
University of Crete Institute of Computer Science
Department of Computer Science

Expressive Speech Analysis and Classification using
adaptive Sinusoidal Modeling

M.Sc. Thesis

Theodora Yakoumaki

Heraklion, April 2015

© 2015 University of Crete & ICS-FO.R.T.H. All rights reserved





UNIVERSITY OF CRETE
SCHOOL OF SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

Expressive Speech Analysis and Classification using adaptive
Sinusoidal Modeling

Submitted by

Theodora Yakoumaki

in partial fulfilment of the requirements for the
Master of Science degree in Computer Science

Author:
Theodora Yakoumaki

Department of Computer Science

Examination Committee:

Supervisor
Yannis Stylianou, Professor, University of Crete

Member
Athanasios Mouchtaris, Assistant Professor, University of Crete

Member
Margarita Kotti, Researcher, Imperial College London, UK

Departmental Approval:

Chairman of the
Graduates Studies Committee Antonis Argyros, Professor, University of Crete

Heraklion, April 2015

3



4



Acknowledgements

First of all, I would like to thank my supervisor, Professor Yannis Stylianou, for giving me the
opportunity to become a member of his team, for his guidance and trust that he showed during
the time we worked together.

I am also specially grateful to have worked with Dr. George Kafentzis. George thank you
so much for your continuous support and guidance. It was great pleasure to work with you and
learn from you.

Special thanks also to Professor Athanasios Mouchtaris, member of my dissertation com-
mittee, for the cooperation we have had for half a year. Also, special thanks to Ms Margarita
Kotti for being member of my dissertation committee and for her advices in expressive speech
databases in ISCA Summer School.

I would also like to thank all my colleagues at the Multimedia Informatics Laboratory. My
warmest thanks to Olina Simantiraki, Sofia Yanikaki and Myros Apostolakis for sharing all these
hours inside the lab. A special thank to Maria Koutsogianaki for being so helpful and encourag-
ing. I would also like to thank Tasos for the presentation of my paper in EUSIPCO.

A huge thank to my dearest friend and also colleague at the lab Veronica Morfi for all the
moments that we have passed through these 7 years of our studies. Vero, i wish your dreams
come true! I would also like to thank my closest friends Amalia, Anna, Valentina, Konstantina,
Christina and Fofi for their love and trust all these years. Special thanks also to my beloved
friends Mina, Makis and Haris for being there for me providing me encourage, advise and laugh!

Last but not least, the greatest “thank you” to my family: my parents, Yiannis and Eutuxia,
for their love, trust, encourage and patient during the years of my studies. My brother Manolis
for showing so much patient being in the same house with me all these years. My grandmothers
Theodora and Argyro, and my closest relatives Giannis, Eleni, Marianna, Giorgos and May-britt.
At last, i would like to thank my famous dog, Fourier, for his unconditional love and obedience.

Thank you all!

5



6



Abstract

Emotional (or stressed/expressive) speech can be defined as the speech style produced by

an emotionally charged speaker. Speakers that feel sad, angry, happy and neutral put a certain

stress in their speech that is typically characterized as emotional. Processing of emotional speech

is assumed among the most challenging speech styles for modelling, recognition, and classifi-

cations. The emotional condition of speakers may be revealed by the analysis of their speech,

and such knowledge could be effective in emergency conditions, health care applications, and as

pre-processing step in recognition and classification systems, among others.

Acoustic analysis of speech produced under different emotional conditions reveals a great

number of speech characteristics that vary according to the emotional state of the speaker. There-

fore these characteristics could be used to identify and/or classify different emotional speech

styles. There is little research on the parameters of the Sinusoidal Model (SM), namely am-

plitude, frequency, and phase as features to separate different speaking styles. However, the

estimation of these parameters is subjected to an important constraint; they are derived under

the assumption of local stationarity, that is, the speech signal is assumed to be stationary inside

the analysis window. Nonetheless, speaking styles described as fast or angry may not hold this

assumption. Recently, this problem has been handled by the adaptive Sinusoidal Models (aSMs),

by projecting the signal onto a set of amplitude and frequency varying basis functions inside the

analysis window. Hence, sinusoidal parameters are more accurately estimated.

In this thesis, we propose the use of an adaptive Sinusoidal Model (aSM), the extended adap-

tive Quasi-Harmonic Model (eaQHM), for emotional speech analysis and classification. The

eaQHM adapts the amplitude and the phase of the basis functions to the local characteristics of

the signal. Firstly, the eaQHM is employed to analyze emotional speech in accurate, robust, con-

tinuous, time-varying parameters (amplitude and frequency). It is shown that these parameters

can adequately and accurately represent emotional speech content. Using a well known database
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of pre-labeled narrowband expressive speech (SUSAS) and the emotional database of Berlin, we

show that very high Signal to Reconstruction Error Ratio (SRER) values can be obtained, com-

pared to the standard Sinusoidal Model (SM). Specifically, eaQHM outperforms SM in average

by 100% in SRER. Additionally, formal listening tests,on a wideband custom emotional speech

database of running speech, show that eaQHM outperforms SM from a perceptual resynthesis

quality point of view. The parameters obtained from the eaQHM models can represent more

accurately an emotional speech signal. We propose the use of these parameters in an applica-

tion based on emotional speech, the classification of emotional speech. Using the SUSAS and

Berlin databases we develop two separate Vector Quantizers (VQs) for the classification, one for

amplitude and one for frequency features. Finally, we suggest a combined amplitude-frequency

classification scheme. Experiments show that both single and combined classification schemes

achieve higher performance when the features are obtained from eaQHM.



Περίληψη

Η εκφραστική (ή αγχωμένη/ συναισθηματική) ομιλία μπορεί να ορισθεί ως το είδος ομιλίας

το οποίο παράγεται από έναν ομιλητή ο οποίος είναι συναισθηματικά φορτισμένος. Ομιλητές

οι οποίοι αισθάνονται λυπημένοι, θυμωμένοι, χαρούμενοι ή ουδέτεροι προσθέτουν ένα συγ-

κεκριμένο βάρος στην ομιλία τους, το οποίο συνήθως χαρακτηρίζεται ως συναίσθημα. Η

επεξεργασία της εκφραστικής ομιλίας θεωρείται μια από τις πιο απαιτητικές διεργασίες για

μοντελοποίηση, αναγνώριση και ταξινόμηση συναισθήματος. Η συναισθηματική κατάσταση

ενός ομιλιτή μπορεί να αποκαλυφθεί από την ανάλυση της ομιλίας του, και μια τέτοιου είδους

γνώση θα ήταν χρήσιμη σε καταστάσεις εκτάκτου ανάγκης, σε εφαργμογές υγείας, καθώς

και μεταξύ άλλων ως ένα στάδιο επεξεργασίας σε συστήματα αναγνώρισης και ταξινόμησης

του συναισθήματος.

Η ακουστική ανάλυση της ομιλίας η οποία παράγεται κάτω από διάφορες συναισθηματικές

καταστάσεις αποκαλύπτει έναν εξαιρετικά μεγάλο αριθμό χαρακτηριστικών τα οποία ποικίλουν

ανάλογα με τον είδος της συναισθηματικής κατάστασης του ομιλητή. Ως εκ τούτου αυτά

τα χαρακτηριστικά θα μπορούσαν να χρησιμοποιηθούν για αναγνώρηση και/ή ταξινόμηση

διαφόρων συναισθηματικών καταστάσεων. Υπάρχει πολύ μικρή έρευνα πάνω στις παραμέτρους

του Ημιτονοειδούς Μοντέλου (SM), (οι οποίες είναι το πλάτος, η συχνότητα και η φάση)

ως γνωρίσματα για τον διαχωρισμό των ειδών ομιλίας. Ωστόσο, η εκτίμηση αυτών των

παραμέτρων υπόκειται σε έναν πολύ σημαντικό περιορισμό: εξάγονται με την παραδοχή της

‘τοπικής στασιμότητας ’, ότι δηλαδή το σήμα φωνής θεωρείται στάσιμο μέσα σε ένα παράθυρο

ανάλυσης. ΄Ομως, είδη ομιλίας τα οποία χαρακτηρίζονται ως γρήγορα ή θυμωμένα ίσως να

μην συμφωνούν με αυτή την παραδοχή. Προσφάτως, αυτό το πρόβλημα το χειρίζονται με

επιτυχία τα προσαρμόσιμα Ημιτονοειδή Μοντέλα (aSMs), προβάλλοντας το σήμα επάνω σε

ένα σύνολο συναρτήσεων βάσης μεταβλητής συχνότητας και πλάτους μέσα σε ένα παράθυρο
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ανάλυσης. Ως εκ τούτου, οι ημιτονοειδείς παράμετροι εκτιμούνται με περισσότερη ακρίβεια σε

σχέση με τα συνήθη ημιτονοειδή μοντέλα.

