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Abstract

We present in this article a new method on unsupervised semantic parsing and struc-
ture recognition in peri-urban areas using satellite images. The automatic “building”
and “road” detection is based on regions extracted by an unsupervised segmentation
method. We propose a novel segmentation algorithm based on a Markov random field
model and we give an extensive data analysis for determining relevant features for the
classification problem. The novelty of the segmentation algorithm lies on the class-
driven vector data quantization and clustering and the estimation of the likelihoods
given the resulting clusters. We have evaluated the reachability of a good classification
rate using the Random Forest method. We found that, with a limited number of fea-
tures, among them some new defined in this article, we can obtain good classification
performance. Our main contribution lies again on the data analysis and the estimation
of likelihoods. Finally, we propose a new method for completing the road network
exploiting its connectivity, and the local and global properties of the road network.

Keywords: building/road extraction, satellite images, image segmentation, feature
analysis, Random Forest, unsupervised classification

1. Introduction

Automatic detection of buildings and roads in aerial/satellite images is of great
importance in a wide range of areas, such as urban planning, urban area monitor-
ing/detection, change detection, construction and update of GIS maps, transportation
and telecommunication. Such man-made structures appear with high density and reg-
ular patterns in scenes of urban areas, while, by contrary, in rural regions is not unusual
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to find only few buildings spread out over large distances and accessible by a sparse
network of, often not paved, roads. Peri-urban areas (Ravetz et al. (2013)) are defined
as the transition zones where urban and rural uses mix. As in case of suburban regions,
buildings are in neighborhoods and are surrounded by yards in varying densities and
directions, while their road network usually follows relatively regular patterns and is
often sparser than that of suburban areas.

1.1. Object detection in Remote Sensing Imagery (RSI)

Although aerial images have traditionally been used to extract buildings/roads for
mapping applications (Mayer (1999); Ahmadi et al. (2010); Hu et al. (2007); Mnih and
Hinton (2010)), the successive launching of high spatial resolution commercial satellites
IKONOS, QuickBird, WorldView (1,2 and 3) and Geoeye-1, has led to high-resolution,
cost-effective satellite imagery. One of the main difficulties of image processing tasks
when moving from (either aerial or satellite) images with low (coarser than 10m) and
medium (of a few meters) resolutions to high (metric or sub-metric) resolution ones, is
to be able to deal with the high complexity of the image content. This high complexity
is mainly due to the fact that the elements or objects of interest are not any more only
individual pixels or surfaces, but complex, structured groups of pixels (Inglada (2007);
Blaschke (2010)).

Objects under detection or localization may be man-made ones, such as vehicles,
ships, buildings and roads, that have sharp boundaries and are not part of the back-
ground, as well as landscape objects, such as trees and land-use/land-cover parcels
that often are not characterized by clear boundaries and hence, may be considered
natural parts of the background environment. Even though with the advances of re-
mote sensing technology a greater range of man-made objects become separable from
their background, the explosion in the availability of high-resolution Remote Sensing
Imagery (RSI) underscores the need for automated satellite image interpretation meth-
ods. Such imagery has greatly increased the number of possible applications, but at
the cost of an increase in the amount of required manual processing. Recent applica-
tions of large-scale machine learning to such high-resolution imagery (Inglada (2007);
Kluckner and Bischof (2009); Paisitkriangkrai et al. (2015); Volpi and Ferrari (2015);
Vakalopoulou et al. (2015)) have produced object detectors characterized by high levels
of accuracy, reinforcing the belief that automated aerial/satellite image interpretation
systems are within reach.

In RSI applications, aerial/satellite image interpretation is usually formulated as
a pixel labeling task. Given an image, the goal is to produce either a complete se-
mantic segmentation of the image into classes of objects such as “building”, “road”,
“tree”, “grass”, and “water” or a binary classification of the image for a single object
class. A very recent and complete review of object detection and localization meth-
ods in RSI, is found in (Cheng and Han (2016)). According to this review, the very
large number of object detection methods can generally be divided into four, not nec-
essarily independent, main categories: template matching-based methods, knowledge-
based methods, Object Based Image Analysis (OBIA)-based methods, and machine
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learning-based methods. Among them, OBIA-based or Geographic OBIA (GEOBIA)-
based methods (Blaschke (2010); Blaschke et al. (2014)) have become a very promising
alternative for detecting objects in high-resolution (sub-meter) RSI. Those methods
consist of two main parts, namely, image segmentation in “homogeneous” pixel re-
gions or (hopefully) “meaningful” objects of interest, followed by feature classification
of the resulting objects based on various extracted features of objects such as spec-
tral information, texture, shape, size, geometry and semantic features (Blaschke et al.
(2014)).

1.2. Previous works on building and road network extraction

Several methods of the four categories have been proposed in literature for extract-
ing the man-made objects and in particular road network and buildings, from satellite
imagery of low, medium or high spatial resolution, using spectral or/and shape and
structural (topology) properties, as it is described in detail in the following paragraphs.
Several methods rely on supervised, ground truth based classification (Paisitkriangkrai
et al. (2015); Vakalopoulou et al. (2015)) and in some of them previously stored infor-
mation, such as road centerlines in vector data format, is also assumed and used (Yuan
and Cheriyadat (2013)).

Road and building detection are applied either on their own or simultaneously
(Ünsalan and Boyer (2005)), since, depending on the methodology followed, the joint
detection approach may improve the detection of both. An interesting, template-
matching method has been proposed by Karantzalos and Argialas (2009), capable of
detecting either road network or buildings by tuning the parameters of a level set
(Sethian (1999)) algorithm.

Aytekin et al. (2012) detect buildings using spectral properties in conjunction with
spatial properties, both of which provide complementary information to each other.
Natural and man-made regions are classified and segmented using Normalized Differ-
ence Vegetation Index (NDVI)(Rouse et al. (1974); Myneni et al. (1995)). Shadow
regions are detected, and the rest of the image, consisting of man-made areas only, is
partitioned by mean shift segmentation (Cheng (1995); Comaniciu and Meer (2002)).
Resulting segments, whose shape is irrelevant to that of buildings are eliminated us-
ing morphological operations. Karantzalos and Paragios (2009) introduced competing
shape priors, and building extraction is addressed through a segmentation approach
that involves the use of a data-driven term constrained from the prior models.

A method based on local feature point extraction using Gabor filters (Jain et al.
(1997)) is described in (Sirmaçek and Ünsalan (2010)). Local feature points vote for
the candidate urban areas and final urban area is detected using an optimal decision-
making approach on the vote distribution. In (Sirmaçek and Ünsalan (2011)) building
detection is achieved using probability density functions of four, locally extracted, fea-
ture values. Finally, Benedek et al. (2012) introduced a global, probabilistic optimiza-
tion process to find the optimal configuration of buildings, considering the observed
data, prior knowledge, and interactions between the neighboring building parts. Since
the method integrates building extraction with change detection in aerial and satellite
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imagery, the authors, apart from the results for change detection, provide quantitative
performance results for building detection in a benchmark dataset that they created
and consists mainly by the images of their freely available SZTAKI-INRIA building
detection dataset1.

Recently, novel semantic labeling/segmentation techniques of high accuracy have
been proposed, using Convolutional Neural Network (CNN) features (Jin and Davis
(2007); Wang et al. (2015)) and Conditional Random Fields (CRFs) (Lafferty et al.
(2001); Kumar and Hebert (2003)) to smooth region labeling, while respecting the
edges of the image (Paisitkriangkrai et al. (2015)). Volpi and Ferrari (2015) model the
segmentation problem by a CRF as well, employing Structured Support Vector Ma-
chines (SSVM) (Tsochantaridis et al. (2005); Finley and Joachims (2008)) to learn both
the weights of a set of visual descriptors and local class interactions. In (Vakalopoulou
et al. (2015)) an automated building detection framework is proposed based on deep
convolutional networks. The core of the developed method is based on a supervised
classification procedure employing a very large training dataset. Using a Markov Ran-
dom Field (MRF) model (Li (2009)) the classification result is improved. Experimental
results are given on the data set used also in our work. Their quantitative validation
indicates that this approach is quite promising.

A comprehensive review of automatic road network extraction techniques for GIS
update is found in (Mena (2003)). In (Laptev et al. (2000)) roads are automati-
cally extracted using the multi-scale detection of roads in combination with geometry-
constrained edge extraction using ribbon snakes (Mille et al. (2008)). Shadows and
partially occluded areas are detected, as the bridges between partially (dis-)connected
road segments and the road network is constructed after extracting crossings with vary-
ing shape and topology. In (Huang and Zhang (2009)), spectral and structural features
are extracted in a number of scales and classified using Support Vector Machines (Vap-
nik (1995)). A majority voting approach is then used to integrate the multi-scale road
information at the decision level in order to extract road centerlines and roads map.

In (Das et al. (2011)) a multistage framework for road network extraction is pro-
posed by fusing region and boundary information to segment the image and then
applying morphological operations to reject false positives. In (Ünsalan and Sirmaçek
(2012)) probabilistic and graph theoretic methods are used to extract centerline and
shape of roads.

