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Abstract: Two problems are addressed in this paper: camera 3-D motion estimation and image depth layering. For the
first problem, the method we adopt is the use of an hierarchy of motion models in combination with robust estimation
methods. A dense motion vector field is assumed to be granted. For the second, an iterative deterministic relaxation
algorithm is used and the extraction of the image depth layers is based on both optical flow and luminance information.

1 Introduction

One of the major areas in computer vision research is
3-D motion analysis. Two general methodologies exist
for achieving 3-D motion estimation based on image se-
quences. According to the first of these approaches, the
3-D motion parameters are obtained through calculations
based on a previouslyestimated 2-D apparent motion vec-
tor field [1] [7]. The second approach tries to evaluate
these 3-D motion parameters directly through the use of
the spatio-temporal derivatives of the intensity function
[6].

The method we adopt in this paper is the former. This
method is based on a scheme consisting of two stages.
During the first stage a dense 2-D motion vector field is
computed. During the second stage, the 3-D motion pa-
rameters are identified by equations linking the projected
2-D motions and 3-D motions inside the image sequence.
We will concentrate on the second stage. In this paper,
when we refer to 3-D motion estimation, we mean domi-
nant motion estimation (or camera motion estimation).

One main problem for the right estimation of the pa-
rameters of the camera motion, is the fact that the optical
flow field may contain a set of noisy and partially incor-
rect data (outliers) [3]. The set of incorrect data can be
even larger, if we consider the case of the existence of in-
dependent motions throughout the image sequence. The
negative effects of this set of outliers to the motion esti-
mation, increase with the complexity of the motion model
which is used to describe the camera motion. Therefore,
the approach we adopt is the use of an hierarchy of mo-
tion models. This hierarchy of models can be structured
in a tree form. A criterion is defined to reject or accept
models. Simpler models are first tested, and then more
complex models are considered. This way we hope to
find the simplest possible model (the one with the fewest
parameters), which can adequately describe the camera
motion. At each stage of the algorithm, a robust estima-
tion method is used to cope with the set of outliers.

After the estimation of camera motion the problem of
depth layering is considered (Section 4), and experimental
results are given in Section 5.

2 Robust estimation of 3-D motion
In this paper the optical flow motion analysis concerns

with the perspective projection of 3-D rigid body motions
onto a 2-D image domain. Without any loss of generality
the focal length is assumed to be known, and for simpli-
fication equal to the length unit. The 2-D motion vector
(u; v) at an image point (x; y) can be expressed using the
instantaneous 3-D translation vector (TX ; TY ; TZ) and
the instantaneous 3-D rotation vector (ΩX ;ΩY ;ΩZ) of
the kinematic screw associated with the moving object [9]
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Using equations (1) to throw the depth Z away, this leads
to the following equation:
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where � = TX=TZ and � = TY =TZ , assuming TZ 6= 0.
If we have managed to find the eight essential motion
parameters of the above linear equation, then the rota-
tion and the translation, within a scale factor, could be
obtained. Therefore, the motion vectors of at least eight
points are needed. However, in practice the observed op-
tical flow vectors may be corrupted by noise. In addition
to that, it is quite possible that there are additional 3-D
motions in the image, apart from the motion of the cam-
era. Consequently, a robust estimation method must be
used to determine the camera’s 3-D motion parameters.

Robust methods provide tools for statistics problems
in which underlying assumptions are inexact [5]. A ro-
bust procedure should be insensitive to departures from
underlying assumptions caused by outliers. That is, it
should have a good performance under the underlying as-
sumptions and the performance deteriorates gracefully as
the situation departs from the assumptions. An impor-
tant characteristic of robust estimators is their breakdown
point, which may be defined as the smallest amount of out-
lier contamination that may force the value of the estimate



outside an arbitrary range. There are several types of ro-
bust estimators: M-estimator, LMedS-estimator and oth-
ers. We are going to be concerned with the M-estimator.

The M-estimation problem could be expressed as fol-
lows: given a set of data samples di and xi, where
di = f(xi; �) + ei, estimate the vector of parameters
� under noise ei. The only underlying assumption is that
the noise obeys a symmetric, independent, identical dis-
tribution. The M-estimate �̂ is defined as the minimum of
a global error function:

�̂ = arg min
X
i

g(di � f(xi; �)) (3)

A data weighting function could be obtained from the er-
ror penalty function g as follows h(e) = g0(e)

2e . In the
Least Squares regression, all data points are weighted
equally with h(e) = 1. In robust M-estimation, the func-
tion h provides adaptive weighting. In this paper we use
the Tukey’s M-estimator (or biweight estimator) with the
following weighting function
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The c parameter in the above function is a scale param-
eter, which plays a crucial role in the success of the M-
estimator. For the Tukey’s biweight estimator, the param-
eter c can be chosen to be: c = c0median(jeij), where c0

is a normalizing constant in the range between 6 and 9.