Σε αυτή την εργασία, προτείνουμε την χρήση ενός προσαρμόσιμου Ημιτονοειδούς Μοντέλου

(aSM), το εκτεταμένο προσαρμόσιμο Σχεδόν - Αρμονικό Μοντέλο (eaQHM), για ανάλυση

και ταξινόμηση συναισθηματικής ομιλίας. Το (eaQHM) προσαρμόζει το πλάτος και την φάση

των συναρτήσεων βάσης στα τοπικά χαρακτηριστικά του σήματος. Αρχικά, το (eaQHM)

καλείται να αναλύσει την εκφραστική ομιλία με πιο ακριβείς, αξιόπιστες, συνεχόμενες, χρονικά

- μεταβαλλόμενες παραμέτρους (πλάτη και συχνότητες). Αποδεικνύεται ότι οι παράμετροι

αυτοί μπορούν να αναπαραστήσουν το εκφραστικό περιεχόμενο της ομιλίας με επάρκεια και

ακρίβεια σε σχέση με τα συνήθη ημιτονοειδή μοντέλα. Χρησιμοποιώντας μια πολύ διαδεδομένη

βάση δεδομένων προ-επισημασμένης στενής ζώνης εκφραστικής ομιλίας (SUSAS) και την εκ-

φραστική βάση δεδομένων του Βερολίνου (EmoDB), δείχνουμε ότι μπορούμε να επιτύχουμε

πολύ υψηλή αναλογία σφάλματος σήματος ως προς το σφάλμα ανακατασκευής (SRER), σε

σύγκριση με το κλασσικό Ημιτονοειδές Μοντέλο (SM). Συγκεκριμένα, το (eaQHM) ξεπερνά

το (SM) κατά 100% μέσο όρο (SRER). Επιπλέον, έγιναν επίσημα ακουστικά τέστ, σε

μια δεύτερη ευρείας ζώνης βάση δεδομένων με ομιλία, τα οποία δείχνουν ότι το (eaQHM)

ξεπερνά το (SM) σε ότι αφορά την ποιότητα ανακατασκευής. Οι παράμετροι οι οποίοι μας

παρέχει το (eaQHM) μοντέλο μπορούν να αναπαραστήσουν με ακρίβεια ένα σήμα εκφραστικής

ομιλίας. Προτείνουμε την χρήση αυτών των παραμέτρων σε μια εφαρμογή που βασίζεται

στην εκφραστική ομιλία, στην ταξινόμηση της εκφραστικής ομιλίας. Χρησιμοποιώντας τις

βάσεις δεδομένων της (SUSAS) και (EmoDB) για την κατασκευή δύο χωριστών Διανυσ-

ματικών Κβαντιστών (VQ) για ταξινόμηση, ένα για τα πλάτη και ένα για τις συχνότητες

ως γνωρίσματα. Τέλος, προτείνουμε ένα συνδυαστικό σχήμα ταξινόμησης με πλάτη και

συχνότητες. Τα αποτελέσματα δείχνουν ότι τόσο για τα απλά γνωρίσματα όσο και για τα

συνδυαστικά επιτυγχάνεται καλύτερη απόδοση χρησιμοποιώντας το (eaQHM) αντί του (SM)

.
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Chapter 1

General Introduction

According to the Darwinian theory each emotion contains some physiological and psycho-
logical variations which affects the characteristics of speech. Expressive speech is produced
by these variations. Emotional speech styles include angry speech, sad speech, etc. In human
communication one speaker is able to determine the emotion of the other. However, in human
- computer interaction there is still difficulty in accurate emotion recognition through speech.
Emotion recognition techniques are trying to automatically recognize the emotional state of the
speaker. The knowledge of the emotional state of the speaker could be helpful in emergency
conditions [90], health care applications [5] and as a pre-processing step in recognition and
classification systems.

Most of the proposed techniques in emotional speech classification and analysis are based on
the use of a large set of spectral and prosodic features, or a combination of them. The Cepstral
and Linear Prediction coefficients are used as spectral features and the intonation, power, rhythm
are used as prosodic features. Hidden Markov models (HMM) [27, 79, 16, 67, 50, 68],Neural
Networks (NN), [22, 65, 6], Gaussian Mixture models (GMM) [57, 4], Support Vector ma-
chines(SVM) [34, 55] and Vector Quantization (VQ) [79, 48] are some of the proposed models
for emotion classification. The results so far have shown that spectral characteristics of speech
are more useful for emotion classification compared to prosodic ones. Sinusoidal models [62]
are widely used in analysis [62, 79, 77], coding [63, 1], transformations [76], and synthesis
[62, 77, 62] of speech, but their application on emotional speech analysis and classification is
rather limited [79, 26, 96]

The goal of these thesis is to evaluate the parameters (amplitude,frequency) estimated by an
adaptive sinusoidal model (aSM),called the extended adaptive Quasi-Harmonic Model - eaQHM
[46] as features for emotional speech analysis and classification, using a well known database
(SUSAS), the emotional database of Berlin and a small custom database of Toshiba. The results
of amplitude, frequency and a combination of them, applied in a 128-bit Vector Quantizer(VQ),
show that eaQHM can outperform the standard Sinusoidal Model in classification scores of ex-
pressive speech. In this introductory chapter, the speech production mechanism fundamentals
will be discussed and a brief review of the sinusoidal models will be given.

1.1 The Mechanism of Human Speech Production
Speech is produced by a complicated mechanism which we will briefly view. At first in

Figures 1.1a and 1.1b we see the basic parts and organs which conduce to speech production
and are divided into three groups: the lungs, the larynx, and the vocal tract. Initially, the glottis
modulates the airflow which is created by the lungs and crosses the trachea (see Figure 1.1b). The
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result of this modulation is either a quasi-periodic or a signal that is called the ”voice source”.
The phonation type is determined as this source crosses the vocal tract, which consists of three
cavities: the oral, the nasal, and the pharyngeal. The naturalness of the sound is formed after the
source is formed inside the vocal tract. The final waveform is transferred through the lips.

(a) The human vocal tract (from [36]).

(b) The vocal folds area (from [36]).

Figure 1.1 – Anatomy of the human speech production system.

More specifically the voiced sounds are formed due to the sound energy of the larynx. The
airflow from the lugs is blocked for a short time by the vocal folds, which come very close
to each other, thus increasing the subglottal pressure. The vocal folds re-open by the time the
resistance provided by the vocal folds becomes less than the subglottal pressure. Then, the vocal
folds close as a result of a combination of factors.As long as the vocal cords are supported with
pressurized air from the lugs, they will continue to open and close quasi-periodically allowing
pulses of air to flow through the glottal opening. The pitch of the produced sound is determined
by the fundamental frequency (f0) produced by the pulses. There is a time variation of this
fundamental frequency. Variations over time can carry linguistic information which characterizes
the emotional content of the speech. The oral and nasal cavities are embedded in a time-varying
acoustic filter, the vocal tract. The sound energy is represented by the vocal tract in certain
frequencies whereas it allowed others. The vocal tract’s shape, length and volume specifies
the formants, the frequencies with the local maximum energy. Anti-formants are named the
frequencies where the local energy is repressed.

The larynx is also the source of energy for unvoiced sounds. In unvoiced consonants such as
/s/ and /f/, the vocal folds can be totally open, while in phonemes like /h/ the vocal folds are in
a intermediate position. The vocal cords, in stop consonants, such as /p/, /t/, or /k/, are moving
all of a sudden from an entirely closed position where the air flow is totally cut,to a completely
open position where the concentrated airflow is released and then a glottal stop is produced.
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1.2 Modeling Speech
The speech production mechanism has various mathematical representations. Two views

dominate for this representation, which are different but not separate: (a) in the first approach,
which follows the source-filter model, the mathematical model represents the actual speech pro-
duction mechanism as a linear, time-varying system, excited by an input signal that differs ac-
cording to the type of voicing (voiced or unvoiced speech), (b) the second approach, the speech
signal is presented as a time-series summation of amplitude and frequency modulated sinusoids.
This approach is said to follow a sinusoidal model.

1.2.1 The Source-Filter Model
The source-filter theory of speech is presented in the work of Fant [30] ,stating that speech

usually results from a combination of the larynx, which is a source of sound energy, modulated
by a filter whose characteristics are based on the shape of the vocal tract. The outcome of this
combination is a shaped spectrum with broadband energy peaks which is called the source-filter
model of speech production.

The source-filter theory is implemented as a series of glottal pulses (the source) for voiced
sound representing the velocity of the glottal volume. The fundamental frequency is defined
by the distance of the consecutive pulses of the signal, whereas in unvoiced speech, the vocal
folds do not quasi-periodically open and close,so there are no pulses and its characteristics are
modelled by a zero-mean white Gaussian noise model. The lip radiation is embodied into the
source in some models, since there is a high-pass like structure in the characteristics of the lip
radiation spectrum. In this case, the derivative of the glottal flow is the source [31, 75] which is
driven into the vocal tract filter. In digital speech processing an apparently challenging problem
is to estimate the source and the vocal tract accurately, specially in voiced speech [60, 2, 28, 19,
97, 75, 18, 11, 33, 25, 91, 92, 23, 3].

1.2.2 The Sinusoidal Models
According to the source-filter theory, there is a binary glottal excitation model. Voiced speech

is generated by glottal pulses and unvoiced speech seems to fit well to a random noise model.
The excitation waveform of sinusoidal-based models is synthesized of arbitrary amplitudes, fre-
quencies and phases. The major difference among sinusoidal-based representation is how the
sinusoidal parameters are estimated along with the assumptions on the nature of the model
[62, 37, 82, 85, 86, 35, 44, 42, 43].The time and frequency modulation of these sinusoids as
they pass through the vocal tract and are radiated by the lips produces the speech waveform,
with the assumption of local stationarity of speech into small intervals. This means that in a
short time analysis window (20−30 ms), speech can be modelled as sinusoids with constant am-
plitude and frequency values. Although this assumption is useful in practical implementations,
it is not totally reliable.

1.3 Characteristics of Emotion
An emotional state is correlated with a particular physiological state that affects the speech.

Emotion can be characterized in two dimensions: activation and valence [5, 32]. Activation is
the needed energy to express a specific emotion. The pitch is changing depending of the emotion.
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As an example, anger, fear or joy are characterized by an increment of the pitch (fundamental
frequency) as it is shown in Table 1.1, along with an increment of the heart rate,blood pressure
and sub-glottal pressure. Also, the mouth becomes dry and there is muscle tremor. The speech
becomes loud, fast,enunciated and it is expressed with strong high-frequency energy. Articula-
tion rate is also increased, which is calculated by measuring the length of voiced segments.On
the other hand, when someone is bored or sad, the heart rate and blood pressure decrease and
salivation increases. The produced speech is slow. The pitch is low and so is the high-frequency
energy. The rate of articulation is decreased.

Characteristics of Emotion
Joy Anger Sadness Fear

Pitch mean High very High very Low very High
Intensity mean High very High Low Medium/ High

Speaking rate High
Low - male
High - female

High - male
Low - female High

Table 1.1 – Characteristics of four emotions(Joy, Anger, Sadness and Fear) [78].