Valero et al. (2010) build a granulometry chain using Path Openings and Path Clos-
ings (Talbot and Appleton (2007)) to construct Morphological Profiles. For each pixel,
the Morphological Profile constitutes the feature vector on which the road extraction
is based. In (Hu et al. (2007)), local homogeneous regions are enclosed by polygons,
called footprints of pixels upon which road detection is achieved using tree expansion
and pruning techniques. In (Silva and Centeno (2010)), the centerline is modeled as be-
ing a chain of short line segments. Radon transform (Herman (2009)) is used to detect

1http://web.eee.sztaki.hu/remotesensing/building benchmark.html
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seed line segments and for the automatic extraction of the roads centerlines starting
from the seeds. Mnih and Hinton (2010) follow an approach based on neural networks
to face the problems introduced to road extraction by shadows and occlusions.

1.3. The proposed method

In the proposed, automatic and large-scale OBIA-based work, roads and buildings
are automatically and jointly extracted from high-resolution satellite images, using
object based features, computed from visual and shape cues. In the segmentation
stage, rural parts of peri-urban areas except rural roads, are detected and removed
and an initial classification of the remaining urbanized areas, followed by MRF-based
segmentation, lead to the extraction of regions or objects contained in only those
areas. The unsupervised classification stage that follows, classifies those regions in
classes “building”, “road” and “other”, which are further subdivided in sub-classes for
obtaining (whenever possible) unimodal probability distributions. As the process is
fully unsupervised, an extensive, automatic learning stage provides both the likelihood
functions of sub-classes on relevant data, consisting of both appearance and shape
features and then, the final classification result by the application of the maximum
likelihood principle. After the OBIA-based modules, a global post-processing method
for road extraction is applied in order to further improve the detection of both buildings
and roads.

To get the upper limits of the classification efficiency that can be reached by segmen-
tation on a given dataset, a fully supervised procedure using Random Forests (Breiman
(2001)) has been developed and independently performed. For the needs of training,
the object level matching between extracted regions and ground truth objects of classes
is conducted by object based criteria (Jiang et al. (2006); Everingham et al. (2010);
Özdemir et al. (2010); Ok et al. (2013); Ok (2013); Cheng et al. (2013); Han et al.
(2014); Wiedemann et al. (1998)) that either have been used elsewhere before or are
newly defined in this work. In addition, a novel object level performance metric has
been implemented in order to measure the efficiency of building detection, motivated by
the well studied application-dependence of object level performance metrics (Cheng and
Han (2016); Rutzinger et al. (2009)) and the subjectivity of their thresholds (Shufelt
(1999); Rutzinger et al. (2009)).

1.4. Article outline

The article is organized as follows. In Section 2 we present visual appearance and
shape features used in our work and a correlation analysis of these features. We give also
analysis of relevant data in order to automatically obtain parameters for segmentation
and classification tasks. In Section 3 we present our segmentation algorithm using
vector quantization, automatic probability distribution estimation of clusters features
and MRF model optimization. In Section 4 we give results on region-based supervised
classification using Random Forests in order to both assess the segmentation outcome
and determine limits of reachable performance in building and road detection. The
various object matching criteria used in this work are also described in detail. In

5



Section 5 we present the proposed unsupervised classification method and results on
the whole data set. In Section 6 we present a global method for road extraction
based on the initial classification and the properties of road network. In Section 7 we
give final global results and, especially in the case of buildings, we provide a detailed
performance evaluation using object level performance metrics that have been used
before, as well as using the proposed object level performance metric. Furthermore,
the pixel level performance of our building detection system on the SZTAKI-INRIA
benchmark dataset is presented. Finally, Section 8 concludes our work.

2. Data and feature description and analysis

In the proposed work, roads and buildings are automatically and jointly extracted
from high-resolution satellite images, using region features, computed from visual and
shape descriptors.

The data set contains multi-spectral images for remote sensing a region in Attica.
The acquisitions of years 2006, 2007 and 2009 were given by Quickbird satellite with
4 spectral bands (B, G, R and NIR), while those of years 2010 and 2011 were given
by a WorldView-2 satellite with 8 spectral bands. For the most recent data we lim-
ited the number of bands to the four primary (bands: 2, 3, 5 and 7), because these
spectral bands are related to the four bands of Quickbird satellite and contain suffi-
cient information for detecting man-made objects. The image size is 6794*7884 pixels,
corresponding to approximately 1400 ha.

Concerning visual features, we have transformed the data for using a component
related to the luminance and three normalized difference components. If X(c), c =
1, 2, 3, 4 are the four channels (B, G, R and NIR) in the data, we use the normalized
root squared luminance Y =

√
0.114R+ 0.587G+ 0.299B (0 ≤ Y ≤ 1), and the

following normalized inter-band differences

Xd(c) =
X(c+ 1)−X(c)

X(c+ 1) +X(c)
, c = 1, 2, 3. (1)

As the fourth channel is the NIR, Xd(3) component is the well-known Normalized
Difference Vegetation Index (NDVI), with very good properties for discriminating veg-
etation areas from urbanized and bare ground regions. The three normalized difference
components are illustrated in Fig. 1 for a large image block. In addition to the dis-
criminative power of Xd(3), it appears that Xd(2) could be useful for extracting brick
rooftops. The luminance is gamma corrected (γ = 0.5), because the images in the
whole dataset are mostly dark. In addition, this correction decreases the correlation
coefficient, as measured on the data set, between luminance component and inter-band
difference components. Therefore, a better class discrimination could be expected.
Dealing with regions, the appearance features are given by the median value over the
region of the corrected luminance and the three normalized difference components.

Because of the discriminant properties of components Xd(2) and Xd(3), we consid-
ered them as the most useful visual components for detecting buildings and roads. For
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(a) (b) (c) (d)

Figure 1: Data components for a subimage from the 2010 dataset: (a) RGB, (b) Xd(1), (c) Xd(2) and
(d) Xd(3).

this reason we give a detailed data analysis of these two, jointly considered, compo-
nents. The analysis is performed for each year separately, as, even for data captured
by the same satellite, the appearance could significantly change.

In Fig. 2 we give the median value of Xd(2) given Xd(3), as well as two vigintiles
at (0.05, 0.95). More exactly, for an interval of Xd(3) values, the value of Xd(2) where
the cumulative probability is 0.05, 0.5 and 0.95 are determined and plotted in Fig. 2.
The contours of the 2-dimensional conditional distribution are depicted for the five
years. Strong similarities between these conditional distributions appear, while at the
same time it is shown that the analysis should be adapted for each year. In addition,
in Fig. 3 we give the estimated joint probability density function of Xd(2) and Xd(3),
confirming the need for adaptive data analysis.

One of the first stages in our algorithmic approach consists in discriminating vege-
tation regions from non-vegetation, as we are dealing with data from peri-urban areas.
The joint or the conditional distribution of (Xd(2), Xd(3)) can be assumed as the mix-
ture of two distributions corresponding to these two land covers. We observe that for
years 2006 and 2007 the joint distribution is confusing. However the two classes exist
for these datasets too, indicating that the intra-class variation is large in comparison
with the inter-class distance. Therefore it would be possible, although difficult, to
obtain discriminating boundaries for all years with suitable adaptations.

We describe hereafter our adaptive method for finding a decision boundary in the
2-dimensional space of (Xd(2), Xd(3)), for separating the vegetation areas using data-
adaptive discriminant functions, even with ostensibly unimodal distributed data. For
simplicity and robustness, we tried to determine piece-wise linear discriminant functions
based on the estimated distributions illustrated on Figure 2. The first linear discrimi-
nant function is found as the best separator on the principal axis of the (Xd(2), Xd(3))
data set. The direction of the principal axis is determined by Principal Component
Analysis (PCA) with a mean absolute deviation criterion. Plots of the estimated prob-
ability distribution of the projected on the principal axis data, are given in Figure 4. As
expected for years 2006 and 2007 this probability distribution is ostensibly unimodal.
The threshold V1 results from the distribution ofXd(3)−λXd(2), where λ is the slope of
the principal axis, as it follows straightforwardly for bimodal distributions (years 2009,
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Figure 2: Median and two vigintiles (0.05, 0.95) of Xd(2) given Xd(3) for (a) 2006, (b) 2007, (c) 2009,
(d) 2010 and (e) 2011.
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Figure 3: Joint probability density of (Xd(2), Xd(3)) for (a) 2006, (b) 2007, (c) 2009, (d) 2010 and
(e) 2011.
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2010 and 2011), while for unimodal distributions V1 is estimated from a point where
the first derivative of the probability density function is low. From the intersection
point of the line Xd(3)− λXd(2) = V1 with the median of Xd(2) given Xd(3) is defined
a threshold on Xd(3) providing another horizontal line, determined by a threshold V2

on Xd(3). The two discriminant line segments are illustrated with black color (years
2006, 2007 and 2010) or with green color (2009 and 2011) in the same figure (Fig. 2).
For the data of these two years (2009 and 2011) two different discriminating lines could
be determined using two equally acceptable criteria, an assertion that is corroborated
by the density functions given in Fig. 3. This case occurs when the probability density
function corresponding to the first mode (years 2009 to 2011) presents positive skew-
ness. The lower threshold corresponds to an hypothesized symmetric distribution. In
Fig. 2, a second set of discriminant functions for these years is given in black. From our
experience we consider that the ‘black’ threshold could be retained for the “building”
class, while the ‘green’ upper threshold could be applicable for the “road” class. If only
one discriminant line is determined, it holds for both classes.

