedure is described in Fig. 3. 
In particular, one can observe how the network was boosted in terms of false 
alarms rejection. The first graph (Fig. 3(a)) presents the volume (sum of 
all network outputs corresponding to the false alarms) of the grabbed false 
alarms with respect to the training-bootstrapping iterations. This metric 
characterizes the strength of the false alarms. We analyze the evolut,ion of 
the false alarm volume when the false alarms are grabbed according to their 
strength and when they are grabbed with random selection, i.e. when ThrFa 
is constantly 0. In the first case, the first iteration produces very strong 
false alarms, as expected for the first run of the network over the scenery 
images. During the following iterations, the network learns quickly how not to 
produce strong false alarms, as illustrated by t.he sharp decrease of the volume 
in iteration 3. Thereafter, the behavior remains roughly constant, which 
indicates that the bootstrapping procedure can safely terminate. In the case 
of random selection, we notice in all iterations low false alarm volumes as the 
majority of false alarms correspond to low network outputs. The evolution 
of the training remains roughly stagnant, which indicates that the rejections 
abilities of the network do not improve during bootstrapping. Indeed, in 
all iterations, the system failed to run over the complete set of the scenery 
images before reaching the limit of 5,000 false alarms. 

Fig. 3(b) presents the evolution of the mean network output over the false 
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Figure 4 The evolution of the separation of the classes 

alarms and the face examples of the training set. The roughly constant high 
mean response to faces (around 0.85) contrasts with the gradually decreasing 
mean response to  false alarms, summarizing t.he results of the training. We 
can remark that the mean false alarm activation strictly follows the linear 
decreasing of the ThrFa value. 

A direct way to  realize how well the network separates the two classes is 
to compute the histogram of the network responses over the complete train- 
ing set. The evolution of this histogram over the bootstrapping iterations 
is displayed in Fig. 4. We see clearly in all the histograms two distribu- 
tions corresponding to the face and the non-face classes, with peaks to the 
respective target values (-1 for non-faces and + 1  for faces). Even though 
the separation between these two distributions is not absolute, which would 
imply no training error, it is &isfactory as only a very small percentage of 
t,he distributions overlaps. The distribut.ion of the face responses remains 
roughly constant, which agrees with Fig. 3(b). The distribution of the uon- 
face responses naturally expands as more non-face examples are added to  the 
training set in each iteration. 

C H O I C E  OF T H E  N E T W O R K  T O P O L O G Y  

In table 2 ,  we present the error rates of the proposed topology (referred as 
N4) on the training and validation sets: along with the error, rates of other 
convolutional t.opologies (N1 and N5) and the linear classifier. For each topol- 
ogy, the number of errors, t.he Mean Square Error (MSE) and.the number of 
false alarms generated during the bootstrapping are given. The training of 
the proposed topology resulted in 4% misclassifications in both training and 
validation sets. The topology N1 is a convolutional network with one con- 
volutional/subsa,mpling layer only, identical to the first convolutional layer 
of topology N4. It corresponds to  the topology of the convolutional net- 
work used in [9]. The topology N1 has 1,009 weights, more than in N4, as 
subsampling is performed only once. The topology N5 has two convolntion- 
al/subsampling layers, as in N4, but with the addition of one more feature 
map in the Cl/Sl layers. It also has 6 more feature maps in the C2/S2 
layers as it uses the same connect,ion strategy as in N4 between the S1 and 
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TABLE 2: 
THE LINEAR CLASSIFIER. 

ERROR RATES FOR DIFFERENT CONVOLUTIONAL TOPOLOGIES AND FOR 

C2 layers. This topology uses 1,346 weights. N1 and N5 are two topologies 
that represent variations of the proposed topology (N4),  as we add or remove 
“structure”. Finally, results for the linear classifier which is a single-layer per- 
ceptron with 32 x 36 + 1 = 1,153 weights, applied on the complete training 
set produced by the topology N4, are also presented. 