As follows, activation features like pitch, articulation, high-frequency energy and the quality
of voice are strongly correlated with the emotion. Nevertheless, is still difficult to identify the
correct emotional state of the speaker, because some emotions are correlated. For example, both
angry and happy emotions correspond to high activation like pitch and high-frequency energy
but they different affect is passed on. This difference is described as the valence dimension, but
there is no agreement within researchers on how, or even if, acoustic features are correlated with
this valence dimension [54]. Hence, classification between high and low activation emotion is
possible, but there is still challenge in classification between different emotions.

1.4 Thesis Subject
In this thesis, the main focus is on Expressive Speech Analysis and Classification using

adaptive Sinusoidal Modeling.
Adaptive Sinusoidal Models (aSMs) have been recently developed for analysis. Their main

attribute is that they deal with the assumption of local stationarity that the Sinusoidal Models
(SMs) hold inside the analysis window for the parameters estimation. This problem is handled
by projecting the signal onto a set of amplitude and frequency varying basis functions inside
the analysis window [46, 72]. Initially, as suggested by Pantazis [73], the deterministic part of
speech can be modeled using an adaptive quasi-harmonic model, whereas the stochastic part can
be modeled as time-modulated and frequency-modulated noise. The adaptive model that is used
in this thesis is called the extended adaptive Quasi-Harmonic Model - eaQHM and proposes both
amplitude and phase adaptation [46] providing a high quality, quasi-harmonic representation of
speech signals. The parameters obtained from the eaQHM model can represent more accurately
an emotional speech signal. We wanted to study if these accurate parameters could benefit an
application based on emotional speech. The application that was chosen is the classification of
emotional speech based on the parameters estimated by the eaQHM.

In this thesis, we take advantage of the parameters estimated for the entire speech waveform
by the eaQHM to perform analysis, re-synthesis and classification of emotional speech. First of
all, to see if eaQHM can efficiently represent emotional speech, an emotional speech analysis
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and synthesis was carried out, using three emotional speech databases,the well known SUSAS
database, the emotional database of Berlin and a small acted database of Toshiba. The Signal
to Reconstruction Error Ratio (SRER) was calculated for both SM and eaQHM showing that
eaQHM outperforms standard SM by more than 100%, on average, in terms of SRER. Also, in-
formal listening tests in the high quality database of Toshiba, showed that eaQHM-based resyn-
thesized speech samples were indistinguishable from the original ones. After emotion speech
analysis and re-synthesis, a classification task was implemented. For the classification purposes
four emotions of SUSAS database were selected the (angry, neutral,soft and question) and six
and four emotions of Berlin database. The parameters obtained from the eaQHM (amplitude and
frequency) were used separately and combined, as features for a simple 128-bit VQ classifier.

1.5 Thesis Contribution
This thesis contributes the following achievements:

• The eaQHM is applied on expressive speech analysis. It is shown that eaQHM can analyze
and resynthesize various styles of expressive speech with very high accuracy and quality.
This work has been accepted in EUSIPCO 2014 [47].

• The eaQHM is applied on the problem of emotion classification and it is shown that it
achieves classification scores that are higher than standard sinusoidal approaches. This
work has been accepted in Interspeech 2014 [95].

1.6 Thesis Organization
The rest of this thesis is organized in three parts, as follows:

1. Chapter 2 : Related Work
This Chapter presents a literature review on speech feature selection for emotion analysis
and classification problems.

2. Chapter 3 : Expressive Speech Analysis using aSMs
This Chapter demonstrates the use of the extended adaptive Quasi-Harmonic Model (eaQHM)
in order to analyze and resynthesize emotional speech. Objective and subjective evaluation
results are presented.

3. Chapter 4 : Expressive Speech Classification using Sinusoidal Features
This Chapter presents the results of classification tasks based on the features (amplitude
and frequency) obtained from eaQHM compared to the features obtained from the standard
SM. Additionally, a combined amplitude-frequency classification scheme is suggested.

4. Chapter 5 : Conclusions and Future Work
This Chapter concludes the thesis and proposes many interesting research directions for
further investigation.

5. Appendix I presents the publications made during this thesis.

Subjective evaluations are supported with on-line demonstration pages that verify the conclu-
sions derived.
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Chapter 2

Related Work

In this chapter, we will make a literature review on speech feature selection for emotion
analysis and classification problems. The chapter is divided in three sections: a) feature selection,
b) classifiers, c) discussion.

2.1 Speech Feature Selection for Emotion Analysis and Recog-
nition

We will first start with the problem of feature selection in emotion recognition. The goal
is to develop robust features which carry the information related to glottal parameters. As it is
suggested in [88] glottal parameters can yield beneficial information for emotion classification.
If we do so, we will be able not only to correctly classify our expressive speech signal, but also
to properly transform these features in order to synthesize emotional speech from neutral speech.
These features should be language and speaker independent. In speech community, researchers
are trying to deal with the problem of the appropriate feature selection, but still there is no clear
agreement on which feature set is the best.

The most commonly used features for emotion analysis and classification are separated in
two categories: prosodic and spectral features.

2.1.1 Prosodic Features
The word prosody comes from the Greek word Προσωδια and is used to describe the rhythm,

stress and intonation of speech. Numerous features that may not be encoded by grammar or by
choice of vocabulary, can be reflected by prosody, because prosody is absent in writing. Prosodic
features are based on fundamental frequency and properties such as the mean, variance, energy,
shimmer, jitter,F0 contour. They are often estimated over a whole utterance and are used as long
term statistics. It has shown that prosodic features are able to discriminate the high and low
activation emotions, but there is confusion in discrimination of same articulation states [58].

Initially, in [45] the authors described a perception experiment with prosody features that was
designed to make soft classification of emotional speech. The results were helpful for achieving
more suitable acoustic patterns, when synthesizing emotional speech. The relationship between
emotional states and prosody is presented in [52],showing that prosodic characteristics could be
useful in emotion classification. In [89] the authors analyse the acoustic parameters in different
emotional speech styles and create a classification tree, showing promising results for future
work in classification and synthesis. Conversion on phoneme durations and intensity is evaluated



24 Expressive Speech Analysis and Classification using adaptive Sinusoidal Modeling

in [29] in order to create expressive speech, but the results of expressiveness of the converted
sentences were far beyond natural emotional speech. The relationship between emotional states
and prosody is investigated in [87], where the characteristics of prosody patters were analyzed in
order to show that probability of occurrence for accents and boundaries were different between
4 emotions. In [64] it was presented, for a Spanish database, the contribution of prosody to the
recognisability of the uttered emotion greatly caries form one to another.

2.1.2 Spectral Features
The spectral features involve formant frequencies, along with their corresponding band-

widths. Ordinary spectral features are the Mel frequency cepstral coefficients (MFCC),the Linear
prediction coefficients (LPC) [51], one-sided autocorrelation linear prediction coefficients (OS-
ALPC) [9] and they are extracted in each frame with typical length 20-30 ms as a short-time
representation of the speech signal.

In [93], pitch, log energy,formant, mel-band energies, and MFCCs were selected as base
features for emotion recognition in SUSAS database and good results were achieved in a 4-
class emotion recognition, using various classifiers. The MFCC method was used to extract
features for emotion recognition in [61], with average recognition accuracy 80% between 3 dif-
ferent databases. A performance comparison between the short time log frequency power coef-
ficients(LFPC) and linear prediction (LPCC) and mel-frequency cepstral coefficients (MFCC) is
presented in [69]. The results of the comparison reveal that LFPC is a better choice for emo-
tion classification than the traditional features.Additionally, in [9] the authors formulated two
new feature extraction methods, a modified mel-frequency scale(M-MFCC), and an exponential-
logarithmic scale (ExpoLog) in order to improve the recognition under the presence of stress.The
authors in [12] proposed novel spectrally weighted mel-frequency cepstral coefficient (WM-
FCC) features for emotion recognition, based on the location of the formants carry information
related to the emotion. The results of this study showed that classifiers with the WMFCC fea-
tures perform significantly better compared to standard spectral classifiers. Acoustic models
were trained with spectral features in [14], using the TIMIT corpus and the performance was
tested by two emotional speech databases with accuracy up to 78% in the binary classification
task.

2.1.3 Combination of Spectral and Prosodic Features
The emotional state is difficult to automatically identify and analyse using only one type of

the aforementioned features. As a result, it is reasonable to use different types of features in order
to achieve better classification results. Luengo, Navas and Hernáez in [55] suggested that as both
kinds of features have different characteristics, they can be treated separately, creating two sub-
classifiers and combining their results. The same authors also suggested that if the whole feature
set is considered, spectral envelope parametrizations are more informative than the prosodic
ones, using a combination of prosody features,spectral envelope and voice quality in [56] for
emotion discrimination. Also, in [34] results show that a single type of feature is unable to
achieve sufficient recognition accuracy, so they rely on a combination of them using the strength
of excitation from zero frequency filtering method and the spectral band energy ratio related
to the excitation source. In [94] the authors used modulation spectral features in combination
with prosodic features for automatic emotion recognition achieving an overall recognition rate
of 91.6% between seven emotion categories. A large feature set and a psychologically-inspired
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binary cascade classification schema is proposed in [49] in order to separate commonly confused
pairs of emotions with 87.7% best emotion recognition accuracy.

2.1.4 Sinusoidal Features
The parameters of the Sinusoidal Model(SM) have recently been engaged in analysis and/or

classification of expressive speech. A new set of harmony features, correlated to the valence
and activation dimension of emotion, for automatic emotion recognition from speech signals is
proposed in [96]. These harmony features are based on the psychoacoustic harmony perception
and improve by 4% the recognition performance, if they are used in addition to the state of art
features. In [79] authors have shown that parameters obtained from SM (amplitude, frequency
and phase) can be successfully used in characterization and classification of expressive speech,
showing better results compared to linear prediction and cepstral features. Moreover, the authors
in [26] explore the sinusoidal modeling framework for voice transformations finalized to the
analysis and synthesis of emotional speech.