In addition, a threshold on Xd(3) is needed for almost sure discrimination of bare
soil regions, which is also estimated (V3). Assuming that the largest median Xd(2)
is mainly due to bare soil regions, V3 is estimated by the position of the peak in the
median of Xd(2) given Xd(3) (see Fig. 2). All the parameters estimated on the whole
(Xd(2), Xd(3)) data set are given in Table 1.
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Figure 4: Probability density function of Xd(3) − λXd(2) for (a) 2006, (b) 2007, (c) 2009, (d) 2010
and (e) 2011.
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Table 1: Linear discrimination parameters.

Year λ V1 V2 V1b V2b V3

2006 0.5914 0.1786 0.1450 0.1786 0.1450 0.1150
2007 0.4706 0.2705 0.1950 0.2705 0.1950 0.0950
2009 0.4706 0.3276 0.2650 0.3146 0.2550 0.1450
2010 0.7265 0.1923 0.2450 0.1923 0.2450 0.1750
2011 0.6796 0.3285 0.3350 0.2287 0.2550 0.1650

We can also estimate discriminant values for ‘brick rooftop color’. From the distri-
butions it appears that only a threshold c2 on Xd(2) is sufficient for a good detection
of ‘brick rooftop color’, as the higher values of Xd(2) correspond to this color. We pro-
pose to estimate this threshold from the distribution of Xd(2) given that Xd(3) values
are limited to soil or urbanized areas. The c2 estimation results show that the ‘brick’
threshold is mainly determined by the spectral properties of the satellite bands. For
the Quickbird satellite the estimated value is c2 = 0, while for WorldView-2 we found
c2 = 0.18. In any case, our estimation method gives a different result for each year
dataset.

Since the proposed classification method is region-based, shape features are also
measured for all the regions extracted by the image segmentation algorithm. We have
introduced two new shape features, presented below in Eqs. (2) and (4), with good
discriminative power between buildings and roads. The shape features used in our
work are as follows:

• the area A of the region,

• the normalized mean distance from the boundary over all pixels q,

D =
d(q, B)√

A
, (2)

B being the region boundary. In continuous space, for a circle the measure is
maximum and equal to 1

3
√
π
, while for a rectangle with side ratio β (0 < β ≤ 1),

the measure is

D(β) =

√
β(3− β)

12
, (3)

an increasing function of β.

• the normalized mean distance of boundary from centroid CR,

DB =
d(CR, B)√

A
. (4)

For a square DB ≈ 0.57, and it increases for a rectangle as β decreases.
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We have also investigated the existing correlations between the previously defined
features, both shape and visual. It might be useful to measure correlations on all
the segments that could be extracted from the satellite images, excepting vegetation
regions. However, the correlation is possibly class-dependent, mainly in the case of
shape features. For this reason, for measuring correlation indexes we make use of the
ground truth on segments extracted with our unsupervised segmentation algorithm.
As “building” are considered the segments having Jaccard similarity coefficient (Eq. 7)
with a true building greater than 0.45. As “road” are considered the segments for
which the length of the ground truth road center-lines passing through them, divided
by the length of their skeleton pixels, is above 0.35. The choice of the two thresholds
guarantee that selected regions belong to the corresponding class of objects with high
confidence given the ground-truth, as it is evident from the description of matching
criteria and the meaning of their thresholds in Section 4.

In Table 2, the Spearman correlation index is given for “building” and “road”
regions for the year 2006. Similar results have been obtained for the other years.

Table 2: Spearman rank correlation index for the visual and shape features (2800 “Building” regions
and 1796 “Road” regions).

“Building” “Road”
(Xd(2), Xd(3)) 0.6651 0.4453
(Xd(2), Y ) −0.5125 0.1998
(Xd(3), Y ) −0.8365 −0.3832

(
√
A,D) −0.4927 −0.9140

(
√
A,DB) 0.2855 0.8041

(D,DB) −0.3707 −0.9270

As expected, the correlation between shape and visual features is low. Furthermore,
as it is evident from Table 2:

• visual features are more correlated in case of buildings in comparison with the
case of roads,

•
√
A is highly correlated with both normalized mean distances, D and DB, for

“road” class and

• a strong correlation exists between D and DB for the “road” class, and a much
weaker one for the “building” class.

3. Unsupervised segmentation

In peri-urban areas, urban and rural uses mix. Having as objective the detection of
buildings and roads, we propose as first stage the localization of areas with buildings,
and at the same time the detection of possible road segments traversing soil or vegeta-
tion regions. It is equivalent to detect transitional and special areas as soil regions and
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fields with vegetation. For detecting vegetation we use the separation criteria resulting
from the analysis presented in the previous Section. On the other hand, it is assumed
that bare soil regions are large with almost homogeneous visual appearance.

The remaining regions are then independently segmented using a Markovian ap-
proach for pixel labeling, where the classes correspond to homogeneous visual appear-
ance, as our final objective is to achieve region-based classification. As the classes
are unknown, as well as their number, we have to cluster data and estimate the class
probability densities, or the likelihoods. The probability density function estimation
is locally adaptive and is based on data vector quantization for identifying classes of
distinctive appearance.

Finally, the successive stages for unsupervised segmentation are:

1. detection of rural and transitional regions,

2. vector quantization and initial classification of the data in urbanized areas,

3. Markov random field optimization for the final segmentation.

These stages are summarized in more detail in the flow chart of Fig. 5 and described
hereafter.

3.1. Rural and transitional regions detection

For detecting large uniform regions, the gradient magnitude on the four spectral
channels of the initial data is computed and thresholded. A low threshold is used for
discriminating almost surely the homogeneous regions. It is estimated by fixing the
percentage of homogeneity at 40%. The minimum size is fixed at 2500 pixels, which
is about 600 squared meters. For all uniform regions the median and the variance of
the appearance vector are estimated separately for its components, as well as the three
shape features presented in Section 2. Initially, regions that are not dominated by
vegetation and have a relatively large width, are considered. Taking into account that
the the average road width is about W r = 20 pixels (10 meters) and that the width of
a rectangle could be approximated as 4

√
A D, according to the definition in Eq. (2),

the initial map of soil areas would satisfy the following conditions:

0 ≤ Xd(3) ≤ V2 and
√
A D > 0.25W r.

From the resulting initial group of connected components, which may not exclusively
contain soil regions, the median Xs is estimated, which is then considered that repre-
sents the dominant visual appearance of soil regions. The mean absolute deviation, σs,
is also estimated. Finally, as almost surely non urbanized regions are considered those
satisfying

Xd(3) ≥ 0 and (Xd(3) ≥ V3 or |X−Xs| < 1.5σs) and (DB < 5D+0.5 or
√
A D > 0.3W r),

where X = (Y,Xd(1), Xd(2), Xd(3)) is the representative visual data vector of the
region and the dissimilarity is measured by the first order Minkowski distance (Xu and
Wunsch (2009)). The relationship between the two distances (DB, D) characterizes
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Parameter estimation

Bare soil regions detection Vegetation regions detection

Initial candidate roads localization

Urbanized regions detection

Homogeneous region extraction

Vector quantization of median region appearance

Pixel-wise maximum likelihood classification

MRF-based segmentation

Figure 5: Flow chart of segmentation module: the ‘green’ processes are executed independently for
all the connected components of the urbanized area.
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non-elongated regions and is evident by experimental results, as those depicted in
Fig. 6. As the threshold on gradient magnitude is low, a growing procedure is applied
on the detected regions, in order to agglomerate neighboring pixels with similar visual
appearance.
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Figure 6: Shape feature data classification for candidate “road” segments for (a) 2006, (b) 2007, (c)
2009, (d) 2010 and (e) 2011.

All the remaining areas are considered as urbanized, except vegetation fields, which
are excluded by the following additional conditions on luminance and NDVI,

Xd(3) ≤ max(V1 + λXd(2), V2) and Y ≥ 0.25

Roads are also included in the urbanized areas, but segments of roads might traverse
rural areas as well, which could be detected as elongated segments after subtracting
vegetation and bare soil regions. Morphological operations allow us to determine can-
didate road segments. The shape features of the extracted segments are computed.
Automatic clustering using k-means algorithm with cosine distance is performed on
(DB, D) features for separating a group of candidate road segments. In addition, the
road width could be bounded as follows:

DB > 0.65 and
√
A D < −2.5 log10(D).

The constant thresholds above are justified both by the fact that DB ≈ 0.57 for a
square and from experimental results for the whole data set, shown in Fig. 6. In this
figure, the clustering result is illustrated, with the data corresponding to the road
segments depicted in red. Knowing that an important number of rooftops are much

14



more luminous than “road” regions, we obtain another threshold for detecting such
a ‘rooftop color’. This threshold, Y1, is given by the median of “road” luminance,
increased by 3 times the standard deviation of the “road” luminance measured by Y .

The localization result of urbanized regions for year 2006 is given in Fig. 7. At first,
vegetation and bare soil regions are excluded and then, candidate roads and regions
containing buildings (and probably roads) are localized.

(a) (b) (c)

Figure 7: The result of (a) initial urbanized areas, (b) candidate roads and (c) final urbanized areas
extracted for 2006.

After extracting the “road” candidate segments, the remaining areas are segmented
using the visual data. These areas are all the connected components of the image
resulting from the localization and subtraction of vegetation areas, soil regions and
elongated segments separating these areas. These components are mainly located in
urbanized areas and their shape and size as well as their visual appearance may be
quite different. Therefore, the segmentation of the resulting areas should be adapted
to the local data.

