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Abstract—Over the last several years, major efforts have been
made to develop methods for extracting information from audio-
visual media, in order that they may be stored and retrieved in
databases automatically, based on their content. In this work we
deal with the characterization of an audio signal, which may be
part of a larger audiovisual system or may be autonomous, as for
example in the case of an audio recording stored digitally on disk.
Our goal was to first develop a system for segmentation of the
audio signal, and then classification into one of two main cate-
gories: speech or music. Among the system’s requirements are its
processing speed and its ability to function in a real-time environ-
ment with a small responding delay. Because of the restriction to
two classes, the characteristics that are extracted are considerably
reduced and moreover the required computations are straightfor-
ward. Experimental results show that efficiency is exceptionally
good, without sacrificing performance.

Segmentation is based on mean signal amplitude distribution,
whereas classification utilizes an additional characteristic related
to the frequency. The classification algorithm may be used either
in conjunction with the segmentation algorithm, in which case
it verifies or refutes a music-speech or speech-music change, or
autonomously, with given audio segments. The basic characteris-
tics are computed in 20 ms intervals, resulting in the segments’
limits being specified within an accuracy of 20 ms. The smallest
segment length is one second. The segmentation and classification
algorithms were benchmarked on a large data set, with correct
segmentation about 97% of the time and correct classification
about 95%.

Index Terms—Audio segmentation, speech/music classification,
zero-crossing rate.

I. INTRODUCTION
A. Problem Position

N MANY applications, there is a strong interest in seg-

menting and classifying audio signals. A first content
characterization could be the categorization of an audio signal
as one of speech, music, or silence. Hierarchically, these main
classes could be subdivided, for example, into various music
genres, or by recognition of the speaker. In the present work,
only the first level in the hierarchy is considered.

A variety of systems for audio segmentation and/or classifi-
cation have been proposed and implemented in the past for the
needs of various applications. We present some of them in the
following paragraphs, permitting a methodological comparison

Manuscript received January 11, 2001; revised May 20, 2003. The associaste
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Wayne Wolf.

The authors are with the Department of Computer Science, University of
Crete, Heraklion, Crete GR-714 09 Greece (e-mail: cpanag @csd.uoc.gr).

Digital Object Identifier 10.1109/TMM.2004.840604

with the techniques proposed in this paper. We also report their
performance for related comparisons. However, the test data set
is different and the conclusions are hindered by this fact.

Saunders [6] proposed a technique for discrimination of
audio as speech or music using the energy contour and the
zero-crossing (ZC) rate. This technique was applied to broad-
cast radio divided into segments of 2.4 s, which were classified
using features extracted from intervals of 16 ms. Four measures
of the skewness of the distribution of the ZC rate were used with
a 90% correct classification rate. When a probability measure
on signal energy was added a performance of 98% is reported.

Zhang and Kuo [14] proposed a method for audio segmen-
tation and classification in music, speech, song, environmental
sound and silence, etc. They used features like the energy func-
tion, average ZC rate, the fundamental frequency and the spec-
tral peaks tracks. A heuristic rule-based method was proposed.
In audio classification, they achieved an accuracy rate of more
than 90%, and 95% in audio segmentation.

Scheirer and Slaney [7] used 13 features, of which eight
are extracted from the power spectrum density, for classifying
audio segments. A correct classification percentage of 94.2%
is reported for 20 ms segments and 98.6% for 2.4 s segments.
Tzanetakis and Cook [10] proposed a general framework
for integrating, experimenting with and evaluating different
techniques of audio segmentation and classification. In addi-
tion, they proposed a segmentation method based on feature
change detection. They used energy-spectral based features,
ZC, etc. For their experiments on a large data set, a classifier
performance of about 90% is reported. In a more recent work,
Tzanetakis and Cook [11] proposed a whole file and real-time
frame based classification method using three feature sets
(timbral texture, rhythmic content, and pitch content). They
achieved 61% for ten music genres. This result is considered
comparable to results reported for human musical genre classi-
fication. Also, their music/speech classifier has 86% accuracy
and male/female/sports announcing classifier has 74% accu-
racy.

In [12], a system for content-based classification, search, and
retrieval of audio signals is presented. The sound analysis uses
the signal energy, pitch, central frequency, spectral bandwidth,
and harmonicity. This system is applied mainly in audio data
collections. More general framework related issues are reviewed
in [1].