3 Hierarchy of 3-D motion models

The M-estimator has the theoretical breakpoint of
1=(p+ 1), where p is the number of unknown parameters
to be estimated. What this implies is, that the more the
unknown parameter are, the less robust the M-estimator
becomes. Therefore, if we succeed in reducing the num-
ber of parameters to be found, then we can expect better
results. Therefore, it would seem interesting to try to find
that 3-D model, which can describe the observed motion
adequately, and with as few parameters as possible. Apart
from avoiding large estimation bias, this will also lead to
a major speed-up of the M-estimator. On the other hand,
if a too simple 3-D motion model is chosen for an image
in which the physically observed motions are complex,
this will naturally lead to a poor motion estimation. The
approach we adopt in this paper is to use an hierarchy
of motion models [7]. This hierarchy of motion mod-
els can be structured in a tree form. Once this model
hierarchy has been determined, one needs to define a cri-
terion, which will decide which one among the available
motion models will be chosen to describe the camera’s
motion. The criterion could be the minimization of the
mean squared displaced frame difference associated with
the given model, with a possible additional penalty term
for complex models.

Two possible methodologies for the effective use of
this hierarchy of motion models are the following:

� all motion models are tested in parallel and the best
one is chosen

� the motion models are examined sequentially in a
pre-defined order, one after another. The order of
the models will correspond to a traversal of the
hierarchy tree. Only if the current model fails to
describe the 3-D motion, we examine the next one
in the path. The simplest models are examined first,
and then progressively more complex models are
considered, hoping this way that the simplest model
that matches the camera motion will be chosen.

The methodology we adopted in this paper was the latter.
Models of approximately the same complexity are placed
at the same level of the hierarchy, while deeper levels in
the tree contain models that can describe more complex
motions.

In the general case, the camera’s motion can contain
six degrees of freedom (3-D translation and 3-D rota-
tion). However in most cases and considering certain
assumptions regarding the relative distancing of the var-
ious objects present in the scene in relation to the small
rotation angles of the camera, one can categorize the cam-
era motions to three basic classes [4] [7]

� motions which contain only translation parallel to
the image plane (panning)

� motions which contain only a change to the focal
length (zooming) or tranlation along the optical axis

� and motions which contain only rotation about only
one axis

With these observations in mind, the hierarchy of models
given in Figure 1 was created.

opt. axispanningzoom rotation

translation
full full

rotation

motion
full 3-D

Figure 1. Motion models hierarchy

For all motion models, apart from the estimation of the
camera motion, the points of the image which are consis-
tent with that motion (motion inliers) are detected. For the
simple models of the first level, only acception/rejection
tests are performed without the estimation of motion pa-
rameters. This could also be useful in image analysis
applications where the type of motion and not the exact
motion estimation is wanted. Also, it must be mentioned
that the above hierarchy could be enriched with even more
motion models. In the following paragraphs, each motion
model in the tree of the figure above will be described in
more detail.

3.1 Panning
In this case only one translation component parallel to

the image plane exists (say TX ). Using equations (1) we
conclude that u = TX=Z and v = 0. Since the depth



Z is unknown, TX cannot be computed. We can only
confirm or not the existence of this kind of 3-D motion.
Let us call t the angle between the optical flow vector
and the horizontal axis. The test could be designed on the
measures of this angle. Therefore, to determine the image
points that are consistent with the camera motion we only
need to minimize the following quantity with respect to t,
using a M-estimator technique:

X
i

g(t� arctan(
vi
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))

where the sum is taken over all image points. If the
solution that will be found is close to zero and the number
of inliers is greater than the half of the image points, then
this motion model is accepted, else it is rejected.

3.2 Zooming
In this case the rotation vector is zero, while the trans-

lation vector contains only the TZ component. As in the
case of panning, we cannot estimate TZ exactly, but only
check if zooming exists or not, and also find the motion in-
liers. From equations (2) we see that for any image point
it is true that: xv� yu = 0, where the image coordinates
are relative to the center of the image. This means that
the motion field converges to the image center. Therefore
to find the inliers of the camera motion, we will have to
minimize (with respect to t) the following sum:

X
i

g(t� xivi � yiuip
x2 + y2

p
u2 + v2

)

3.3 Rotation around optical axis
In this case the translation vector is zero, while the

rotation vector contains only one component (ΩZ). From
equations (2) we see that for any image pointxu+yv = 0.
Therefore this case is similar to the previous one.

3.4 Full translation
In this case equation (2) could be written as follows

(TZ 6= 0)
�v � �u = xv � yu

Therefore, we can estimate the ratios TX=TZ and TY =TZ
using a robust regression algorithm, like Tukey’s biweight
estimator.

3.5 Full rotation
Because the depth is not involved in the expression

of the 2-D motion vector, the three components of the
rotation can be robustly estimated directly from the two
equations in (1).

3.6 Full 3-D motion
This is the most general case. In this case equation (2)

should be used with eight unknown parameters in a linear
form, or five parameters in nonlinear form.