3.2. Vector quantization and initial classification of urbanized areas

The estimation of the data distribution given an appearance class is based on data
clustering. For efficiency reasons and for using globally reliable features, homogeneous
regions are extracted, having again as criterion the low value of the gradient magnitude.
We then compute appearance features for all the homogeneous regions extracted. The
appearance is summarized by the mean intensity of the luminance Y and the normalized
chromatic differences Xd(c), c = 1, 2, 3.

In order to obtain a content-guided, visual data vector quantization, we perform a
partial initial classification of the extracted regions. The objective pursued is to have,
if possible, clusters that contain data from the two classes (“building” and “road”) to
be detected. However, reliable criteria could be assumed for only two possible groups
of buildings : ‘brick rooftop color’ (Xd(2) ≥ c2) and ‘luminous rooftop color’ (Xd(2) <
c2, Y ≥ Y1). For these sub-classes only one representative data vector is extracted. It
is difficult to characterize the other regions by their visual appearance, because they
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could be either “building”, or “road”, or even “other”. In this last confusing case, we
estimate an initial maximum number of classes related to the deviation of the visual
appearance vector and the number of homogeneous regions belonging to this class.
The k-means algorithm with a ‘cityblock’ distance, is then initialized using the method
given in Kauffman and Rousseeuw (1990). In addition, as the number of classes is
unknown, a stopping criterion is introduced based on the intra-cluster deviation. If
the rate of improvement in the sum of intra-class distances is less than 5%, no more
classes are added.

A pixel-wise classification is obtained based on the distance of the data vector to
the cluster representative vectors. Therefore the data are vector quantized and the pix-
els are labeled according to the nearest representative vector. First order Minkowski
distance is used for labeling, the number of labels being equal to the number of clus-
ters. The labels determine data clusters, which will serve to obtain probability density
functions of the data in the sub-classes defined by the clusters. For simplifying the
computations, as the regions considered are almost homogeneous, a Gaussian assump-
tion is adopted. Therefore, we have only to estimate the mean value and the covariance
matrix.

3.3. Markov random field segmentation

We propose to optimize a discrete Markov random field (MRF ) in order to obtain
a regularized label field. In this manner, we aim at capturing the local interactions
between pixels, which will help us to refine and correct the class labels of the minimum
distance classification. The problem can be formulated as follows: we seek to assign a
class label l(q) (from a discrete set of class labels L) to each node (pixel) of a graph
q ∈ V, so that the following cost is minimized:

∑
q∈V

cl(q) +
∑

(q,p)∈E
w(l(q), l(p)), (5)

where E is the set of the graph edges. The graph is composed by the pixels of the
connected components of urbanized areas. The optimization is implemented indepen-
dently on all the connected components extracted, according to the number of labels
and the priors estimated on each of them.

The singleton potentials, or priors, are based on the pixel-wise computed Gaussian
probability density functions. Then the dissimilarities of pixels to the clusters l are
given by

cl(q) = − ln pl(X(q)), (6)

where X(q) is the vector data, consisting of the normalized luminance and inter-band
differences, at pixel q. The pairwise potentials are set according to the Potts function,
with all weights w set equal to a constant w0, in case of different classification, and
zero potential when the two neighboring points are assigned the same class. The
regularization constant w0 is data adapted, having as relevant statistics the mean value
on the minimum dissimilarities at each point.
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For minimizing the MRF energy in Eq. (5), we make use of the primal-dual method
Komodakis and Tziritas (2007), which casts the MRF optimization problem as an
integer programming problem and then makes use of the duality theory of linear pro-
gramming in order to derive solutions that have been proved to be almost optimal.
The optimization code can be found in http://www.csd.uoc.gr/~komod/FastPD/.

The result for the largest connected component detected for year 2006 is illustrated
in Fig. 8. In the same area other connected components exist and they are segmented
separately. An MRF model is estimated and used for each connected component of
the area detected as urbanized.

Figure 8: The segmentation result of the largest urbanized component for 2006.

4. Random Forest based segment analysis

Even if our objective is to perform unsupervised structure recognition, we developed
a Random Forest (RF) (Breiman (2001)) based classifier, for evaluating the role of
features and for comparing our results to the optimum, considering that RF discovers
the best discrimination functions for a given set of features. Indeed, RF constitute a
mechanism to estimate a posteriori probabilities Pr(c|x) of class c given the (even high
dimensional) feature vector x, without direct modeling or any assumption made about
the conditional probabilities p(x|c).

Supervised Random Forests analysis is applied on a number of combinations of the
features described in the previous paragraphs, derived from the segments extracted by
segmentation. The discriminative power (or importance) of features can be determined
as one of the results of RF training. Optimal performance of features is measured in
RF testing phase, using a new evaluation criterion for class “building” and a matching
criterion that has been used before (Wiedemann et al. (1998); Mnih and Hinton (2010))
for the class “road”, respectively.
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Features are classified in three classes denoted as “other”, “building” and “road”
respectively. For the needs of training, a region R is considered to belong to class
“building”, if the ratio

IR =

∑K

i=1 |R ∩ Bi|
|R|

is above 0.5, where |R∩Bi| is the area of its intersection with the K ground truth (real)
buildings Bi and |R| is the area of the region. Although IR does not measure how well
the shape of region R fits to the shape of real buildings, it is assumed that, because of
segmentation, even in the case that region R spans more than one real buildings, those
buildings undergo the same appearance characteristics.

A region R is considered to belong to class “road”, if the length of the ground truth
(real) road center-lines passing through R, divided by the length of the skeleton pixels
of R is above 0.1. The low value of that criterion is justified by the often large number
of skeleton points of extracted regions due to their noisy boundaries and the fact that
the non systematic, wrong assignments in the input data of training do not affect the
prediction ability of RFs.

The remaining regions are assigned to class “other”. The feature sets that were
tested for their efficiency in classification are given in the corresponding rows of Table 3.
In each row, the identifier as well as the features that are included in the corresponding
set are reported.

Table 3: Feature sets used for RF training.

ID Features

FS0 {Xd(1), Xd(2), Xd(3), Y ,
√
A, D, DB}

FS1 {Xd(2), Xd(3), Y ,
√
A, D, DB}

FS2 {Xd(2), Xd(3), Y ,
√
A, D}

1000 trees were used for training in any case (feature set and year), considering equal
prior probabilities of classes. The outcome of training is the a posteriori probability
Pr(c|x) of class c ∈ {“other”, “building”, “road”} given the feature vector x. Feature
importance of feature set FS0 for each year is depicted in Fig. 9. In the first three plots,
the color difference Xd(1) is the least important feature in discriminating the three
classes, although, that feature plays an important role in year 2010 and is important
in year 2011.

For each region R, with feature vector x, the a posteriori probability Pr(c|x) of class
c given x is computed using the trained RF, for classes “building” and “road”. If this
probability is above a threshold Tc, the region is classified in class c. Optimal thresholds
are determined by the Precision-Recall Curve (PRC) of each class as described below.

In order to measure the accuracy of detecting ground truth (real) buildings using the
trained RF, a new criterion that establishes a one-to-one relationship between regions
and ground truth buildings and, at the same time, scales the contribution of detected
regions to the detection of real buildings, has been defined. First, the best fit region
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Figure 9: Feature importance for feature set FS0 and years (a) 2006, (b) 2007, (c) 2009, (d) 2010 and
(e) 2011. “Feature Index” refers to the order of features of FS0 in Table 3.

RBi
for each building Bi is determined as:

RBi
= argmax

Rj

{J(Rj ;Bi)},

where
J(R;Bi) = |R ∩Bi|/|R ∪ Bi| (7)

is the Jaccard similarity coefficient and Rj are the regions assigned by RF in class
“building”. Detectability of Bi is then measured using the formula:

TPBi
= min{1, J(RBi

;Bi)/TB} (8)

where TB is a threshold. The overall true positiveness, TP, of building detection is
the sum of TPBi

for all real buildings Bi and Recall and Precision are computed by
ratios TP/K and TP/L respectively, where K is the number of real buildings and L
the number of “building” regions. Finally, the optimal threshold Tc is determined for
class “building” by the break-even point where Precision equals Recall. The break-even
point obtained by each feature set is depicted in Table 4, for TB = 0.25.

Setting TB to 0.25, accounts for cases of segmentation regions corresponding to
groups of real buildings that are placed very close to each other and undergo the same
appearance. Such groups cannot be further separated by the segmentation process due
to the low contrast and weak edges of objects that characterize the satellite images of
our dataset. A reference building Bi that is contained in such a detected region R, will
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be considered fully (i.e with TPBi
= 1 in Eq.(8)) TP, if it overlaps with R in more than

25% of its area. Roughly speaking, such a region will contribute to the true positiveness
of groups of at most four buildings. On the opposite direction, over-segmented large
buildings will be considered fully detected if at least one of the regions included in
them covers more than 25% of their area. This technique constitutes an alternative to
“invasive” approaches such as the topological clarification that is described in Rutzinger
et al. (2009), which splits regions of small buildings and merges sub-regions of the same
reference building before evaluation.

Table 4: Break-even points of “building” detection for TB = 0.25.