2.2 Classification Approaches
Emotion classification from speech signals can be considered as a supervised machine learn-

ing problem that requires training data. Training data are usually recordings or samples that are
labelled with the emotion that they express. These datasets are represented as vectors of fea-
tures(MFCCs, pitch values etc) which are extracted frame by frame from the sample. Thereafter
the training set is given to the learning algorithm that produces a classifier. A good classifier will
be able to predict the correct emotion labels for the testing samples.

Many different classification schemes have been proposed for the recognition and/or classi-
fication of emotional speech. The most common ones are the Hidden Markov Models (HMM),
Neural Networks(NN), Gaussian Mixture Models, Support Vector Machines (SVM) and Vector
Quantization.

2.2.1 Hidden Markov Models (HMM)
A Hidden Markov Model (HMM) is a statistical model which is assumed to be a Markov

process with hidden states and can be represented as the simplest dynamic Bayesian network. In
this model, the state is not precisely visible, but the output is visible depended on the state. Each
state has a probability distribution over the possible output tokens. HMM gives information about
the sequence of states through the sequence of tokens. The model is referred with the adjective
’hidden’ owing to the passing states sequence. Due to its physical relation with the production
mechanism of speech signal, the HMM has been broadly used in speech applications, such as
isolated word recognition and speech segmentation. Generally, the HMM provides classification
accuracy in emotion classification that is comparable to other well-known classifiers.

Mathematically, for a sequence of observable data vectors x1, x2, ..., xT a hidden Markov
chain is assumed, with K the number of states,πi, i = 1, .., K,the initial state probabilities and
aij , i = 1, ..., K, j = 1, ..., Kthe transition probability from state i to j. For the true sequence
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s1, ..., sT the likelihood for the observations is given by

p(x1, s1..., xT , sT ) = πS1bS1(x1)αS1,S2bS2(x2)...αST−1,ST
bST

(xT )

= πS1bS1(x1)
T∏
t=2

αSt−1,StbSt(xt)

where bi(xt) ≡ P (x|st = i) the observation density of the ith state.
In [68] the authors used the HMM with different number of states in order to classify emo-

tions into six categories(anger, disgust, fear, sadness and surprise) with average accuracy of 78%.
In [83] the authors chose a back-end HMM owing to its capability of modelling utterances by
a sequence of vectors to capture longer-term temporal information. Ramamohan and Danda-
pat in [79] used a four state HMM VQ-based classifier in order to evaluate the performance of
sinusoidal model features for recognition of different stress classes resulting 87% average clas-
sification rates. A continuous one-state HMM with GMM was used in [8] based on prosodic
features. In [38] is described a speech emotion recognition system by use of HMM aiming at
improving speech emotion recognition rate in a Chinese corpus, the results show that the method
is effective, high speed and accurate.

2.2.2 Neural Networks (NN)
In computer science, artificial neural networks(ANN) are forms of computing architecture

inspired by biological neural networks. The NN are used to estimate functions that depend on a
large unknown number of inputs. An ANN classifier generally has plenty of design parameters
as presented in [5], e.g. the form of the neuron activation function, the hidden layers number and
the number of neuron in each layer. They are known to be more effective in modeling nonlinear
mappings. The ANN usually have better classification performance compared to HMM and
GMM, when the training sample number is low.

In [22] the authors built a NN classifier in order to recognize different emotional states and
they achieved an occurancy over 90% in hot anger and neutral states. Eight sub-neural networks,
one for eight emotions, compose the neural network in [65] achieving a recognition rate of
approximately 50%. Both artificial neural network-based speaker identifier and the ground truth
where proposed in [84] to evaluate the importance of speaker-specific information in emotion
recognition. Four Feed-Forward Neural Networks are used in [66] for the classification of speech
samples into four emotions, where each network has twelve input neurons and one output in the
range [0, 1]. A Neural Network based classifier is also formulated in [40] with SUSAS database
achieving classification rates from 60% to 61% for a five word vocabulary size. At last, in [74]
the authors achieved the highest classification scores which was 85% for fear emotion when a
NN classifier was used.

2.2.3 Gaussian Mixture Models (GMM)
The Gausian Mixture Model (GMM) is a model of the probability of density estimation

using a convex combination of multi-variate normal densities. It can be considered as an only
one state HMM. The GMMs are efficient in modeling multi-modal distributions and they have
less requirements in testing and training compared to HMM. Determining the best number of
Gaussian components is a challenging problem.

A Gaussian Mixture Model is a weighted sum of M component Gaussian densities as given
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by the equation:

p(x|λ) =
M∑
i=1

wig(x|µi,Σi) (2.1)

where x is a D-dimensional continuous-valued data vector, wi, i = 1, ...,M are the mixture
weights, and g(x|µi,Σi), i = 1, ...,M are the component densities.

In [55] the authors used spectral features to train a GMM for each different emotion combin-
ing the results with a Support Vector Machine (SVM). Also, in [21] the same selected features
were fed to two classifiers, a GMM and a SVM. A GMM used in [57] for the classification of
spectral and prosodic features of Basque emotional speech database, gave the best result with a
98.4% accuracy when using 512 mixtures.

2.2.4 Support Vector Machines (SVM)
The Support Vector Machine (SVM) are supervised learning models that analyze data and

recognize patterns. They have been used in classification and regression analysis. SVMs are
based on the use of kernel functions for mapping in a non-linear way the initial features to a
high-dimensional space where a linear classifier could be used. The SVM have also been used
in pattern recognition applications as it is extensively presented in [15]. The SVM are used in
many emotional speech recognition studies as follows:

In [93] the authors used a Gaussian SVM for the classification of SUSAS database. They
achieved a 96% accuracy for stressed/neutral style classification and 70% for a 4-class speaking
style classification. A SVM for 86 prosodic features classification was used in [57] achieving an
overall accuracy of 93.5%, and when only six prosodic features were used, the accuracy reduced
only by 1.18%. Two sub-classifiers were created in [55], one using prosodic features and the
other one using spectral ones. The results were combined with a fusion system based on SVM,
achieving a result of 77% for a 2-class discrimination. Instant amplitude- and frequency- derived
features were fed in a binary SVM with linear kernel in [21] with 77% accuracy. In [20] the
authors used the SVM classification system based on cross-correlation features, achieving an
overall accuracy as high as 84.55%. A recognition accuracy of 87.7% is achieved by SVMs with
linear kernels in EmoDB in [49].

2.2.5 Vector Quantizer (VQ)
Vector Quantization (VQ) is a conventional technique from signal processing ,based on the

principle of block coding, which allows the modeling of probability density function by the
distribution of prototype vectors. VQ divides a large set of points, called vectors, into groups
which have about the same number of points closest to them. Each group is represented by its
centroid point, as in k-means. VQ is used for lossy data correction, pattern recognition, density
estimation and clustering.

Linde Buzo Gray (LBG) Algorithm as presented in [53], is an efficient and intuitive algorithm
for vector quantizers designing with quite general distortion measures. Is is based either on
a known probabilistic model or on a long training sequence of data. The LBG Algorithm is
presented below:
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1. Determine the N size of codebook.

2. Randomly select N codewords to be the initial codebook.

3. Using the Euclidean distance measure, clusterize the vectors around each codeword.

4. Compute new set of codewords.

yi =
1

m

m∑
j=1

xij

where i is the component of each vector, m is the number of vectors in the cluster.

5. Repeat (2) and (3) until the codewords don’t change.

Rammamohan and Dandapat in [79] evaluated the performance of sinusoidal model features
for recognition of different stress classes with a vector classifier, with average success rate of
91% for frequency features. In [48] the authors used spectral features and a 16-bit Vector
Quantizer to handle input data and to identify six emotional states from the input signals. The
results show that anger and boredom are clearly distinguished from other emotional categories.

2.3 Conclusions and Discussion
In this Chapter, we presented the work that has been done so far in emotional speech analysis

and classification, which comes up with two important issues: the feature selection to character-
ize various emotions and the classification techniques that are used.

Most of the studies are still trying to find speech features and their relation to the emotional
content of speech. The ability of a model to identify emotions is strongly associated with the
relevant feature selection. Many classifiers have been proposed for emotional speech identifica-
tions such us HMM, GMM, ANN etc. However, the decision of the most appropriate classifier
is complicated because different emotional corpora with different experimental setups were ap-
plied.

The lack of uniformity in the way methods and features are evaluated, does not allow us to
make appropriate comparisons and to declare which classifier and which set of features is the
best.

2.3.1 The Purpose of This Thesis
In spite of its wide range of applications [59], the Sinusoidal Model (SM) [62] has not been

thoroughly engaged in analysis and/or classification of stressed speech until recently [79, 26]. In
these approaches, the parameters of sinusoids (amplitude, frequency and phase) are suggested as
features for classification tasks. Although, these parameters obtained from sinusoidal analysis,
come up with a significant constraint; they are extracted under the assumption of local station-
arity, that is, the speech signal is considered as stationary inside the analysis window. However,
this is not the case for speech styles characterized as “fast” or “angry”.
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Recently, the adaptive Sinusoidal Models (aSMs) [46, 70, 24] have managed to cope with
this problem by projecting the signal onto a set of amplitude-and frequency- varying basis func-
tions inside the analysis window. This way, the parameters represent the underlying signal more
closely as an AM-FM decomposition. In this thesis, we propose an adaptive Sinusoidal Model
(aSM), the extended adaptive Quasi-Harmonic Model, for emotional speech analysis and classi-
fication. The aim of this thesis is:

1. Firstly, to show that the aSMs can properly represent a speech signal with emotional con-
tent. For these purpose, emotional utterances are analyzed and resynthesized using the
eaQHM. The performance of this task is compared to the standard SM using the Signal-
to-Reconstruction-Error Ratio (SRER) values, and subjective listening tests, where appli-
cable.

2. We study if the parameters obtained from the eaQHM (amplitude, frequency) have impor-
tant information, which could be used in an emotion classification task.