In [4] and [8], cepstral coefficients are used for classifying
or segmenting speech and music. Moreno and Rifkin [4] model
these data using Gaussian mixtures and train a support vector
machine for the classification. On a set of 173 hours of audio
signals collected from the WWW, a performance of 81.8% is
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reported. In [8], Gaussian mixtures are used too, but the seg-
mentation is obtained by the likelihood ratio. For very short (26
ms) segments, a correct classification rate of 80% is reported.
A general remark concerning the above techniques is that
often a large number of features is used for discriminating a
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certain number of audio classes. Furthermore, the classification
tests are frequently heuristic-based and not derived from an
analysis of the data. In our work, we tried at first to limit
the number of features, as we have limited our task to the
music/speech discrimination. We concluded that a reliable
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discriminator can be designed using only the signal amplitude,
equivalent to the energy used in [6], and the central frequency,
measured by the ZC rate, a feature already exploited in pre-
vious work. In addition, we analyzed the data in order to extract
relevant parameters for making the statistical tests as effective
as possible. However, some of the proposed tests are mainly
heuristic, while other are well defined and based on appropriate
models.

We conclude this introduction by describing the signal and
its basic characteristics as utilized in our work. In Section II, we
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Fig. 7. RMS histogram for a collection of voice data and its fitting by the
generalized x? distribution.

present the proposed segmentation method, which is a change
detector based on a dissimilarity measure of the signal ampli-
tude distribution. In Section III, the classification technique is
presented, which could either complete the segmentation, or
be used independently. Features extracted from the ZC rate are
added and combined with the amplitude parameters.

B. Description of Signal and Its Characteristics

The signal is assumed to be monophonic. In the case of multi-
channel audio signals, the average value per-sample across mul-
tiple channels is taken as input. This may fail in cases where
special effects could affect the difference between two stereo
channels. There are no restrictions on the sampling frequency
functioning equally well from 11025 Hz to 44 100 Hz, while
the sound volume may differ from one recording to another. The
system is designed to fulfill the requirement of independence on
the sampling frequency and on the sound volume, and to depend
only on the audio content. The changes in volume are recog-
nized (Section II), but, if the segment before and the segment
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after the change belong to the same class, the change will be ig-
nored (Section III-B).

Two signal characteristics are used: the amplitude, measured
by the root mean square (RMS), and the mean frequency, mea-
sured by the average density of ZCs. One measure of each is
acquired every 20 ms. For simplifying the calculation, the av-
erage across all the samples of the considered interval is omitted
without any data reduction. The signal amplitude, RMS, and the
ZCs, are therefore defined as follows:

(D

2)
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where
1, a>0
sign(a) =490, a=0
-1, a<O.

Voice and music are distinguished by the distribution of am-
plitude values. Figs. 1 and 2 show the RMS measured as de-
scribed above and the corresponding histogram for a music and
for a speech signal. The distributions are different and this fact
may be exploited for both segmentation and classification. The
mean frequency is approximated by the number of ZCs in the
20 ms interval. Figs. 3 and 4 show the ZC rate and the corre-
sponding histograms for a music and for a voice signal.

The two characteristics used in our work are almost indepen-
dent. We have tested two measures of independence for the ver-
ification of this hypothesis. The first is the Blomquist measure
[3], defined as

_ In1 =y

4 3

n
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where n is the number of data pairs, n; is the number of pairs
with the same sign related to the median values of the two vari-
ables, and n is the number of pairs with opposite sign. The em-
pirical value obtained for V' was about 0.1, showing an almost
sure independence. We have also used the ratio of the mutual
information to the sum of entropies of the two variables

Pij
_, 2.2 Pijlog 54~
ZPilogP%_+ZleogQ%

and have obtained a value of about 0.05, again near the indepen-
dence condition. The independence between the RMS and ZC
of the signal is more clear in music than in speech. This is due to
the fact that speech contains frequent short pauses, where both
the RMS and ZC are close to zero, and therefore correlated in
this case. Also the above values were 10% lower in music data
than in speech data. We exploit this possible discrimination in a
feature defined for the classification.