FeatSet 2006 2007 2009 2010 2011
FS0 0.8097 0.7607 0.8267 0.8059 0.8235
FS1 0.8091 0.7600 0.8267 0.8053 0.8234
FS2 0.8084 0.7564 0.8267 0.8053 0.8184

In case of roads, efficiency of detection is measured using the ground truth (real
or reference) centerlines of roads against the skeleton points of regions detected to
belong to class “road”. Similar to Wiedemann et al. (1998) and Mnih and Hinton
(2010), for each such region, its skeleton points that are placed in a distance less than
d (pixels) from real road centerlines are considered as detected or True Positives (TP).
Otherwise, they are considered False Positives (FP). The same way, centerline points
that are placed further than a distance d from all skeleton points of detected regions,
are considered False Negatives (FN). Precision and Recall are computed as in the case
of buildings and the optimal threshold Tc is determined. The break-even point obtained
by each feature set and year is depicted in Table 5, for d = 10, a relaxation distance
threshold that is justified by the fact that the average width of roads for the five years
is about W r = 20 pixels (10m) and the reference centerlines are not always placed
exactly at the center of roads. The overall performance results indicate that the three
feature sets are statistically equivalent.

Table 5: Break-even points of “road” detection for d = 10.

FeatSet 2006 2007 2009 2010 2011
FS0 0.8094 0.7846 0.8457 0.8495 0.8301
FS1 0.8093 0.7846 0.8456 0.8496 0.8302
FS2 0.8090 0.7849 0.8451 0.8478 0.8299

By far the worst performance in building/road detection is that of year 2007, a
conclusion that holds using either RF or the new unsupervised learning method of
Section 5. In order to detect the source of this behavior, a posteriori probabilities in
the feature space of the two appearance features (Xd(2), Xd(3)) and the shape features
(D, 0.1

√
A) have been separately computed using 100×100 2D histograms, for all years.

A posteriori probabilities of appearance and shape features are depicted in Fig. 10
and Fig. 11 respectively. In all plots, green color corresponds to class “other”, red
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Figure 10: A posteriori probabilities of (Xd(2), Xd(3)) for the three classes using 2D histograms for
years 2006 (a), 2007 (b), 2009 (c), 2010 (d) and 2011 (e).

to “building” and blue to “road” respectively, while the color of each bin comes of
the weighted mixing of these colors using the a posteriori probabilities as weights.
Compared to the other years, the distributions of appearance features for year 2007
are quite different and specially for class “road”, which is separated in two sub-classes.
On the contrary, the distribution of shape features in year 2007, follows that of the
other years, for all classes.

As in the case of feature importance analysis, the fact that the images of the first
three years have been captured by satellites with different settings compared to those of
2010 and 2011, is reflected in the analysis of appearance features. A closer look at the
plots of Fig. 10, shows that building/road distributions in (d) and (e), are translated
in the feature space, compared to the corresponding distributions of years 2006, 2007
and 2009.

5. Unsupervised learning and classification

We present in this Section our unsupervised, object-based classification method. We
consider three main classes: “building”, “road” and “other”, which are subdivided in
sub-classes for obtaining, if possible, unimodal probability distributions. As the process
is fully unsupervised, an extensive learning stage provides estimates of distributions of
relevant data. Relevant data are: appearance features, consisting of the luminance
Y and normalized differences (Xd(2), Xd(3)) and shape features (

√
A,D,DB). It is

assumed that the appearance features are independent from those of shape for all
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Figure 11: A posteriori probabilities of (D, 0.1
√
A) for the three classes using 2D histograms for years

2006 (a), 2007 (b), 2009 (c), 2010 (d) and 2011 (e).

classes. All appearance distributions as well as the distribution of D are assumed to
be Gaussians. Even if the Gaussian assumption might not be the best in some cases,
it is retained for robustness and regularization reasons.

The whole procedure being completely automatic, the parameters needed for the
initial discrimination are estimated from the segments. The first parameter estimated
is a threshold on Xd(2), noted as c2m, which rejects outliers, that is, segments which
could be considered as not belonging to man-made classes. The following conditions
provide the a priori classification of segments as “building”

√
A > Ab and Xd(2) > c2m and D > Fb and S < 1.1 and DB < Gb,

where S is the ratio of the area covered by the object with holes filled to the region area.
The threshold Ab on the region size is related to the real size of the buildings knowing
the image resolution. It is set to 12 for our data, which corresponds to approximately
35 square meters. Fb is a discriminative threshold on D fixed at 0.1, a value that
corresponds to a rectangle with sides ratio about 5. In a similar way, Gb is set to
0.75, knowing that for a square DB = 0.57. Three sub-classes are determined for the
“building” class using the k-means algorithm on visual data (Xd(2), Xd(3), Y ).

For the a priori classification of segments as “road”, a clustering of all the segments
is performed on shape features (D,DB). “Road” segments are characterized by low
values in D and high values in DB. This property provides an initial group, which is
refined with the following criteria

Xd(2) > c2m and Xd(3) > 0 and − 0.75 log10 D <
√
A D < −3 log10D and
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D ≤ Fb and DB > 0.55 and S < 1.01

The bounds on
√
A D can be inferred from the knowledge of the average width of roads.

Indeed, the product
√
A D is strongly correlated with the road width, which could

be approximately considered as a priori known. The other thresholding parameters
result from empirical experiments and mainly the cluster analysis of the shape features
(D,DB) shown in Fig. 6. Then, two sub-classes are determined for the “road” class
using the k-means algorithm on visual data (Xd(2), Xd(3), Y ).

The remaining segments are initially classified as “other”, and then subdivided in
two sub-classes using again the k-means algorithm on visual data (Xd(2), Xd(3), Y )
with the ‘cityblock’ distance.

We present now the estimation of probability density functions for the shape fea-
tures obtained using the kernel method given in Botev et al. (2010). The estimated
probability density functions of shape feature D for the different sub-classes resulting
from the above criteria and cluster analysis are given in Fig. 12 for the whole data set.
Their stability over different years is illustrated in these experimental results. Even
if they are not fitting well the Gaussian distribution, we consider that the Gaussian
assumption ensures the robustness of the estimator, as far as it is unimodal, taking into
account the unavoidable weakness of the above a priori classification based on strong,
but not sure assertions. On the other hand, the shape of the density function depends
on the bandwidth of the kernel which controls its regularity, the more regular being
finally the Gaussian density function.

The size feature
√
A, could be assumed not depended on the normalized mean

distance D for the “building” class, while for the other two classes a strong correlation
exists. The probability density function of

√
A given the class and, if it depends on,

given the normalized mean distance D is assumed to be Gaussian for the “building”
and “road” classes, while it is assumed to be exponential for the “other” class. Noting
the variable corresponding to feature D by U and that corresponding to

√
A by V , we

can write
pU,V (u, v) = pV |U(v|u)pU(u). (9)

The estimated mean and standard deviation of
√
A given D for the “road” class and

the estimated λ(u) for the class “other”, are depicted in Fig. 13 (data set 2011). The
mean value of the size feature for the “building” class is also given in black.

More exactly, for the class “road” we assume a Gaussian conditional distribution,
with mean and standard deviation given empirically as

µ(u) =
−2 log10 u

u
, σ(u) = 0.25µ(u).

These empirical relationships are supported by experimental results similar to those of
Fig. 6. For the class “other” we assume an exponential distribution, as follows:

pV |U(v|u) =
1

λ(u)
e−

v−vm(u)
λ(u) , v ≥ vm(u) (10)
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Figure 12: The probability density function of D for all the sub-classes and for all years: (a) 2006,
(b) 2007, (c) 2009, (d) 2010 and (e) 2011.
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where

λ(u) = eα1u+α0 and vm(u) = max

{
10,

1

β1u+ β0

}
.

Parameters α1, α0, β1, β0 are estimated from the data using linear regression.
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Figure 13: For the 2011 data set: (a) the conditional mean and mean ± standard deviation functions
of V given U for “road” class and (b) parameters (λ(u), vm(u)) for “other” class and mean value (in
black) for the “building” class.

The normalized mean distance DB of boundary from the centroid is assumed to be
independent from the other shape features and distributed according to the gamma
distribution for the classes “building” and “other”. The corresponding sets of param-
eters are estimated for these classes. For the “road” class a gamma distribution is also
assumed, but the two distances, DB and D, are strongly related, and linked by the
elongation parameter β. The distance DB could be assumed linearly depending on β,
while D could be considered proportional to

√
β. Finally, the shape parameter of the

gamma distribution is given the value 3, an integer approximation of the estimated
value and the scale parameter θ of the DB distribution relates to the average length of
the road segments, which in turn relates both to a constant denoted as α1 and to an
additional term which is, according to the above explication, inversely proportional to

D
2
:

θ = α0 +
α1

1 + 10000D
2 .

The numerical values of parameters α are estimated from experiments on real data.
From the likelihood functions we obtain the a posteriori probabilities for all seg-

ments and all classes, Pr(c|x), x being all the data, summarized by the appearance and
shape features described above. A Bayesian approach is adopted, where equal costs
are assumed for false classifications, as well as equal a priori probabilities for the seven
sub-classes. The decision inferred by the maximum a prosteriori probability criterion
on the sub-classes determines the final decision for any segment, “building”, “road” or
“other”.

Results on Recall, Precision and F-measure are given in Table 6 for “building”
and “road” classes and for all years using parameters of Table 1. The methods for
measuring the accuracy have been given in Section 4 (testing phase of RF analysis).
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Table 6: Measures on classification results using parameters of Table 1.

Buildings Roads

year Recall Precision F-measure Recall Precision F-measure

2006 0.7407 0.7326 0.7366 0.7057 0.7106 0.7081
2007 0.7373 0.6701 0.7021 0.6228 0.6325 0.6276
2009 0.8064 0.7077 0.7539 0.7835 0.6685 0.7214
2010 0.7610 0.7027 0.7307 0.7571 0.6874 0.7206
2011 0.7704 0.7170 0.7427 0.7224 0.6573 0.6883
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Road Expansion Merging
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Road Detection
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Final Road
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Figure 14: The schema of the road detection method.