(1) and (2) will be presented in Chapters 3 and 4 respectively.
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Chapter 3

Expressive Speech Analysis using aSMs

In this chapter the extended adaptive Quasi-Harmonic Model (eaQHM) [46] is utilized to
demonstrate its ability to analyze and resynthesize emotional speech. The speech corpus for the
analysis and resynthesis are the SUSAS database [39], a small high quality, wideband database
of acted speech of Toshiba and the emotional database of Berlin [13]. Subjective listening tests
have been conducted to prove the transparency of the resynthesized speech. It is also shown that
eaQHM can efficiently model all styles of emotional speech in these databases with high pre-
cision, and this is demonstrated via Signal-to-Reconstruction-Error-Ratio (SRER) values, com-
pared to the standard SM.

3.1 Description of the Extended Adaptive Quasi-Harmonic
Model

The eaQHM is a high-resolution tool to accurately estimate the parameters of an AM-FM
decomposed signal. The speech signal is described as an AM-FM decomposition in the full-
band(e.g. from 0 Hz to the Nyquist frequency)

d(t) =
K∑

k=−K

Ak(t)e
jφk(t) (3.1)

where Ak(t) is the instantaneous amplitude and φk(t) is the instantaneous phase of kth compo-
nent, respectively. The instantaneous phase term is given by

φk(t) = φk(ti) +
2π

fs

∫ t

ti

fk(u)du (3.2)

where φk(ti) is the instantaneous phase value at the analysis time instant ti, fs is the sampling
frequency, and fk(t) is the instantaneous frequency of the kth component. The analysis part
explains how to obtain the aforementioned parameters accurately. The analysis part is divided
into two steps: an initialization step, where a first approximation of the speech signal is obtained
under a harmonic assumption, and an adaptation step, where the parameters of the initialization
step are iteratively refined.
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3.1.1 Analysis - Initialization
A continuous f0 estimation for all frames, noted by f̂0, is obtained at first, using the SWIPE

pitch estimator [17] (although any pitch estimator can be used). The next step is to assume a full-
band harmonicity to obtain a first estimate of the instantaneous amplitudes of all the harmonics.
Using standard harmonic analysis [86], the parameters |ak(ti)|, φk(ti) are obtained, where ti is
the ith analysis time instant. As a final step, the overall signal can be synthesized by interpolating
the |ak| and f̂0 values over successive analysis time instants ti, resulting in an approximation of
Equation 3.3.

d̂(t) =
L∑

k=−L

Âk(t)e
jφ̂k(t) (3.3)

where

Âk(t) = |ak(t)| (3.4)

φ̂k(ti) = ∠ak(ti) (3.5)

and

φ̂k(t) = φ̂k(ti) +
2π

fs

∫ t

ti

(kf̂0(u) + γ(u))du (3.6)

The Equations 3.4, 3.5 are estimates of Ak(t), φk(t) and γ(t) is a phase correction term to
ensure phase coherence, as described in [72]

3.1.2 Analysis - Adaptation
In order to converge to quasi-harmonicity, the projection of the signal onto a set of ampli-

tude and frequency varying basis functions is suggested in [46], by using the parameters ak and
bk of the Quasi-Harmonic Model (QHM) [71]. This yields the eaQHM model, which can be
formulated in a single frame as:

d(t) =

(
L∑

k=−L

(
ak + tbk

)(
Âk(t)e

jφ̂k(t)
))

w(t) (3.7)

with Âk(t), φ̂k(t) as in Eqs. (3.4, 3.5). In this model, ak, bk are the complex amplitude and the
complex slope of the kth component, and Âk(t), f̂k(t), φ̂k(t) are estimates of the instantaneous
amplitude, frequency, and phase of the kth component, respectively, from the previous analysis
step. The ak, bk parameters are obtained via Least Squares [46]. The adaptation is completed by
using the frequency correction mechanism first introduced in [71]. This mechanism provides a
frequency correction η̂k, for each component. Hence, at the first adaptation, for the analysis time
instant ti, the instantaneous phases become

φ̂k(t) = φ̂k(ti) +
2π

fs

∫ t

ti

(f̂k(u) + γ(u))du (3.8)

where fk(t) = kf0(t) + η̂k(t). Then, a Least Squares solution for the ak, bk using these refined
frequencies (and phases) leads to a better estimate of the instantaneous amplitudes Âk(t) =



Chapter 3. Expressive Speech Analysis using aSMs 33

|ak(t)| and the η̂k terms. By iteratively adding the η̂k term of the current adaptation on the kth-
frequency track of the previous adaptation, the frequency tracks deviate from strict harmonicity
and represent the underlying actual frequencies better. Finally, this adaptation scheme continues
until a convergence criterion is met, which is related to the overall Signal-to-Reconstruction-
Error Ratio (SRER) [73]. The SRER is defined as

SRER = 20 log10

std(d(t))

std(d(t)− d̂(t))
(3.9)

where d(t) is the original waveform, d̂(t) is the model representation, and std(·) is the standard
deviation.

3.1.3 Synthesis
During synthesis, the kth instantaneous amplitude track, Âk(t), is computed via either lin-

ear or spline interpolation of the successive estimates from the last adaptation step. The kth

instantaneous frequency track, fk(t), is also computed via spline interpolation. As for the kth

instantaneous phase track, φ̂k(t), the non-parametric approach based on the integration of in-
stantaneous frequency is followed, as is shown in the adaptation steps of the analysis. Then, the
speech signal can be approximated as:

d̂(t) =
L∑

k=−L

Âk(t)e
jφ̂k(t) (3.10)

A block diagram of the algorithm is depicted in Figure 3.1.

Windowing
Basis 

functions
LS

Frequency 

Correction

Parameter 

Interpolation

)(ˆ td

)(td

)(ˆ

)(ˆ

t

tA

k

k



0kf

kf̂

ka Parameter 

Interpolation

Adapt. 

Basis 

functions )(ˆ

)(ˆ

t

tA

k

k


LS

k

k

b

a

Converge?
)(ˆ

)(ˆ

t

tA

k

k

No
Yes

Figure 3.1 – Block diagram of the eaQHM system. Dashed line includes the initializa-
tion(harmonic) part. Dot-dashed line includes the adaptation part.
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3.2 Database Description
In order to evaluate the analysis, re-synthesis and later on in classification of expressive

speech signals based on the use of the eaQHM model, we selected 3 emotional speech databases.
The SUSAS database, a small custom database of Toshiba and the Berlin database. Firstly, we
used SUSAS database in order to evaluate the performance of eaQHM in large set of limited
sentence length data. SUSAS is a pre-labelled well-known database of short communication
words. Unfortunately, the SUSAS database is not proper for listening tests because of its low
quality. In order to use a database of higher quality for listening tests, we selected a small
wideband custom database of Toshiba, consisting of male-female acted utterances. At last, we
used the Berlin database, which is a high quality database consisting of male-female utterances
in German in order to extend our research results in a dataset consisting of a different spoken
language than English.

3.2.1 SUSAS Database
The SUSAS (Speech Under Simulated and Actual Stress) database was used in analysis,

resynthesis and classification tasks, as presented in [39]. SUSAS database was developed in
the 1990s in order to study the variations of speech production and classification under stressed
conditions. It consists of five stressed domains i) talking styles ii) single tracking task or speech
produced in noise (Lombard effect), iii)dual tracking computer response task, iv)actual subject
motion-fear tasks(G-force, Lombard effect, noise, fear), v)psychiatric analysis data (speech un-
der depression, fear, anxiety). A total of 16.000 isolated-word utterances were produced by 32
speakers. The using vocabulary in the database consists of 35 aircraft, greatly confusable words
(e.g., /go-oh-no/,/wide-white/, /six-fix/ ). The simulated speech under stress data consists of ten
speaking styles, while actual speech stress data consists of speech during the performance of
i)dual-tracking workload computer tasks, ii)subject motion-fear tasks.

35-Word SUSAS Vocabulary Set
brake eighty go nav six thirty
change enter hello no south three
degree fifty help oh stand white
destination fix histogram on steer wide
east freeze hot out strafe zero
eight gain mark point ten

Table 3.1 – The summary of the 35-word vocabulary used in SUSAS. [39]

In our study the simulated part was used in order to evaluate our model. In this part 9
U.S. English male speakers, of three main dialects(general USA, New England/Boston, and
New York City accent), under different simulated stress conditions (angry, clear, fast, Lombard,
loud, neutral, question, slow, soft, and two conditions where the speaker was recorded while
performing medium and light physical activities) have been recorded. The production of speech
was done while the speakers were seated in a quiet environment. Each speaking style corpus has
70 speech files per speaker, which consists of isolated, short communication, two token words
such as “hello”, “break”, “go”, “point” and “destination”. The sampling rate in all files was 8kHz
and were represented using 16-bit integers. Given the token count for each stress condition, sums
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to a about 1190 token per speaker. Due to the fact that the spoken words are acoustically similar,
the database is difficult enough for several applications, speech recognition and classification.

3.2.2 Toshiba Database
The Toshiba database is a custom, small database of acted speech. This database consists

of one male and one female subject, acting in four different speaking styles (angry, sad, happy
and neutral), in a recording studio, with a total number of 20 waveforms sampled at 16000 Hz.
The Toshiba database was only used in listening test. A sample of Toshiba’s database spoken
utterances is presented in Table 3.2.

Female Speaker
You can change these destinations at any time
As long as we live we will never see another achievement like it
The above mentioned celebrities also wrote to the Times
Mark asked Tom to remember his phone

Male Speaker
Albania is an unfortunate country
You find players give them opportunities and watch them capitalize on it
My souffle had turned into an amorphous lump
Though my thumb wasn’t nearly as delicious

Table 3.2 – A sample of Toshiba’s database utterances.