In [7], [10], and [12] the classification uses features extracted
from the power spectrum density computed by the FFT as the
spectral centroid, which however is strongly correlated with the
ZC rate [2], [6]. In the Appendix we have examined the rela-
tion between ZC rate and spectral centroid for a class of zero-
mean random signals. In cases where there are noisy impulsive

“

sounds, such as drum hits, the ZC rate is much more affected
than the spectral centroid, and they might not be strongly cor-
related. The mean value of sound signals, that we used, was
close to zero, so it was not needed to subtract the mean value
in order to compute the ZCs. In the general case, it is needed
to subtract the mean value [11], therefore the feature should be
the mean-crossing rate. The maximal frequency and the pitch
have been also used, as well as the power spectrum density at
4 Hz, which is roughly the syllabic speech frequency. On the
other hand, the LPC coefficients and the cepstrum analysis, as
they are used for speech analysis, can discriminate speech from
music [4], [8].

II. SEGMENTATION

Segmentation is implemented in real-time and is based only
on RMS. For each 1 s frame, 50 values of the RMS are computed
from successive intervals of 20 ms. The mean and the variance
of the RMS are calculated for each frame. The segmentation
algorithm is separated in two stages. In the first stage, the tran-
sition frame is detected. In the second stage, the instant of tran-
sition, with an accuracy of 20 ms, is marked. The last stage is
more time consuming, but it is employed only in case of frame
change detection.
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Fig. 13. Change detection is illustrated and the signal amplitude shown. No
transition loss occurs, but some segments are over-segmented.

The instantaneous accuracy is fixed at 20 ms because the
human perceptual system is generally not more precise, and
moreover because speech signals remain stationary for 5-20 ms
[9]. The maximal interval for measuring speech characteristics
should therefore be limited to intervals of 20 ms.

A. Change Detection Between Frames

The technique used for detecting potential frames containing
achange is represented in Fig. 5. A change is detected in frame ¢
if the previous and the next frames are sufficiently different. The
detection is based on the distribution of the RMS values, which
differ between speech and music, as seen in the previous section.
In speech the variance is large in comparison with the mean
value, because there are pauses between syllables and words,
while in music the variation of the amplitude remains in general
moderated.
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We need an appropriate model for the RMS distribution, since
we have only 50 values per frame, in order to measure frames’
dissimilarity. Then the dissimilarity is obtained as a function
of the models’ parameters. We have observed that the gener-
alized x? distribution fits well the histograms for both music
and speech (Figs. 6 and 7). We can see that the approximation
is acceptable. The good fit is due to the Laplacian (symmetric
exponential) distribution of the audio signals. The generalized
x? distribution is defined by the probability density function

a,—bx

z%e
x> 0.

SERLarn U7 ©

p(z)

The parameters a, b are related to the the mean and the variance
values of the RMS,

2 2
a="—1 and b=". (6)
o I

The segmentation will be based on a dissimilarity measure,
which is applied between frames. We propose to use a known
similarity measure defined on the probability density functions

p(p1,p2) = / V1(x)p2(z)ds (7

The similarity takes values in the interval [0, 1], where the
value 1 means identical distributions, and zero means com-
pletely nonintersecting distributions. For this reason, the value
1 — p(p1,p2), known as the Matusita distance [13], can be in-
terpreted as the distance between the content of the two frames.
It is well-known that the above similarity measure is related to
the classification error [13]. For the case of two equiprobable
hypotheses the classification error is bounded by

P < p(phpz)_

<= ®)
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For the generalized y? distribution the similarity measure de-
pends on the parameters a and b,

ajtag @gtl a1+l
27 T b,

P(Pl P2) = F(GHQ—@ + 1)
’ V(a1 + DT (az + 1) (by + by) 52+

&)

At first the similarity measure, or the corresponding distance,
is used for localizing a candidate change frame. Therefore, we
compute for each frame 7 a value D(4), which gives the possi-
bility of a change within that frame

D(i) =1 — p(pi—1,pit1)- (10)

Basically, if there is a single change within frame ¢, then frames
1 — 1 and 7 + 1 must differ. On the other hand, if the change is
instantaneous, e.g., a very brief interval within the frame, then
frames i— 1 and i+ 1 will be similar and the factor p(p;—1, pi+1)
will be close to 1 and the D(%) will be small. The system is de-
signed to extract any important change from music to voice, and
vice versa, or very large changes in volume, as for example from
silence to an audible sound. These changes locally maximize the
D(%) and can be detected with a suitable threshold.