6. Global road detection

The methodology applied for the global detection of the roads consists of two levels.
In the first level, shape and appearance based features are combined with a linear
pattern detection method. Firstly, we exploit the road connectivity by expanding the
regions having high a posteriori probability to be “road” segments. In the second
step, linear patterns of roads are detected. Then, the results of the first two steps
are merged. The second level of road detection takes into account topology based
features in a global sense, computed from the detected linear patterns of the first level.
Figure 14 presents an overview of the proposed global road detection method.

6.1. Initialization and expansion of “road” segments

Initially, the regions are divided into three sets {HR,LR,NR} that consist of re-
gions having high, low and almost zero a posteriori probability to be “road”, respec-
tively. Firstly, a binary image BNDV I is computed by applying a threshold (V2 of
Table 1) on NDVI.

The set HR consists of regions that are classified as “road”. The set NR consists of
regions R that satisfy at least one of the following criteria: the probability to be “road”
is lower than 0.01 or are classified as “building”. The set LR consists of regions having
low probability to be roads, so the expansion of HR set may include these regions.
This set is given by the regions that do not belong in HR and NR sets. Figure 15(b)
shows an example of this classification applied on image of Fig. 15(a), where the sets
HR, LR and NR are depicted with white, gray and black colors, respectively.
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Figure 15: (a) Original image. (b) Initial Classification. (c) The PEP set projected on Im. (d) The
detected line segments using LPSA algorithm. (e) The final result of the first level of road detection
method. (f) The final result of the second level of road detection method.
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Next, the road expansion set RE is computed from the sets {HR,LR,NR}. Ac-
cording to the Road Expansion method, a region that belongs to HR or to LR and it
is adjacent to a region of HR should belong to the road expansion set RE, resulting
at an initial road map.

6.2. Linear pattern detection

In this step, we propose a method to fill some road gaps and to correct segmentation
errors using linear patterns. This method is inspired by the work in Panagiotakis and
Kokinou (2015), where linear patterns of geological faults are detected. The problem of
linear pattern detection is reduced to an optimization problem that takes into account
the road shape and topology features, such as the distance and angle between the road
line segments structures. Initially, a sampling set PEP = {pk, k ∈ {1, ..., N}} of the
most probable end points of line segments is computed. Then a sampling process is
executed on the set of line segments that correspond to each pair of points of PEP with
distance less than a threshold (e.g. 500 pixels), getting the linear patterns of roads.
The distance threshold is used in order to decrease the computation cost.The size of
PEP should be low in order to get a computationally effective method Panagiotakis
and Kokinou (2015). In this work, PEP is given by the end points and the joints
of skeleton Lam et al. (1992) of RE, reducing the size of PEP without loosing in
detection accuracy. In the second level of road detection, the intersections between the
extensions of the detected line segments are also added in PEP .

Next, we compute the road enhancement image Im, where the road pixels are en-
hanced taking into account the shape characteristics of RE, the a posteriori probability
of a region to be road Prroad, the a posteriori probability of a region to be building
Prbuild and the BNDV I image as defined in the initialization step of this section. Im
is positive on pixels that probably belong to “road” class and negative on pixels that
probably do not belong to this class. Let DFRE and DFRE be the distance transform of
the binary images that correspond on RE and its complementary RE set, respectively.
The pixels of RE that are close to its skeleton are enhanced (local maxima of DFRE),
while the pixels of non-road expansion set SE that are close to the middle of wide
regions get negative values according to the following equation

SCRE(p) =




e
−(

DFRE(p)−DFRE(lm(p))

DFRE(lm(p))
)2
, p ∈ RE

−1 + e−(
DF

RE
(p)

Wr
)2 , -

(11)

where Wr denotes a user defined parameter that corresponds on the maximum width
of roads e.g. 40 pixels and lm(p) corresponds on the maximum of DFRE in a small
neighborhood of p (e.g. 5×5 pixels) (DFRE(lm(p)) ≥ DFRE(p)). It holds that when
p is classified as “road”, the higher value of Prroad(p) + SCRE(p) the higher value of
probability of p to belong to “road” class. When p is not classified as “road”,the lower
value of SCRE(p) − Prbuild(p) − BNDV I(p), the lower value of probability of p to not
belong to “road” class. Thus, the road enhancement image Im is given by the following
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equation

Im(p) =
1

2
(Prroad(p) + SCRE(p)− Prbuild(p)− BNDV I(p)) (12)

It holds that Im ∈ [−1.5, 1]. However, usually it holds that Prbuild(p) +BNDV I(p) ≤ 1,
which means that Im ∈ [−1, 1].

Figure 15(c) depicts an example of PEP set of Fig. 15(a), projected on Im. Thanks
to the combination of shape and content based characteristics of the previous stages,
it holds that most of the pixels that belong on the road network have been correctly
emphasized, with low number of false alarms. However, due to segmentation errors
there exist several road gaps(discontinuities) and small errors on borders. The goal of
the Linear Pattern Detection step is to correct them.

Then, the problem formulation for the detection of linear patterns of roads is de-
scribed. Let G = (S,W ) be the complete graph that represents the possible end points
and the connections between them. Let the line segment pipj , where pi and pj ∈ S
and its two parallel equal length lines segments p′ip

′
j and p′′i p

′′
j that are equidistant from

pipj, with Wr distance. Due to Wr, it holds that if the line segment pipj lies on a road
line segment, then the line segments p′ip

′
j and p′′i p

′′
j probably lie out of road.

The edge weight between two points pi, pj ∈ S is related to the potency of the
corresponding linear road pattern (line segment pipj). This means that the values
Im(x), where x belongs on pipj , should be high. At the same time, the values Im(x)
on points x, that belong on line segments p′ip

′
j and p′′i p

′′
j , should be low (negative).

Therefore, in this work the positive edge weight W (pi, pj) is given by:

Ŵs(pi, pj) =
∑

x∈pipj

Im(x) (13)

Ŵp(p
′
i, p

′
j) =

∑

x∈p′ip′j∧Im(x)>0

Im(x) (14)

Ŵ (pi, pj) = Ŵs(pi, pj)−
1

4
(Ŵp(p

′
i, p

′
j) + Ŵp(p

′′
i , p

′′
j )) (15)

W (pi, pj) = max(0, Ŵ (pi, pj)) ·Wd(pi, pj) (16)

where Wd(pi, pj) is only used on the second level of road detection taking into account
parallelism and perpendicularity of roads in a global sense. The edge weight of Eq. (16)
has the advantage that it is higher on large and strong linear patterns, since it holds
that if ab ⊃ cd then Ŵs(a, b) ≥ Ŵs(c, d), where ab is a strong linear pattern. Let
L = {pipj , pi, pj ∈ S} be a set of representative linear patterns (line segments) of the
roads. If we select as the optimal representative linear patterns Lopt, the edges that
maximize the sum of the corresponding edge weights then we will oversample high
“energy” roads.

Let us denote as ST (ab, cd) the topology similarity between the line segment ab, cd
taking into account the angle between the two line segments θ, their shortest Euclidean
distance d(ab, cd), and the Euclidean distances between the points of line segment ab
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and line segment cd, d(y, cd), y ∈ ab:

ST (ab, cd) =

{
0 , d(ab, cd) ≥ Wr

2

1
|ab|2

∑
y∈ab e

−(
d(y,cd)

Wr
)4 · cos(θ) , − (17)

ST (ab, cd) ∈ [0, 1] is close to one when the line segments are quite “similar” (e.g. they
are very close and parallel) meaning that ab is also represented by cd. ST (ab, cd) is
zero when the line segments are not “similar” e.g. they are far away or vertical.

Then, Lopt is given by the set of edges that maximize the following function ME(L)
(see Eq. (19)), in order to take into account the similarity between the linear patterns,
topology constraints and the representativeness attribute of L, emphasizing the fact
that L should equally describe all the road parts.

ŜT (pipj) = max
pmpn∈L−pipj

ST (pipj, pmpn) (18)

ME(L) =
∑

pipj∈L
W (pi, pj) · (1− ŜT (pipj)) (19)

The maximization of ME(.) is sub-optimally solved by the LPSA (linear patterns
selection algorithm) Panagiotakis and Kokinou (2015) by sequentially selecting the
most representative linear patterns until W (a, b) < Wr. A robust estimation of linear
pattern width is given getting the median value of DFRE(lm(p)), p ∈ pipj. Figure
15(d) depicts the result of this method projected on Im for the image of Fig. 15(a),
where most of the roads are well represented.

6.3. Merging of linear patterns and road expansion image

The detection of linear patterns gives high performance results on straight parts of
roads, but fails on turnings that are well captured by the Road Expansion algorithm.
So, in this step we merge their results. Let LPI and REI be the resulting images of
the LPSA and Road Expansion algorithms respectively. The “Road Detection” map
is initialized by the LPI in order to keep the straight line borders. Then, the dilation
of the LPI is computed using a circle structuring element of Wr

2
radius. Let MD

be the image of points belonging to the “Road Expansion”, but not belonging to the
above dilated image, consisting mainly of turning parts and some noisy regions. For
eliminating the noisy segments we retain the connected components of MD of an area
of at least 100 pixels and we take the union of these components with the LPI. Figure
15(e) depicts with red color a result of the proposed merging technique algorithm.