3.2.3 Berlin Database
In order to extend our analysis and classification research in another high quality database

with different spoken language, we selected Emotional Database of Berlin (Emo DB) [13].
EmoDB is a labelled acted database comprising 6 basic emotions anger, joy, sadness, fear, dis-
gust and boredom as well as neutral speech. Ten professional native German actors (5 female
and 5 male) simulated these emotions, producing 10 utterances (5 short and 5 longer sentences),
which could be used in every-day communication and are interpretable in all applied emotions.
The recordings were made using a Sennheiser MKH 40 P 48 microphone and a Tascam DA P1
portable DAT-recorder in an anechoic chamber. Recordings were taken with 16 kHz sampling
frequency. The recorded speech material consists of about 800 sentences (7 emotions * 10 actors
* 10 sentences + some second versions). The content of the 10 sentences and their translation is
depicted in Table 3.3.
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Emotional Database of Berlin
German Text English Translation

Der Lappen liegt auf dem Eisschrank. The tablecloth is lying on the frigde.
Das will sie am Mittwoch abgeben. She will hand it in on Wednesday.
Heute abend könnte ich es ihm sagen. Tonight I could tell him.
Das schwarze Stück Papier befindet sich The black sheet of paper is located up
da oben neben dem Holzstück. there besides the piece of timber.
In sieben Stunden wird es soweit sein. In seven hours it will be.
Was sind denn das für Tüten, What about the bags standing there
die da unter dem Tisch stehen? under the table?
Sie haben es gerade hochgetragen They just carried it upstairs
und jetzt gehen sie wieder runter. and now they are going down again.
An den Wochenenden bin ich jetzt immer nach Currently at the weekends
Hause gefahren und habe Agnes besucht. I always went home and saw Agnes.
Ich will das eben wegbringen I will just discard this
und dann mit Karl was trinken gehen. and then go for a drink with Karl.
Die wird auf dem Platz sein, It will be in the place where we always
wo wir sie immer hinlegen. store it.

Table 3.3 – Content of the 10 sentences in Emo DB

3.3 Analysis and Evaluation
In this section, the evaluation procedure is described, along with the dataset selection and the

parameter estimation. For this task, the three databases mentioned above are used, (i) for testing
the performance of SRER of eaQHM compared to the SRER of SM model (ii) for listening tests
where only the database of Toshiba was used.

3.3.1 Objective Evaluation
At first, it is important to show that eaQHM can decompose the speech signals into AM-FM

components that represent the signal closer than SM. For this, all speech files in the databases
have been analyzed and resynthesized from their AM-FM components, and the corresponding
SRER has been computed for each speech utterance. For this analysis, the window size was 30
ms for the SM and 3 local pitch periods for the eaQHM, both of Hamming type. A step size of
2.5 ms was selected for both models. Table 3.4 shows the mean and the standard deviation of
SRER for all speakers, for most common speaking styles in SUSAS database.
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SRER Performance (SUSAS)

Model
Speaking Styles

Angry Loud Clear Fast
SM 16.6 (3.06) 16.8 (3.01) 16.8 (3.06) 16.7 (3.03)

eaQHM 32.3 (5.61) 32.8 (5.59) 32.6 (5.62) 32.9 (5.58)
Question Soft Neutral Slow

SM 16.8 (3.00) 16.7 (3.05) 16.8 (3.01) 16.8 (3.05)
eaQHM 32.8 (5.57) 32.9 (5.61) 32.9 (5.58) 32.9 (5.60)

Table 3.4 – Signal to Reconstruction Error Ratio values (dB) for both models on the SUSAS
database. Mean and Standard Deviation are given.

This clearly demonstrates the quality and the performance stability of the adaptive model com-
pared to the SM on a large database of isolated words of different expressive speaking styles.
It is interesting to note that both models appear to be very stable around a mean of about 16.6
and 32.5 dB, for the SM and the eaQHM respectively. Although the distribution of SRERs is
wider in eaQHM-analysis, the mean is high enough to show that in almost all cases the eaQHM
manages to capture most of the information present in the speech signal, for all speaking styles.
Since the SUSAS database contains short, low-sampled, and isolated words only, it would be
interesting to observe the behaviour of the models in high-quality running expressive speech.
For this, the database of Toshiba and Berlin were used. The waveforms were analyzed and the
results are depicted in Table 3.5 for Toshiba database and in Table 3.6 for Berlin. The results
show apparently the ability of eaQHM to properly reconstruct an emotional utterance.

SRER Performance (Toshiba Database)
Speaking Styles

Model
Female Speaker

Angry Happy Neutral Sad
SM 14.8 (1.36) 17.5 (3.0) 16.5 (1.36) 21.2 (1.64)

eaQHM 28.8 (1.24) 33.1 (1.81) 34.9 (2.23) 34.8 (3.60)
Male Speaker

SM 17.0 (1.45) 14.3 (0.76) 16.0 (1.67) 16.5 (1.63)
eaQHM 35.7 (2.04) 31.6 (3.49) 33.3 (2.56) 33.1 (2.74)

Table 3.5 – Signal to Reconstruction Error Ratio values (dB) for both models on Toshiba
database. Mean and Standard Deviation are given.

SRER Performance (Berlin Database)
Speaking Styles

Model
Female Speaker

Angry Boredom Disgust Fear Happy Sad Neutral
SM 11.2 (1.5) 17.2 (1.5) 14.1 (1.7) 13.5 (2.0) 12.7 (1.6) 13.1 (3.1) 15.3 (2.8)

eaQHM 29.4 (3.9) 33.2 (3.2) 30.0 (3.6) 27.4 (3.0) 29.0 (3.0) 26.8 (4.2) 31.5 (2.5)
Male Speaker

SM 11.9 (1.8) 17.1 (0.89) 14.3 (1.1) 13.4 (1.3) 12.3 (1.8) 14.9 (1.4) 15.1 (1.8)
eaQHM 32.5 (3.8) 36.6 (2.3) 30.7 (3.6) 29.7 (3.2) 30.3 (3.1) 32.4 (1.9) 35.0 (1.8)

Table 3.6 – Signal to Reconstruction Error Ratio values (dB) for both models on Berlin speech
database. Mean and Standard Deviation are given.
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It is evident that the adaptive model can handle word-isolated (i.e. SUSAS) and running
expressive speech see Figure 3.2 and Figure 3.3, equally well.
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Figure 3.2 – Upper part: the reconstruction of word “BREAK” from SUSAS database. Lower
part: the reconstruction of the utterance “Albania is an unfortunate country” from Toshiba
database. Both reconstructions compare the original to eaQHM and SM reconstruction.

3.3.2 Subjective Evaluation
Towards our intention for demonstrating the perceptual differences in the resynthesis part, the

SUSAS database was judged to perform poorly from a perceptual point of view due to the record-
ing noise and the low sampling frequency. Informal listening tests showed that the eaQHM-based
resynthesized speech samples were indistinguishable from the original ones, but this was the case
for the standard sinusoidal model as well, in most of the cases. After careful listening, only a
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Figure 3.3 – A sample utterance from database of Berlin (angry speech style). In the upper panel
is presented the original signal. In the middle and lower panel the reconstruction error using the
SM and eaQHM respectively.

minority of waveforms demonstrated perceptual differences between the models but they were
not enough in quantity to justify a listening test with this database. However, since the subjective
evaluation is critical in synthesizing speech, especially in the case of expressiveness, a formal,
on-line listening test was designed1 using the small, high-quality database of Toshiba. The lis-
teners were asked to evaluate the overall quality of the resynthesized speech based on the two
models. A total of 32 listeners participated in this test, and the results are depicted in Figure 3.4

1http://www2.csd.uoc.gr/~kafentz/listest/pmwiki.php?n=Main.Exprtest
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along with the 95% confidence intervals. It should be noted that only 5 of them are familiar with
signal processing. According to the preference test, almost all listeners noted eaQHM as being
almost indistinguishable to the original one.
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Figure 3.4 – Impairment evaluation of the resynthesis quality, for Toshiba acted speech database
with the 95% confidence intervals.
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Chapter 4

Expressive Speech Classification using
Sinusoidal Features

In this chapter the extended adaptive Quasi-Harmonic Model - eaQHM is applied on emo-
tional speech analysis for classification purposes. The parameters of the model (amplitude and
frequency) are used as features for the classification. Using a well known database of narrowband
expressive speech (SUSAS) and the Emotional Database of Berlin, we develop two separate Vec-
tor Quantizers (VQ) for classification, one for the amplitude and one for the frequency features.
However, single feature classification is inappropriate for higher-rate classification. Thus, we
suggest a combined amplitude-frequency classification scheme, where the classification scores
of each VQ are weighted and ranked, and the decision is made based on the minimum value of
this ranking. These classifiers are compared to the standard Sinusoidal Model (SM) classifiers
which we also constructed.

4.1 Motivation
In order to use the sinusoidal features (amplitude, frequency) for emotion classification, we

wanted to study how they behave. In Figure 4.1 we present the amplitude and frequency pa-
rameters of a speech sample (word “No”) from SUSAS database, pronounced with different
emotional content (angry, neutral). Clearly, the amplitudes and frequencies of the fundamental
are different, and this is the case for higher components as well. The latter is verified by the work
in [79].

Additionally, the fundamental frequency obtained from eaQHM, for all speakers, from SUSAS
database was studied deeper. Also, it has been described in [81] that the pitch frequency varies
when the emotions are different. A study of the frequency contours could provide informations
on their dependence between different emotions. For example, for the same speech uttered when
different emotion is expressed, the duration of the speech utterance varies. For comparing the
features between different emotions, a frequency histogram was composed for the f0 features
behaviour in each Angry, Neutral, Question and Soft speaking styles.
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Figure 4.1 – An example of analysis of emotional speech: First panel, neutral speech. Second
panel, angry speech. Third panel, f0(t) tracks for each sample. Fourth panel, A0(t) tracks for
each sample.

For the histogram of f0, each word was separated into 12 equal intervals. For each of the
four emotions, all words were analyzed using the eaQHM. The hamming analysis window size
was set at 3 local pith periods and the step size at 2.5 ms. The results are depicted in Figure 4.2.

The results show that the soft emotion takes most of its frequency values around 100 Hz,
question and angry around 130 Hz and neutral around 150 Hz. We observe that the distribu-
tions for angry ,question and neutral emotions are wider, because they have many f0 values in
frequencies above 150 Hz compared to the soft emotion.
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Figure 4.2 – f0 histogram from all the SUSAS words in four different emotions.