However, some filtering or normalization is needed. One
reason is that relatively large distances are also expected in
the neighboring frames of a change frame. Furthermore an
adaptation of the threshold should be introduced, since the
audio signal activity is time-variant. The latter is more relevant
for voice signals. In any case the nonstationarity of the audio
signals should be taken into consideration. We introduce the
locally normalized distance, as follows:

Du(i) = D)V (7)

" Dy ()

where V(i) measures the (positive) difference of D(¢) from the
mean value of the neighboring frames. If the difference is neg-
ative, it is set to zero. Dy,(%) is the maximal value of distances
in the same neighborhood of the examined frame. In the current
implementation we use a neighborhood of two frames before
and two frames after the current one. The comparison of the

(11)

distance D(%) and the normalized distance is illustrated for two
examples in Figs. 8 and 9. The local maxima of D, (%) are deter-
mined provided that they exceed some threshold. The threshold
on D, (%) is set according to the local variation of the simi-
larity measure. If the similarity variation is small, the detector
is more sensitive, while in the case of large similarity variation,
the threshold is larger. This procedure introduces a delay of 3 s,
which is necessary for the change detection. It is needed to ex-
amine the next frames of frame ¢, in order to determine if there is
achange in frame 2. The method is remaining a real-time process
with 3 s delay. At the end of this procedure we have the change
candidate frames.

B. Change Instant Detection

The next step is detecting the change within an accuracy of
20 ms, the maximal accuracy of our method (Fig. 10). For each
of the frames, we find the time instant where two successive
frames, located before and after this instant, have the maximum
distance. The duration of the two frames is always 1 s and the
distance measure is based on the similarity measure defined in
(9). At the end of the segmentation stage, homogeneous seg-
ments of RMS have been obtained. Our aim was to find all pos-
sible audible changes, even those based only on volume or other
features. An oversegmentation is very probable, if we are in-
terested only on the main discrimination between speech and
music. If just the volume changes, the segmentation method will
find a change. The final segmentation is completed by a classi-
fication stage, which could also be used independently for the
characterization of audio signals. In Figs. 11 and 12, we show
the instant change detection for two frames.

C. Segmentation Results

In our experiments we obtained reliable detection results. Be-
cause in our scheme segmentation is completed by the classi-
fication, false detections can be corrected by the classification
module. Thus the detection probability is the appropriate quality
evaluation measure.

Our data set is described in Section IV. The segmentation al-
gorithm was tested by test files that were created by our data



set. These files contained speech, music, and silent transitions.
There were about 100 speech/music transitions and about 20 si-
lence/(speech-music) transitions. The results for this last case
were always correct. The duration of each segment varied from
2 to 30 s. In most cases the volume in speech/music transitions
was similar in order to drive the segmentor to detect changes in
form of RMS distribution.

We have tested our technique on the above test files, and ob-
tained a 97% detection probability, i.e., only 3% of real changes
have been missed. Accuracy in the determination of the change
instant was very good, almost always within an interval of 0.2
s. Some examples of segmentation results are shown in Figs. 8,
9, and 13.

III. CLASSIFICATION
A. Features

For each segment extracted by the segmentation stage some
features are computed and used for classifying the segment. We
call these features the actual features, which are obtained from
the basic characteristics, i.e., the signal amplitude and the ZCs.
We will define some tests, which will be implemented in sequen-
tial order, taking into consideration that the basic characteristics
are nearly independent. The discrimination is based mainly on
the pauses, which occur in speech signals due to syllables and
word separation.

1) Normalized RMS Variance: The normalized RMS vari-
ance (0%) is defined as the ratio of the RMS variance to the
square of RMS mean. It is therefore equal to the inverse of pa-
rameter a + 1 defined in (6). This feature is volume invariant.
In Fig. 14, we show two typical histograms of the normalized
RMS variance for speech and music signals. We observe that
the two distributions are almost nonoverlapping, and thus the
normalized variance discriminates very well the two classes. In
our experiments 88% of speech segments have a value of nor-
malized RMS variance greater than a separation threshold of
0.24, while 84% of music segments have a value less than the
same threshold. In addition the two distributions can be approx-
imated by the generalized x? distribution, and using the max-
imum likelihood principle we obtain the aforementioned sepa-
rating threshold. The normalized RMS variance is used as the
last test in the proposed algorithm.