6.4. Second Level of road detection

In the second level of road detection method, the three steps of the first level are
repeated using as input the detected linear patterns of the first level (see Fig. 14),
taking into account topology based features like parallelism and perpendicularity of
roads in a global sense. Firstly, the probability density function of orientation of linear
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patterns (PDFd) is computed. All the angles are transformed in [0, π). In order to
take into account the perpendicularity between roads, for each orientation we have also
added its vertical in the estimation of PDFd. Then, in the second level of road detection
method the Wd(pi, pj) of Eq. 16 is defined by Wd(pi, pj) =

1
2
+ 1

2
·PDFd(∡pipj), where

∡pipj ∈ [0, π) denotes the orientation of the line segment pipj . Figure 15(f) depicts
the final result of the second level of road detection method using red color. It holds
that some parts of detected roads (e.g. close to points (550, 550), (600,400), (650,250))
have been expanded improving the detection of the first level (see Fig. 15(e)).

Results of the first and second level of road detection on Recall, Precision and F-
measure are given in Table 7. Similarly with Section 4, the computation of Precision
and Recall is done using d = 10. According to our experiments the execution of the
second level increases the Recall and F-measure of the first level at about 2.5% and
0.5%, respectively. The average F-measure is 75% improving the result of unsuper-
vised classification of Table 6 at about 5.6%. In addition, there exists a significant
improvement on road boundary detection that is not captured by the F-measure. This
improvement can be visually seen if we compare the classification result of Fig. 15(b)
with the global road detection result of Fig. 15(f). Even if the density, the color and
the size of roads vary, the proposed method gives high performance results.

Table 7: Results of the first and second level of road detection on Recall, Precision and F-measure.

year First Level Second Level

Recall Precision F-measure Recall Precision F-measure

2006 0.7309 0.7898 0.7592 0.7518 0.7786 0.7650
2007 0.6513 0.7003 0.6749 0.6765 0.7004 0.6882
2009 0.8122 0.7361 0.7723 0.8346 0.7230 0.7749
2010 0.7900 0.7541 0.7717 0.8144 0.7414 0.7762
2011 0.7640 0.7198 0.7412 0.7977 0.6974 0.7442

7. Experimental Results

The goal of this section is to present qualitative and numerical results of our method
and, especially in the case of buildings, to provide a detailed performance evaluation
using object level performance metrics that have been used before, as well as using the
proposed object level performance metric described in Section 4 (testing phase of RF
analysis). Furthermore, the pixel level performance of our building detection system
on the SZTAKI-INRIA benchmark dataset is presented. By contrary, we do not give
pixel level performance evaluation results for our dataset, since, as it is analyzed in the
excellent work of Rutzinger et al. (2009), such an evaluation makes no sense in cases
where datasets consist of a large number of small buildings (and a few large ones) and
errors in the delineation of ground truth buildings are, almost surely, present.

After road network extraction, a final step is performed on regions that have been
detected as buildings, in order to exclude by them subparts that overlap with the
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detected roads. The resulting, altered or (possibly) newly created, regions are excluded
by the segmentation map, if their size is smaller than a predefined threshold (set to
100 pixels in our case). In Fig. 16 are illustrated our final results of building detection
(red color) juxtaposed to the ground truth (green color boundary), and simultaneously
those of road detection (blue color) and the ground truth centerlines (white color), for
a 1500×1500 tile of years 2007 and 2010. The results for the overall dataset are found
in the tab “WP5” of page http://erato.survey.ntua.gr/thalis/.

7.1. Object level evaluation of building detection

We compare in Table 8 the initial and the global classification result for “building”
class to the best expected. We see that our unsupervised method performs quite well
as the F-measure is near to the best expected, where the Random Forest classifier
is trained using the whole ground truth. In any case, the performance is limited by
the segmentation result, as our method is region-based. It is worth noting that the
accuracy is measured by one-to-one correspondence of classified regions and the ground
truth using the Jaccard similarity coefficient.

Table 8: Comparison of F-measure obtained for “building” to the best one for the same parameter
set.

Year 2006 2007 2009 2010 2011
Random Forest (FS1) 0.8091 0.7600 0.8267 0.8053 0.8234
Unsupervised (I) 0.7366 0.7021 0.7539 0.7307 0.7427
Unsupervised (G) 0.7418 0.7065 0.7531 0.7365 0.7482

Object level performance is quantified in a number of previous works (Ok et al.
(2013); Ok (2013); Cheng et al. (2013); Han et al. (2014)) using the Jaccard similarity
coefficient (Eq. 7) or other intersection-based overlap ratios, to compute a matching
value between detected and ground truth objects. Jaccard similarity coefficient of
the bounding boxes of detected and reference objects has been also used in Pascal
challenge (Everingham et al. (2010)) of detecting various classes of objects. In that
case, true positives are defined as the detected objects whose bounding boxes with
those of reference buildings give Jaccard coefficient value greater than, or equal to a
threshold Tov. If the coefficient of bounding boxes is less than Tov, the detected object
is considered as FP. Furthermore, if several output bounding boxes overlap with a
single ground truth bounding box in more than Tov, only one is considered as TP and
the others are considered as FP, to avoid multiple overlaps. Ignoring the technically
substantial difference of using bounding boxes of objects instead of their areas, this
approach is close to the proposed performance metric, since a one-to-one relationship
between bounding boxes of detected objects and buildings is established, although
it lucks the scaling of contribution of detected regions in the definitions of Recall and
Precision and it tests the true positiveness of regions instead of buildings. Consequently,
threshold Tov controls mainly the accuracy of matching between bounding boxes and
by no means relates to the counting of small buildings that may be contained in a

32



(a)

(b)

Figure 16: Final results of unsupervised detection for years 2007 (a) and 2010 (b). Detected build-
ings/roads are illustrated in red/blue color, respectively; green boxes and white lines correspond to
the building ground truth and the centerlines of road ground truth, respectively.
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Figure 17: Precision Recall Curves (PRC) and Average Precision (AP) performance value for all
years, using the performance evaluation of (a) the Pascal challenge method with Tov = 0.25 and (b)
the proposed method with TB = 0.25.

single region, making the performance evaluation of Pascal challenge more application-
independent (or application-insensitive).

Similar to other object based detection approaches (Cheng et al. (2013); Han et al.
(2014)), given those definitions of TP and FP, we also adopt the Average Precision
(AP) of Pascal challenge (Everingham et al. (2010)), to evaluate our unsupervised
“building” detection approach, using Tov = 0.25, to quantify the differences with the
proposed performance evaluation method. The PRC as well as the AP for each year
are depicted in Fig. 17(a). The confidence for each detected object, required by the
computation of AP, is provided by the a posteriori probability of the class “building”
given the feature vector of the output object. In Fig. 17(b), the PRC and AP values,
that are obtained for all years using the proposed performance evaluation method, are
shown. As expected by the discussion above, AP is lower in the plot of Fig. 17(a)
for all years, while the better quality of the proposed, unsupervised building detection
method for years 2009 and 2011 is highlighted by the AP of the proposed performance
evaluation metric for those years, in Fig. 17(b).

7.2. Evaluation of the overlap threshold

The role of the overlap threshold in the new performance evaluation metrics has
been also investigated, given the segmentation objects for each year and the fact that
our dataset consists of many small buildings and consequently, errors in ground truth
buildings are, almost certainly, present. The AP obtained for each year and for thresh-
old values

{1/20, 1/10, 1/7, 1/5, 1/4, 1/3, 1/2},
roughly corresponding to groups of 20, 10, 7, 5, 4, 3 and 2 buildings respectively, is
graphically depicted in the plot of Fig. 18. In that plot, the measured AP drops steeply
for thresholds above 0.33, while at exactly 0.25, the AP of the five years quantifies their
segmentation efficiency in two groups, the first one consisting of years 2006, 2007 and
2010 and the second including years 2009 and 2011, for whom the better segmentation
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Figure 18: Average Precision (AP) values, for all years and thresholds
{1/20, 1/10, 1/7, 1/5, 1/4, 1/3, 1/2}. .

quality is achieved. However, at 0.33 the order of years corresponds to the perceived
quality of segmentation, upon which building detection is performed.

Another interesting outcome of the plot is that the order of classification efficiency of
years, changes for thresholds below 0.25, indicating that evaluation below this threshold
value should be avoided, given the dataset. Concluding, the threshold value which
achieves reliable and acceptable performance evaluation results, strongly depends on
the size of buildings and most likely on other parameters, such as the quality of RSI
under examination.

7.3. Comparison to other building detection methods

In what follows, we give comparison results for the SZTAKI-INRIA building detec-
tion dataset (Benedek et al. (2012)) 2, in order to test the robustness and the (as much
as possible) effortless re-usability of our building detection approach to aerial-borne
and satellite-borne input images with quite different capturing conditions and visual
content. A description of the dataset is also included in (Cheng and Han (2016)).
It consists of 2 aerial (with code-names BUDAPEST and SZADA) and 4 satellite
(code-named CÔTE D’ AZUR, BODENSEE, NORMANDY and MANCHESTER)
high-resolution study cases, where only the appearance channels Red, Green and Blue
are available and no resolution information is provided. Benedek et al. (2012) used
this dataset in order to compare their Marked Point Process (MPP) (Descombes and

2http://web.eee.sztaki.hu/remotesensing/building benchmark.html
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Zerubia (2002)) building detection algorithm, to a number of other building detection
methods (Sirmaçek and Ünsalan (2009); Sirmaçek and Ünsalan (2011); Sirmaçek and
Ünsalan (2008); Müller and Zaum (2005)), concluding that their model surpasses the
other methods, using either pixel or object level evaluation metrics.