As already discussed, a discrimination between different emotional speaking styles is of great
interest. Considering a sinusoidal analysis, it has been reported that amplitude and frequency val-
ues of the sinusoidal components can be used successfully to characterize the different expressive
classes (emotions) in a speech signal [79]. Since the eaQHM can compute these parameters more
accurately, it is expected that their discrimination properties among different speaking styles are
similar or better than those reported in the literature for the standard SM. An example of a single
word (“point”) is presented in Figure 4.3 in four different speaking styles, along with the corre-
sponding spectrograms that partly reveal their differences. It can be seen that these differences
appear in amplitude strength, frequency variations, energy distributions, formant positioning,
timings, duration of vowels and consonants, etc. Sinusoidal modeling can capture these differ-
ences in the form of AM-FM components [79]. Due to its adaptive processing, we propose that
eaQHM can provide parameters that are highly accurate, which makes them more suitable for an
emotion classification task than the same parameters obtained from a standart SM.

4.2 VQ based Emotion Classification
To evaluate our suggestion, classification tasks based on a 64-bit and a 128-bit Vector Quan-

tizer (VQ) were designed. The speech signals from databases were separated, the 70% of them
were used for training and the rest 30% were kept for testing. All discrete time waveforms were
normalized to unit energy, as in

x[n] =
x[n]√∑L−1
n=0 x

2[n]
(4.1)

where L is the signal length in samples. Both models used an analysis frame rate of 2.5 ms. The
10 strongest components of the magnitude spectrum of the FFT and the 10 highest sinusoidal
amplitudes provided by the LS, along with their corresponding frequencies, were extracted from
each analysis frame. The analysis window was set at 30 ms for the SM, and at 3 local pitch
periods for the eaQHM. There was no distinction between voiced and unvoiced parts of speech.
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Figure 4.3 – An example of emotional speaking styles, in time and frequency: First panel, neutral.
Second panel, angry. Third panel, soft. Fourth panel, question. The word “Point” is depicted in
this example.

4.3 Classification

4.3.1 Single Feature
At first, two classification tasks were set, each one using different features (amplitudes and

frequencies). Having M spectral vectors xi containing the selected features (amplitudes or fre-
quencies), the data matrix X is created as

X = [x1 x2 ... xM ] (4.2)

The codebooks are then designed based on the minimization of the Average Distortion (AD)
between the training vectors and the codebook vectors in matrix Y, where

Y = [y1 y2 ... yC ] (4.3)

and C is the codebook size. The AD is defined as

AD =
1

C

C∑
k=1

minyi∈Y d
2(xk, yi) (4.4)
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where d(x, y) is the Euclidean Distance (ED) between vectors x and y. For each of the
four emotions mentioned above, a codebook wad designed using the LBG algorithm [53]. The
emotion are recognized by the minimum average distortion.

4.3.2 Combined Features
Since single-feature based classification leads to low classification scores, a combined clas-

sification scheme is suggested. The ADs obtained from amplitude and frequency based VQs are
normalized by the highest corresponding AD. Then, the ADs of the corresponding emotions are
added. Finally, the emotion with the minimum sum of ADs is selected as the recognized emo-
tion. This way, when the VQs have decided differently, the VQ which is more “confident” in its
decision (the minimum AD is far less than other ADs) can influence the final outcome. Figure
4.4 illustrates the proposed scheme.

Figure 4.4 – The classification scheme based on the combination of features. Ak and fk denote
the instantaneous amplitude and frequency, and ADs denote the average distortion measures.

4.4 Classification Results
Classification tasks in two of the three databases were performed using the parameters ob-

tained from eaQHM into 64-bit and 128-bit VQ classifiers. The Toshiba database was not used
in this task because it contained only 20 waveforms. The classification tasks from single fea-
ture and combined feature classification for SUSAS and Berlin using the features obtained from
eaQHM are compared with the features obtained from the SM.

4.4.1 SUSAS
Using a subset corpus of the SUSAS, labelled as Angry, Neutral, Soft, and Question. A total

number of 2520 waveforms (630 per emotion) were used. A number of 756 waveforms were
kept for testing (189 per emotion), while the rest were used for training. The confusion Tables
for the amplitude-based classification for the 64-bit and 128-bit VQ are given in 4.1 and 4.2,
whereas for the corresponding frequency-based ones are given in 4.3 and 4.4.

In general, the parameters obtained from the eaQHM lead to better classification scores in
almost all cases(except one). It can be seen that in both cases and both quantizers the angry
speaking style stands out of the rest of speaking styles. This is expected since this speaking
style is very different than the others in terms of amplitude and frequency distributions [79].
Furthermore, the angry speaking style has the highest correct classification percentage for both
models and both sets of features. The question speaking style is the most difficult one to correctly
classify when the frequencies are used as features, and we can see that it is mostly confused with
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64-bit VQ Classification in % - Amplitudes
Predicted Class

Angry Neutral Soft Question
Angry 73(73) 16(17) 4(2) 7 (8)
Neutral 4(6) 62(70) 22(16) 12(8)
Soft 4 (5) 30 (30) 53(51) 13(14)

C
l
a
s
s Question 5(4) 25 (27) 13(16) 57(53)

Table 4.1 – eaQHM and SM based Confusion Table based on amplitudes for a 64-bit VQ classi-
fication between 4 emotions of the SUSAS database.SM classification scores are in parenthesis.

128-bit VQ Classification in % - Amplitudes
Predicted Class

Angry Neutral Soft Question
Angry 77(72) 14(14) 2(3) 7 (11)
Neutral 4 (4) 64(63) 18(18) 14(15)
Soft 3 (5) 31(30) 56(50) 10(15)

C
l
a
s
s Question 6 (4) 21 (22) 13(20) 60(55)

Table 4.2 – eaQHM and SM based Confusion Table based on amplitudes for a 128-bit VQ classi-
fication between 4 emotions of the SUSAS database. SM classification scores are in parenthesis.

64-bit VQ Classification in % - Frequencies
Predicted Class

Angry Neutral Soft Question
Angry 67(67) 9(10) 6(2) 17(21)
Neutral 4(4) 56(42) 17(26) 22(28)
Soft 1(2) 26(23) 57(53) 15(21)

C
l
a
s
s Question 16(15) 22(33) 14(21) 48(31)

Table 4.3 – eaQHM and SM based Confusion Table based on frequencies for a 64-bit VQ classi-
fication between 4 emotions of the SUSAS database. SM classification scores are in parenthesis.

128-bit VQ Classification in % - Frequencies
Predicted Class

Angry Neutral Soft Question
Angry 71(70) 6(6) 7(5) 21 (18)
Neutral 6 (6) 55(38) 24(28) 15(27)
Soft 3 (3) 13(25) 65(59) 14 (13)

C
l
a
s
s Question 17(18) 18(24) 14 (25) 55(33)

Table 4.4 – eaQHM and SM based Confusion Table based on frequencies for a 128-bit VQ classi-
fication between 4 emotions of the SUSAS database. SM classification scores are in parenthesis.

the neutral speaking style. On the other hand, the soft speaking style has the lowest classification
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score when the amplitudes are used as features.
The results from the combined classification scheme proposed in Section 4.3.2 for eaQHM

and SM are shown in Tables 4.5 and 4.6. Using this scheme, on average, the eaQHM correctly
classifies 65% of the utterances in the database, whereas the SM reaches 54%. Apparently, not
all speaking styles were favoured by this combined scheme. Mostly the angry and the question
speaking style achieved significant increase of their classification rates in both models. While
angry speaking style already had a relatively high percentage, the question speaking style has
interestingly increased its correct classification score. However, the soft and neutral speaking
style did not significantly change their percentages. This suggests that a weighted sum of the
ADs before ranking may be more appropriate.

VQ Combined Classification in %
Predicted Class

Angry Neutral Soft Question
Angry 83 5 1 11
Neutral 15 58 12 15
Soft 10 18 56 16

C
l
a
s
s Question 20 6 11 63

Table 4.5 – eaQHM-based Confusion Table based on amplitudes and frequencies for a 128-bit
VQ classification between 4 emotions of the normalized SUSAS database.

VQ Combined Classification in %
Predicted Class

Angry Neutral Soft Question
Angry 77 5 5 13
Neutral 4 48 24 24
Soft 2 29 54 15

C
l
a
s
s Question 17 24 21 38

Table 4.6 – SM-based Confusion Table based on amplitudes and frequencies for a 128-bit VQ
classification between 4 emotions of the normalized SUSAS database.



50 Expressive Speech Analysis and Classification using adaptive Sinusoidal Modeling

4.4.2 Berlin
A classification task, by the parameters obtained from eaQHM (amplitude and frequency),

was also performed in this Emotional database of Berlin (EmoDB), using the 70% of the total
sentences for training and the rest 30% for testing. The classification was performed using 128-
bit VQ classifiers, where the frame rate during the analysis was 2.5 ms as it is described in
Chapter 4.3.1. The feature extraction was performed as it is described in Chapter 4.2 but no
normalization to unit energy was performed.

Firstly, we evaluated the single feature classification rate with the eaQHM and SM models
in all 6 speaking styles of Emo DB. The classification scores for amplitudes for eaQHM and
SM are presented in Figures 4.5 and 4.6 respectively, whereas for the frequencies as features are
shown in Figures 4.7 and 4.8. In this task, the classifier for amplitudes, when the parameters
were obtained from eaQHM, could correctly classify the most distinguish emotion, the angry
emotion, with 76% accuracy between the rest five emotion, while the next emotion with the
highest classification rate was the emotion of fear. The neutral and happy emotions achieved
the highest classification scores based on the frequency classifier, where the angry, boredom and
fear emotions had almost the same accuracy. The sad emotion was mostly confused with the
boredom and neutral emotion.
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Figure 4.5 – eaQHM-based graph based on amplitudes for a 128-bit VQ classification between
all the emotions of Emo DB.