2) The Probability of Null Zero-Crossings (ZC0): The ZC
rate is related to the mean frequency for a given segment. In the
case of a silent interval the number of ZCs is null. In speech
there are always some silent intervals, thus the occurrence of
null zero-crossings (ZCO) is a relevant feature for identifying
speech. Thus, if this feature exceeds a certain threshold, the
tested segment almost certainly contains a voice signal. In our
work the threshold on the probability of ZCO is set to 0.1 (see the
histogram shown in Fig. 4). Our experiments showed that about
40% of speech segments verify this criterion, while we have not
found any music segment exceeding the threshold. Some speech
segments don’t satisfy the above criterion because of noise or
fast speaking rate. Comparing the histograms in Figs. 3 and 4,
we see the discriminating capability of the null ZCs feature.

3) Joint RMS/ZC Measure: Together with the RMS and null
ZCs features we exploit the fact that RMS and ZC are somewhat
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and in the top the detected silent intervals. Silent intervals are more frequent in
speech than in music.

TABLE 1
PERFORMANCE OF THE VARIOUS FEATURES INDIVIDUALLY
AND IN CONJUCTION

Features Performance | Performance
in music in speech
ZCo 90% 60%
o? 84% 88%
Cz 90% 60%
0124, ZCo0 80% 97%
G%, Cz 82% 97%
Cz, 0% 80% 97%
ZCo, % 0% 97%
F,, 0% 88% 92%
F,, Cz, max(ZC), ZC0, o} 92% 97%
Segmentation
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Fig. 16. Result of classification after the change detection. The second and the
fourth segment are music, while the others are speech.

correlated for speech signals, while essentially independent for
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music signals. Thus we define a feature related to the product of
RMS and ZC

S AG)a()

CZ_2Ax—An—Am

(12)
with A, = max{A(:) : 1 < ¢ < N}, A, = min{A(%)

1 <4 < N}, and 4,, = median{A() : 1 < i < N}
This is a normalized correlation measure. The normalization by
2A, — A, — A,, is used because in speech signals the max-
imal RMS value is much larger than the median and the min-
imum values in comparison with the case of music signals. The
test consists of comparing this feature to some empirically set
threshold. If C'7 is close to 0, then the segment is classified as
speech. Thus even if the correlation between RMS and ZC may

9
Segmentation
1 T T T T T T T T T
0.5 i
0
0 2 4 6 8 10 12 14 16 time (sec)
classification type
3 T T T T T T T
251 4
2 4
151 b
1 . | . | 1 | | 1 |
0 2 4 6 8 10 12 14 16 time (sec)
RMS
15 T T T T T T T T
10+
5 1
0 A h ) I 1 L
0 2 4 6 8 10 12 14 16 time (sec)
Fig. 19. Example of correct segmentation and erroneous classification.
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Fig. 20. False classifications due to a highly variant amplitude and to the
presence of pauses in a music signal.

be not negligible, the two classes are discriminated by the large
deviations in speech signals.

4) Silent Intervals Frequency: The silent intervals fre-
quency, F,, can discriminate music from speech, as it is in
general greater for speech than for music. It is intended to
measure the frequency of syllables. For music this feature
almost always takes on a small value. Firstly, silent intervals
are detected. A test is defined on the RMS value A and the ZC
rate, as follows:

(A< Ty)or(A<01Acand A < Ty)or (ZC=0) (13)

where A, is the maximum RMS value on the whole segment.
This test is applied over intervals of 20 ms. Using the above test
a silent interval can be detected if its energy is very low or the
number of zero crossings is null (ZC = 0). Because of noise,
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Fig. 21.
Gauss—Markov first order process.

there are cases where A > T7, but these segments are silent in-
tervals. This is solved by using the statement (A < 0.1A4, and
A < T5). After detecting the silent intervals, neighboring silent
intervals are grouped, as well as successive audible intervals.
The number of silent intervals reported over the whole segment
defines the so-called silent intervals frequency. In our experi-
ments we found that almost always for speech signals £, > 0.6,
while for at least 65% of music segments, F;,, < 0.6. This feature
is highly correlated to the above defined ZCO0. F, is the rate of
the silent intervals meanwhile ZCO measures the duration of the
silent intervals. Fig. 15 shows a transition from music to speech
very well discriminated by the described feature.