Although the normalized difference NIR-Red was absent, our automatic OBIA-
based detection system has been performed on this dataset almost “as is”, with the
additional effort of tuning a number of parameters, a fact that highlights its re-usability.
The segmentation and classification results of our method on the sub-image of BU-
DAPEST, selected by Benedek et al. (2012) to demonstrate their results, are shown
in images (a) and (b) of Fig. 19, respectively. The ground truth of this sub-image is
depicted in Fig. 19(c). As it is evident by those images, our method over-segments
rooftops to their parts when they are characterized by obviously perceived, large in-
tensity (luminance) differences. However, those parts are classified to class “building”
by our unsupervised classifier and could be merged back to whole buildings, although
we consider that such a post-processing modification to our detection system is beyond
the scope of this work.

(a) (b) (c)

Figure 19: Segmentation (a), unsupervised classification (b) and ground truth (c) for the sub-image
of BUDAPEST selected by Benedek et al. (2012) to demonstrate their results. Segmentation regions
that are classified to class “building” by the proposed unsupervised classifier are shown with their
natural color in image (b).

The pixel level performance criteria used in (Benedek et al. (2012)) were the same
as in other works (Aksoy et al. (2012); Ok et al. (2013); Ok (2013)). Detected (or
output) and ground truth (reference) buildings are used to define the four categories
of pixel areas, namely, True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN). TP represents those pixel areas containing both detected
and reference buildings. TN represents areas without reference or detected buildings.
FP represents areas containing detected buildings but without reference buildings. FN
represents undetected building areas.

Following the same approach, the performance evaluation results of our work for the
images in this dataset are given in Table 9 (columns “Prop.”). Precision (Pr) and Recall
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(Rc) for the images contained in the dataset are reproduced by (Benedek et al. (2012))
for methods Edge Verification (EV) (Sirmaçek and Ünsalan (2008)) and Segment-
Merge (SM) (Müller and Zaum (2005)) as well. In that table as well as in the freely
available dataset, images ABIDJAN and BEIDJING of (Benedek et al. (2012)) are not
included. Furthermore, our results refer to the overall set of the reference buildings that
are actually included in the dataset, which differs from the set of reference buildings
reported by Benedek et al. (2012), since a small portion of them (about 5% or less
per case study) is used for training only. Taking also into account that Benedek et al.
(2012) incorporate as prior knowledge to their method the assumption that buildings
are rectangles, our building detection method achieves performance near that of MPP,
even if the differences in ground truth data that were used by our two approaches, do
not permit the accurate comparison between them using pixel level performance metrics
and make object level performance comparison not applicable, due to the subjectivity
that they introduce. In order to give a more fair comparison in pixel level, Precision
and Recall values of the methods reported in (Benedek et al. (2012)) were used to
compute TP and FP pixel numbers on the overall set of reference buildings for each
case study of the dataset and the overall F-measure for each method, shown in the
corresponding column of Table 9, was recomputed.

Table 9: Performance evaluation results of the proposed method (Prop.) for the SZTAKI-INRIA
building detection dataset, according to the pixel level metrics used by Benedek et al. (2012) to
evaluate their MPP model. Precision (Pr) and Recall (Rc) for the images contained in the dataset are
reproduced by (Benedek et al. (2012)) for methods Edge Verification (EV) (Sirmaçek and Ünsalan
(2008)) and Segment-Merge (SM) (Müller and Zaum (2005)) as well.

Data Set
EV SM MPP Prop.

Pr Rc Pr Rc Pr Rc Pr Rc

BUDAPEST 0.73 0.46 0.84 0.61 0.82 0.71 0.79 0.61
SZADA 0.61 0.62 0.79 0.71 0.93 0.75 0.74 0.67

CÔTE D’ AZUR 0.73 0.51 0.75 0.61 0.83 0.69 0.76 0.67
BODENSEE 0.56 0.30 0.59 0.41 0.73 0.51 0.71 0.68
NORMANDY 0.60 0.32 0.62 0.55 0.78 0.60 0.72 0.58
MANCHESTER 0.64 0.38 0.60 0.56 0.86 0.63 0.79 0.72

Overall F-measure 0.502 0.614 0.721 0.699

The proposed method has been implemented in Matlab, except of the MRF mini-
mization of the segmentation module, which has been developed as a C++ executable
and is called by the segmentation script, using file reading/writing in order to pass
to it input and get back the segmentation result. We tested our implementation on a
64-bit, Dell Inspiron laptop machine running under Ubuntu 14.04 LTS operating sys-
tem, equipped with an Intel Core i7-4500U CPU @1.80GHz×4 and 8GB SDRAM. We
provide execution times for segmentation, classification and in total, per case study in
Table 10. Case sizes in KiloPixels are also reported since they are different from those
of Benedek et al. (2012). Most of the segmentation times reported in the corresponding
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column of Table 10 is consumed by the MRF minimization method. Our implementa-
tion is fast, consuming on average 31.7 sec. per MegaPixel of visual data, compared
to the corresponding results of Benedek et al. (2012), where the best reported, average
computational time, achieved by the Gabor method (Sirmaçek and Ünsalan (2011)),
is 51 sec. per MegaPixel. It is worth noting that execution times of our system could
be further reduced, since our code is not computationally optimized.

Table 10: Execution times of the proposed algorithm.

Data Set Size (kPix)
Execution Time (seconds)

Segmentation Classification Total

BUDAPEST 294 8.8 1.6 10.4
SZADA 1544 39.2 3.5 42.7

CÖTE D’ AZUR 743 20 3 23
BODENSEE 563 23 3.4 26.4
NORMANDY 1170 30 6.2 36.2
MANCHESTER 1126 28.6 5.1 33.7

Average 907 25 3.8 28.8

7.4. Road detection performance evaluation

Concerning the “road” class we should compare the limit provided by the Random
Forest learning algorithm with our results on independent and on global decisions.
These results are given in Table 11. The gain of the global approach is about 5.6% in

Table 11: Comparison of F-measure obtained for “road” to the best one for the same parameter set.

Year 2006 2007 2009 2010 2011
Random Forest (FS1) 0.8093 0.7846 0.8456 0.8496 0.8302
Unsupervised (I) 0.7081 0.6276 0.7214 0.7206 0.6883
Unsupervised (G) 0.7650 0.6882 0.7749 0.7762 0.7442

F-measure. Both the Recall and the Precision rate are improved by the global road
detection method. Finally, 80% of the road network has been correctly extracted with
a relatively low number of false positives. In addition, thanks to linear pattern fitting
method the road boundaries are also well localized in high accuracy.

8. Conclusions

Building recognition and road extraction in peri-urban environment have been con-
sidered. Our approach was based on objects (regions) extracted by an automatic
segmentation algorithm. The unsupervised classification that follows the segmentation
stage, is based on a Bayesian approach using a small number of visual and shape fea-
tures. The initial, independently classified “road” segments are then used for extracting
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a road network as complete as possible. A new, global algorithm, that exploits the con-
nectivity, rectilinearity, parallelism and perpendicularity properties of road network, is
proposed, giving a substantial improvement in the quality of road detection.

We present now our main conclusions from our experience concerning the problem of
building localization and road detection. Visual and shape features have been evaluated
based on extensive data analysis. The main conclusion on visual features is that the
two normalized spectral band differences (near infrared − red and red − green) and the
luminance, are relevant to the detection of man-made objects in satellite images and
preferable to the original captured data. Concerning the shape features we have tried
to reduce their number, and for the main unsupervised classification module we found
powerful both the mean distance of region pixels to region boundary and the mean
distance of boundary pixels from the region centroid. The object size is also relevant,
as its joint distribution with mean distances is different for the different classes.

Our approach is object-based, therefore an accurate segmentation method was
needed. Hence, in a first stage the vegetation and soil areas have been localized. After
the extraction of the urbanized areas, we found that a set of likely “road” segments
could be identified. Finally, areas of various shapes and sizes have been segmented by
a graph-based unsupervised segmentation algorithm. We adopted a Markovian model,
with a number of sub-classes greater than that of the indented classes, in order to
correctly model the mixture of the classes to be detected, in the feature space. We
performed the important step of obtaining the distributions for the sub-classes, af-
ter pixel-wise vector quantization of the visual appearance data. After extraction of
objects, we have proposed an unsupervised classification method for detecting “build-
ing” and “road” segments. Both visual appearance and region shape features were
employed. We found preferable to identify sub-classes with almost identical and, if
possible, unimodal distribution, for each class. We obtained good enough classification
results in comparison with the reachability threshold set by a Random Forest classifier
trained on the whole ground truth.

Conclusively, as it is evident by the results of the previous Section, we consider that
the proposed framework for simultaneous building and road detection in peri-urban ar-
eas is solid, robust and, the most important, unsupervised, with promising quantitative
and qualitative results, comparable to those obtained by supervised methods. Future
work will include the application of our system in purely urban scenes where the dis-
tinction between man-made classes appears to be more challenging. Furthermore, an
extension of the proposed methodology may include the detection of other classes of
objects such as trees, grass, rivers and lakes/sea.
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