First, we can notice that the N4 and N5 topologies perform best and are 
roughly equivalent. N5 has a slightly better performance but generates more 
false alarms: it required two more bootstrapping iterations before conver- 
gence. As the N4 topology has fewer weights, we choose it as a simpler and 
lighter solution. Furthermore, the N4 topology performs slightly bett,er in the 
testing phase. The topology N1 generated much more false alarms than the 
other two. This topology finally failed to converge during the bootstrapping 
in the sense that it was not able to process all the scenery images with less 
false alarms than the upper bound (5,000) in all the iterations. It also per- 
forms poorly on the validation set, having an error rate roughly double than 
the ones of N4 and N5. Finally, we can easily notice the very poor perfor- 
mance of the linear classifier. It gives roughly 23% error rate in the training 
set and 23% in the validation set, compared the respective 4% and 4% that 
the N4 topology gives. This demonstrates how complex and non-linear is the 
problem to solve. 

EXPERIMENTAL RESULTS 

Our method has been evaluated using the CMU test set [7] which is, so far, 
the most widely used data set in the literature. It consists of 130 images 
with a total of 507 near frontal faces. This data set includes 23 images of 
the second data set used by Sung and Poggio [E], referred as MIT test set. 
Most of the images in these data sets have complex backgrounds with faces 
covering a variable part of the total image area. Faces in these data sets 
present a large variability in size, illumination, facial expression, pose, and 
may be partially occluded. In order to detect faces of different sizes, the input 
image is repeatedly subsampled by a factor of 1.2, resulting in a pyramid of 
images, which are processed by the neural network, providing a result image 
for each scale. Candidate faces (pixels with positive values in the result 
image) in each scale are mapped back to the input image scale and then 
grouped into representative faces according to  their proximity in image and 
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Figure 5: Some results obtained on the CMU test set. 

scale spaces. A local search procedure is finally performed in a small pyramid 
around each face candidate center in image-scale space, in order to perform 
fine localization and eventually false alarm dismissal. Finally, the volume of 
positive answers in the local pyramid is used to take the classification decision. 
Based on numerous experiments and ROC curve analysis, a face candidate is 
classified as face if its corresponding volume is greater than ThrVol = 22.0. 

Face Detector CMU MIT 
Sung and Poggio C8l 79.9%/5 
Osuna e t  a l .  C6l 74.2%/20 
Rowley e t  a l .  [71 86.2%/23 84.5%/8 
Feraud e t  a l .  [I] 86.0%/8 
Viola and Jones Cl01 76.1%/10 77.8%/5 
Our aDDrOaCh 89.95%/8 87.8%/4 

TABLE 3. RESULTS REPORTED I N  TERMS OF PERCEKTAGE OF GOOD DETECTION 
/ NUMBER OF FALSE ALARMS, ON THE CMU AND MIT TEST SETS. 

Table 3 shows the detection rates of our method and the reported results 
of several detection methods on the CMU and MIT test sets [4]. Our results 
are given for ThrVol = 22.0, which provides balanced detection and false 
alarm rates on different test sets. Fig.:, presents some results of the proposed 
face detection scheme on some images of the CAW test set. 

Our system can be tested using our interactive demonstration available on 
the Web at www. cbd.  uoc.gr/~cgarcza/FaceDetectDemo.html, allowing anyone 
to  submit images and obtain the detection results on-line. 

CONCLUSION 

Our experiments have shown that using an architecture based on convolu- 
tional neural networks for face detection improves significantly the detection 
results on difficult benchmarked test sets. Because of its convolutional nature 
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and the use of a single network, a straightforward implementation on stan- 
dard image processing boards can allow low-cost near real time applications. 
Our approach is moreover not restricted to  vertical semi-frontal faces. It is 
able to detect highly variable faces turned up to i 6 0  degrees, rotated up to 
i20 degrees in image plane, and partially occluded. As an extension of this 
work, we are currently considering the detection of full profile faces via the 
proposed architecture. Current experiments dealing with full profile faces, 
using addititional feature maps are very encouraging. 
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