5) Maximal Mean Frequency: One of the basic characteris-
tics of speech waveforms is that they are bandlimited to about
3.2 kHz. The mean frequency is therefore smaller than this limit,
and the maximal mean frequency (max(ZC)) can be used for
taking advantage of this property. This feature can be estimated
using the ZC rate. In order to reduce noise effects, only intervals
with a large RMS value are considered. For speech signals the
maximal mean frequency is almost always less than 2.4 kHz,
while for music segments it can be much greater.

B. Classification Algorithm

Each segment is classified into one of three classes: silence,
speech, or music. First, it is decided whether a signal is present
and if so, the speech/music discrimination takes place.

1) Silent Segments Recognition: A measure of signal ampli-
tude for a given segment is used for testing the signal presence

0.3
E =074, + ;A(z). (14)

Probability of ZC (solid line), the central frequency (dashed line) and their ratio (dashdot line) as a function of the correlation coefficient of a

This is a robust estimate of signal amplitude as a weighted sum
of mean and median of the RMS. If the volume of silent seg-
ment is low and the segmentation method gives accurate bound-
aries for the silent segment its classification will be easy (using
just the mean of RMS). In the opposite case (there is an error
in boundary computation or noise in silent segment), we need
a more robust criterion (a combination of mean value and me-
dian value of RMS). The weights were set according to the ex-
perimental results. A threshold is set for detecting the effective
signal presence.

2) Speech/Music Discrimination: When the presence of a
signal is verified, the discrimination in speech or music follows.
The speech/music discriminator consists of a sequence of tests
based on the above features. The tests performed are the fol-
lowing:

Silent intervals frequency: If F,, < 0.6, the segment is

classified as music. This test classifies about 50% of music

segments.

RMS*ZC product: 1f the feature C'z is less than an empiri-

cally preset threshold, the segment is classified as speech.

Probability of ZCO: If this probability is greater than 0.1,

the segment is classified as music.

Maximal mean frequency: If this frequency exceeds 2.4

kHz, the segment is classified as music.

Normalized RMS variance If the normalized RMS variance

is greater than 0.24, the segment is classified as speech,

otherwise it is classified as music.
The first four tests are positive classification criteria, i.e., if satis-
fied they indicate a particular class, otherwise we proceed to the
next test for classification. Their order was determined by their
performance (the first test has 100% performance, meanwhile
the last one has 86%). The first four tests, which classify only in
case of positive response, have almost 100% performance, i.e. a
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positive response is almost sure. This means that the thresholds
are selected in order to obtain an almost sure result. The last test
on the normalized RMS variance may lead to misclassifications.
For this reason we choose the above simple and sequential algo-
rithm instead of a more sophisticated procedure using machine
learning techniques or neural networks. In our experiments the
first four tests classified roughly 60% of the music segments and
40% of speech. The final test must decide the remaining seg-
ments, and here classification errors may occur. The different
results are presented in the following section.

IV. RESULTS

We have tested the proposed algorithms on a data set con-
taining audio input through a computer’s soundcard (15%),
audio files from the WWW (15%), and recordings obtained
from various archival audio CD’s (70%). The sampling fre-
quency ranged from 11025 Hz to 44 100 Hz. The total speech
duration was 11328 s (3 h, 9 min) which was subdivided by
the segmentation algorithm into about 800 segments (overseg-
mentation); 97% of these segments were correctly classified as
speech. The total music duration was 3131 s (52 min), which
was subdivided by the segmentation algorithm into about 400
segments (oversegmentation); 92% of these segments were
correctly classified as music. The total number of speakers was
92 and the total number of music parts was 80. It has been used
many different types of music like classical, jazz, rock, metal,
blues, disco, techno, electronic.

In Table I, we present the experimental results. The various
features are considered alone and in conjunction with others.
The results with the complete above described algorithm are
summarized in the last row of the table. The features are given
in sequential order as processed. The normalized RMS variance
alone has a success rate of about 86%. When it is combined with
frequency measures, the correct classification rate reaches about
95%. Since all features are derived from the basic characteristics
of signal amplitude and ZC rate, the combined use of the five
features does not significantly increase the computation time.