The classification results from SM features show that the angry emotion had the best clas-
sification scores, especially when the amplitudes were set as features with score 82%. The
next emotion with the highest score, for amplitudes as features, is the neutral with 57%. The
fear,happy and sad emotions are easily confusable with the rest emotions. The boredom emo-
tion is the only that it is not correctly classified, it is classified as neutral with 67% score. When
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Figure 4.6 – SM-based graph based on amplitudes for a 128-bit VQ classification between all
the emotions of Emo DB.

frequencies are set as features, the classification rate of angry emotion is decreased and the clas-
sification of happy reaches the 66%. The boredom is also and in this case classified as neutral.
The rest emotions have low classification rates.

The results from this classification task, as we expected were not as satisfactory because of
the plurality of the emotions. Thus, we chose four of the six emotions, the angry, fear, neutral
and sad to evaluate again the two models. The results of the single features classification between
these 4 emotions are depicted in Figures 4.9 and 4.10, for amplitudes for eaQHM and SM and
for frequencies at Figures 4.11 and 4.12 respectively. When the parameters of eaQHM are set
as features to the classifiers, the best classification score 94% is achieved for the angry when
amplitudes are set as features. Both fear and neutral emotions achieve 65% classification score.
The sad emotion is the mostly confused with the neutral, when the classification is based on
amplitudes. Although, neutral is the most distinguishable emotion, when we have classification
based on frequencies, with classification score above 90%. The angry and fear emotions are
following with classification scores 82% and 75% respectively. The sad emotion is also confused
with the neutral one when frequencies are considered and achieves about 60% classification
score.

When the SM parameters are obtained for the classification task with 4 emotions of the Berlin
database the best classification rates are for the angry emotion with 89% when frequencies and
amplitudes are used and 91% for the neutral when frequencies are used. The sad emotion is
following with 72% when the frequencies are used for features, but when the amplitudes are
used is easily confused with the rest emotions. The fear emotion has almost the same results, it
is classified only when the amplitudes are set as features with 60% classification rate.

A combined feature classification was also evaluated for EmoDB. The ADs from the separate
VQs for amplitude and frequency were normalized by the highest corresponding AD and then
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Figure 4.7 – eaQHM-based graph based on frequencies for a 128-bit VQ classification between
all the emotions of Emo DB.
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Figure 4.8 – SM-based graph based on frequencies for a 128-bit VQ classification between all
the emotions of Emo DB.

the ADs of the corresponding emotions are added as it is described in Chapter 4.3.2. The results
obtained from the combined feature classification task are shown in Figure 4.13 for the eaQHM
and in Figure 4.14 for the SM.
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Figure 4.9 – eaQHM-based graph based on amplitudes for a 128-bit VQ classification between
4 emotions of Emotional database of Berlin.

The topmost classification score by the eaQHM is 95% for the neutral emotion and the angry
emotion is following with classification rate 89%. The emotion of fear was the same rate 75% as
with the frequency classifier, whereas the sad emotion was reached classification score at 67%
but it is still the mostly confusable with the neutral emotion. On average, the features obtained
from eaQHM correctly classify about 82% of the utterances in the database. Whereas only
the angry emotion was a lower combined classification score in contrast with the single feature
classification.

The results for the SM show that could only correctly classify the 3 out of the 4 emotions.
The best classification score was achieved for the neutral emotion with 91%, when the angry
emotion is following with 89%, which is the same classification score with the single feature
classification. The best improvement is for the sad with achieves 83% score, when fear emotion
is still not classified correctly. On average, the features obtained from SM classify correctly
about 75% of the total utterances in the database.
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Figure 4.10 – SM-based graph based on amplitudes for a 128-bit VQ classification between 4
emotions of Emotional database of Berlin.
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Figure 4.11 – eaQHM-based graph based on frequencies for a 128-bit VQ classification between
4 emotions of Emotional database of Berlin.



Chapter 4. Expressive Speech Classification using Sinusoidal Features 55

Angry Fear Neutral Sad
0

10

20

30

40

50

60

70

80

90

100
128−bit VQ Classification for Frequencies

Emotion

C
la

ss
ifi

ca
tio

n 
R

at
e 

(%
)

 

 
Angry
Fear
Neutral
Sad

Figure 4.12 – SM-based graph based on frequencies for a 128-bit VQ classification between 4
emotions of Emotional database of Berlin.
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Figure 4.13 – eaQHM-based graph based on combination of amplitudes and frequencies for a
128-bit VQ classification between 4 emotions of Emotional database of Berlin.
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Figure 4.14 – SM-based graph based on combination of amplitudes and frequencies for a 128-bit
VQ classification between 4 emotions of Emotional database of Berlin.

4.4.3 Compared to the state of the art MFCC-based Classification
The sounds generated by a human are filtered by the shape of vocal tract, which determines

what sound comes out. The accurate determination of vocal tract’s shape could give an accurate
representation of the phoneme being produced. The shape of the vocal tract manifests itself in
the envelope of the short time power spectrum, and MFCCs are used to precisely represent this
envelope. The MFCCs are widely used in automatic speech and speaker recognition [21, 90,
10, 78]. As a result, we extended our study with the classification of the MFCCs as features
using the emotional database of Berlin in order to compare the results with the classification
task from the eaQHM. The classification task was also performed using 128-bit VQ classifiers,
where the frame rate during the analysis was 2.5 ms and 30 ms the analysis window, the melcepst
function from the voicebox was used. Similarly, the same 70% of the total sentences were used
for training and the rest 30% for testing. Initially, a classification task using 12 MFCCs, for each
analysis frame, was performed in all styles of emotional database of Berlin and in 4 selected
emotion, the results are presented in Table 4.7 and Table 4.8 respectively.
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128-bit VQ Classification in MFCC
Angry Boredom Fear

Angry 27/38 Angry 0/24 Angry 0/20
Boredom 1/38 Boredom 1/24 Boredom 1/20
Fear 1/38 Fear 1/24 Fear 4/20
Happy 9/38 Happy 2/24 Happy 4/20
Neutral 0/38 Neutral 3/24 Neutral 2/20
Sad 0/38 Sad 17/24 Sad 9/20
Total 71% 4% 20%

Happy Neutral Sad
Angry 1/21 Angry 0/23 Angry 0/18
Boredom 0/21 Boredom 0/23 Boredom 0/18
Fear 1/21 Fear 0/23 Fear 0/18
Happy 13/21 Happy 0/23 Happy 0/18
Neutral 4/21 Neutral 4/23 Neutral 0/18
Sad 2/21 Sad 19/23 Sad 18/18
Total 62% 20% 100%

Table 4.7 – MFCC based Table for a 128-bit VQ classification between the emotions of the Berlin
database.

128-bit VQ Classification in MFCCs
Angry Fear Neutral Sad

Angry 28/38 Angry 2/20 Angry 0/23 Angry 0/18
Fear 5/38 Fear 7/20 Fear 0/23 Fear 0/18
Neutral 5/38 Neutral 3/20 Neutral 4/23 Neutral 0/18
Sad 0/38 Sad 8/20 Sad 19/23 Sad 18/18
Total 74% 35% 17% 100%

Table 4.8 – MFCC based Table for a 128-bit VQ classification between 4 emotions of the Berlin
database.
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Chapter 5

Conclusions and Future Work

5.1 Overview
In this work, we presented an application of an adaptive sinusoidal model, named eaQHM,

on the problem of emotional speech analysis and classification. It was shown that different
emotional speech styles can be effectively represented by the adaptivity mechanism of eaQHM,
yielding very accurate AM-FM decomposition. This was demonstrated through resynthesis
of the original speech signals from its AM-FM components and by evaluating the Singal-to-
Reconstruction-Error-Ratio (SRER). A formal listening test was designed to evaluate the per-
ceptual quality of the resynthesized speech and showed that eaQHM-resynthesized emotional
speech is indistinguishable from the original. Instantaneous parameters of sinusoidal model
were used to perform emotion classification from speech signal. Results showed that a Vector
Quantization classification based on eaQHM achieves higher classification scores for a subset of
SUSAS database and in emotional database of Berlin, both on single-feature classification based
on the sinusoidal parameters and on their combination.

5.2 Future Research Directions
Many interesting research directions can be further investigated such as the use of phase

information in combination with amplitudes and frequencies. In [79], the number of phase re-
versals is suggested as a feature. Although it has shown to be useful, a more intuitive measure
could be suggested. In [80], the notion of relative phase shift (RPS) is revisited and phase struc-
ture is shown to be revealed through RPS. It would be interesting to examine if there are different
patterns in RPS structures that can help discriminate emotional content in speech, combined with
the standard amplitude and frequency features.

Furthermore, it is has shown in [27, 40, 41] that an implicit information provided by the
sinusoidal amplitudes is important in emotion recognition. However, when considering only a
part of the full-band, such as the 10 highest spectral peaks, a significant part of the spectrum is
not taken into account. Better classification scores may contribute by the inclusion of that part.
Moreover, higher frequency components were suggested to be disregarded in sinusoidal model-
based emotion classification as inappropriate for the task [79]. Nevertheless, the aSMs are able
to follow the dynamics of speech in the upper bands, and thus to reveal the spectral details that
are blurred due to the time-frequency trade-off of the FFT-based estimation.

Additionally, vowels have received increasing attention when it comes to emotion recogni-
tion. However, consonants are shown to be important as well (see for example [7]). Since our
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model is full-band and models both voiced and unvoiced parts of speech using AM-FM com-
ponents, it would be interesting to examine whether there is any useful information embedded
in the sinusoidal representation that is able to distinguish emotions. However, a robust voiced/
unvoiced detector (VUD) should be employed for this task. Finally, different classifiers can be
used, such as HMMs, SVMs, or GMMs, for a more efficient classification.
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Appendix A

Publications

During this work, the following conference papers were published (in chronological order):

1. Kafentzis, G. P., Yakoumaki T., Mouchtaris A., Stylianou Y.,

Analysis of Emotional Speech using an Adaptive Sinusoidal Model,

In European Signal Processing Conference (EUSIPCO), 2014.

2. Yakoumaki T., Kafentzis G. P., Stylianou Y.,

Emotion Classification using adaptive Sinusoidal Modeling,

In Conference of International Speech Communication Association (INTERSPEECH),
2014.
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