4 Depth layering
After the camera motion has been estimated and the

part of the image that is consistent with the camera mo-
tion has been determined, we can try to extract the depth
layers for that part of the image [10] [8]. Obviously the

extraction of the depth layers is not possible in the case of
pure rotational motion. Therefore, only the case of pure
translational motion will be considered here. The case
of full 3-D motion could be reduced to the case of pure
translational motion.

Let us consider only one component of the 2-D motion
field, sayu. It can be seen from equation (1) thatu=(��x)
is constant at a constant depth. In particular in the case of
panning, u should be constant, if the depth were constant.
Therefore, for this particular case, to find the depth layers
inside the image, we only need to segment the optical flow
field into regions of constant value. However, optical flow
field estimation usually contains errors due to occlusions,
noise, etc. Therefore, apart from optical flow we will also
make use of luminance information [8]. The set of labels
that the segmentation algorithm will use, will consist of
labels contributed both by optical flow and luminance.
Although this makes the algorithm more robust, it will
also have as a result that not all the regions generated,
will correspond to different depth layers. For this purpose,
redundant regions will be eliminated at a later stage.

The algorithm for the depth layering consists of three
stages: 1) motion and luminance data clustering, 2) com-
bined motion and luminance segmentation, and 3) region
merging.

4.1 Stage 1: Motion and luminance data clus-
tering

Let us call L0; L1 the labels due to optical flow and
luminance respectively. The set of labels given as an
input to the segmentation algorithm will be the cartesian
product of the above two sets. Therefore, the first problem
to be addressed is that of determining labels L0; L1 and
their corresponding energy functions.

� Determining L0, the set of labels due to optical
flow. We assume that the first component u of the
optical flow field can be decomposed into a mixture
of n Gaussian distributions. The number n and the
parameters of the Gaussian distributions are deter-
mined by the analysis of the optical flow histogram.
The energy function for a label i determined by pa-
rameters (�i; �2

i ) is
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� Determining L1, the set of labels due to lumi-
nance. In this case, in order to reduce the computa-
tional cost, the quantization of the image intensity is
performed. For this purpose a Lloyd-Max quantizer
was used. As in the case of the mixture of Gaussian
distributions, the number of quantization levels is
determined empirically. The energy function for
label j represented by qj is: fj(x) = jx� qjj.

4.2 Stage 2: Combined motion and luminance
segmentation

A global segmentation criterion will be used based on
a Markov random field model. For the minimization of
the resulting energy function an iterative deterministic



relaxation algorithm is used, known as the Highest Con-
fidence First (HCF) algorithm [2]. The HCF algorithm is
completely defined, if the number of labels and an energy
function for each label are given. Each label will corre-
spond to a different depth layer combined with luminance
information. The energy function corresponding to the
label i for motion and j for luminance will be the sum
of the corresponding energy functions. The connected
components of the regions that HCF generated are passed
as input to the next stages of the algorithm.

4.3 Stages 3: Region merging
To eliminate the redundant regions from the previous

stage of the algorithm, region merging must be intro-
duced. The merging of regions will be based solely on
optical flow information. Therefore a metric distance be-
tween two regions should be defined. In this work the
absolute difference of the mean values of the velocity of
two regions is defined to be their distance. At each iter-
ation, we merge that pair of regions with the minimum
distance. The merging continues as long as that minimum
distance is below a certain threshold, otherwise the algo-
rithm stops. All possible region pairs are sorted into a
stack. Pairs with a small distance are placed at the top of
the stack, while pairs with a big distance are placed at the
bottom of the stack. At each iteration the pair on top is
removed. In order to reduce the computational cost, for
regions with a very small size, only adjacent regions are
examined for merging.

5 Experimental results
The algorithm for the camera motion estimation has

been tested on the Stefan sequence. The only independent
motion inside the image is that of the tennis player. The
camera motion is translational along the X and Z axes.
From the set of motion models in the hierarchy tree, those
of simple panning, zooming and rotation around optical
axis were rejected. The full 3-D translation motion model
was selected. The inliers to the camera motion according
to this model, are displayed in Figure 2.

Figure 2. Stefan: camera motion outliers

The algorithm for the depth layering of an image was
tested on the Flower Garden sequence. Before applying
the algorithm to this image sequence, the existence of
panning was confirmed through the use of the hierarchy
models. The final depth layers extracted are those given
at Figure 3.

6 Summary
In this paper, we described methods for solving two

important problems in 3-D motion analysis: camera mo-
tion estimation and image depth layering. Both methods

Figure 3. Flower Garden depth layers

assume that a dense optic flow field is granted. Instead of
having a fixed and predefined motion model, an hierarchy
of models was used to estimate the camera motion. From
the group of models inside this hierarchy, the one with the
fewest parameters that can adequately describe the cam-
era motion is selected. This way the effect of the incorrect
optical flow data is minimized. Concerning the second
problem, an iterative deterministic relaxation algorithm
was used. In this case, to overcome the problem of the
possible existence of outliers in the apparent motion field,
luminance information was also used for the extraction of
the depth layers. The algorithms have been tested on real
image sequences. The results obtained were satisfactory
and proved the robustness of these methods.
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