Further results are given in Figs. 16—18. Each contains three
plots: (a) the segmentation result, (b) the classification result,
where 1 corresponds to music, 2 corresponds to speech and 3
corresponds to silence, and (c) the signal amplitude which alone
determines the changes. The classification is always correct in
these three files. Sometimes the signal is over-segmented, but
the classifier retains only speech-to-music or music-to-speech
transitions. We also present two results with erroneous clas-
sifications in Figs. 19 and 20. In both cases music with fre-
quent instantaneous pauses and significant amplitude variations
is falsely classified as speech.

The comparison with other methods could be unfair due to
the variety of the data sets used. In the review of other methods
presented in the Introduction, it appears that the correct classi-
fication percentage reported may vary from 80% to 99%, de-
pending on the duration of the segments and of course on the
data set. It should also depend on the features selected and the
method applied, but no benchmark is available in order to have
a definitive and reliable assessment of the different features and
methods. Taking that into consideration, we can claim that we
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have proposed a new method which is simultaneously efficient,
i.e., computable in real-time, and very effective.

V. CONCLUSION

In this paper, we have proposed a fast and effective algorithm
for audio segmentation and classification as speech, music or si-
lence. The energy distribution seems to suffice for segmenting
the signal, with only about 3% transition loss. The segmenta-
tion is completed by the classification of the resulting segments.
Some changes are verified by the classifier, and other segments
are fused for retaining only the speech/music transitions. The
classification needs the use of the central frequency, which is es-
timated efficiently by the ZC rate. The fact that the signal ampli-
tude and the ZC rate are almost independent is appropriately ex-
ploited in the design of the implemented sequential tests. How-
ever, we have to note that for some musical genres the ZC rate
could be low, while for impulsive musical sounds the ZC rate
may be not so correlated to the spectral centroid as expected
by our method. While the main advantage of the ZC rate is its
simplicity, redundancy should be added in order to increase the
robustness of the algorithm. A possible extension could be ob-
tained by using the FFT with a few number of coefficients.

One possible application of the developed methods, which
can be implemented in real-time, is in content-based indexing
and retrieval of audio signals. The algorithms could also be
used for monitoring broadcast radio, or as a preprocessing stage
for speech recognition. Another possible application might be
in portable devices with limited computing power such as cell
phones, voice recorders, etc.

In the future, the methods introduced here could be extended
to a more detailed characterization and description of audio.
They may be used at the first hierarchical level of a classifier, and
then continue by classifying into more specific categories, for
example, classifying the music genre or identifying the speaker.
The segmentation stage could be combined with video shot de-
tection in audiovisual analysis.

APPENDIX
CORRELATION BETWEEN ZERO-CROSSING RATE
AND CENTRAL FREQUENCY

The statistical characterization of the ZCs is a difficult
problem. The ZC rate depends on the properties of the random
process. In [5, pp. 485-487], it is proven that the density of ZCs
for a continuous Gaussian process is

st
7= sipa ok ()

where S( f) is the power spectrum density of the random process
and f. its spectrum centroid.

We examine in addition the correlation between the ZC rate
and central frequency for a class of discrete-time random sig-
nals (X(n)). Let X1 and X5 be two random variables corre-
sponding to two successive values of a first-order zero-mean
Gauss Markov process.



Then the probability of a ZC P(ZC) is given by
P(ZC)

Pr{X,X, < 0}

22 _20zyt+y?
2(1—a?)

1 0o 0
—_— dz dy (16
=l L. iy 09

where « is the correlation coefficient between X7 and X5. The
autocorrelation function v(m) of these signals is given by

Y(m) = E{X(n) - X(n —m)} = o2al™ (17)
The central frequency of the power spectrum is given by
0.5 72 df
fc _ 00.5 1+a272o;cos(27rf) ) (18)

0 1+a?—2acos(2mf) df

The above integrals do not have a closed form, so we have
computed them numerically for many values of «.. In Fig. 21 we
plot the P(ZC) and f, for many values of «. We observed that
the P(ZC) and f. are strongly correlated (P(ZC) = 1.71f,).
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