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Abstract

In the context of voice quality assessment, phoniatricians are aided by the measurement of several
phenomena that may reveal the existence of pathology in voice. Of the most prominent among such
phenomena are these of jitter and shimmer. Jitter is defined as perturbations of the glottal cycle and
shimmer is defined as perturbations of the glottal excitation amplitude. Both phenomena occur
during voice production, especially in the case of vowel phonation. Acoustic analysis methods are
usually employed to estimate jitter using the radiated speech signal as input. Most of these meth-
ods measure jitter in the time domain and are based on pitch period estimation, consequently, they
are sensitive to the error of this estimation. Furthermore, the lack of robustness that is exhibited
by pitch period estimators, it makes the use of continuous speech recordings as input problematic,
and essentially limits jitter measurement to sustained vowel signals. Similarly for shimmer, time
domain acoustic analysis methods are usually called to estimate the phenomenon in speech signals,
based on estimation of peak amplitude per period. Moreover, these methods, for both phenomena,
are affected by averaging and explicit or implicit use of low-pass information. The use of mathe-
matical descriptions for jitter and shimmer, in order to transfer the estimation from the time domain
to the frequency domain, may alleviate these problems.

Using a mathematical model that couples two periodic events to achieve the local aperiodic-
ity, allows jitter to be modeled as the shift of one of the two periodic events with respect to the
other. Said model, when transformed to the frequency domain, displays interesting spectral trends
between the harmonic and subharmonic subspectra. The two spectral parts are shown to form a
beat spectrum, with the number of intersections between them directly dependent on the shift re-
lated to jitter. This behavior was exploited to develop a short-time Spectral Jitter Estimator (SJE).
Experiments with synthetic signals of jittered phonation showed that SJE provides accurate local
estimates of jitter. Further evaluation was conducted on two databases of actual sustained vowel
recordings from healthy and pathological voices. Comparison with corresponding estimations from
the Multi-Dimension Voice Program (MDVP) and the Praat system revealed that SJE outperforms
both in normal versus pathological voice discrimination accuracy by at least 4%, as this was judged
using Receiver Operating Characteristic (ROC) curves and the Area Under the Curve (AUC) index.
Examination of the short-time statistics of SJE showed that there is a higher correlation with the
existence of pathology in voice, due to the fact that SJE takes into account the full spectrum.

SJE was also shown to be robust against errors in pitch period estimations, which combined
with the ability of jitter estimation over short time intervals, deemed SJE a very good candidate for
measuring jitter in continuous speech. Through cross-database validation a threshold of pathology
for SJE has been determined. By applying this threshold to a database of reading text recordings
from normophonic and dysphonic speakers, a second threshold and new features were established,
especially for monitoring jitter in continuous speech. In terms of AUC, the suggested features for
reading text provide a discrimination score of about 95%, while the second threshold provides a
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Classification Rate (CR) of 87.8%. Furthermore, estimated short-time jitter values from reading
text were found to confirm the studies showing the decrease of jitter with increasing fundamental
frequencies, and the more frequent presence of high jitter values in the case of pathological voices
as time increases.

A mathematical model that combines two periodic events, allows also for modeling of shimmer
by applying different amplitude deviations on the two events. Again, by transforming the model
from the time domain to the frequency domain, notable spectral properties are observed. Using this
properties four features indicative of shimmer were created to evaluate the model. Experiments with
synthetic shimmered phonation signals, as well as the two afore-mentioned databases of sustained
vowel recordings, showed that the model captures correctly the shimmer phenomenon and further
development should be pursued.
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Chapter 1

Introduction

Voice quality assessment is an essential diagnostic tool used by phoniatricians to help them in
determining the existence of pathological voice. Several methods have been developed to extract
measurements that can be used for that purpose. These can be categorized in three main groups:

• Videoendoscopy methods that use an image or video recording of the vocal folds, such as
videokymography.

• Electroglottography (EGG) methods that use the measurement of the electrical resistance
between two electrodes placed around the neck, through which the vocal fold contact area
can be estimated.

• Acoustic analysis methods that use recordings of the radiated speech signal to compute pa-
rameters related to pathological voice.

Comparing these three groups of methods, acoustic analysis seems to have several advantages.
In particular, acoustic analysis methods have a lower cost of implementation, while they require
less time and are non-invasive for the patient when applied. Furthermore, acoustic analysis can
produce automatic quantitative results, which, apart from assisting clinical doctors, can be used for
unsupervised classification of a voice as pathological or healthy, or even detect specific cases of
dysphonia.

Noise is what is mainly perceived as the immediate effect of a pathological condition in voice.
The two prominent kinds of noise due to dysphonia are those of additive noise, such as in cases of
breathiness, and of modulation noise, such as in cases of roughness. Regarding modulation noise,
it can be further categorized, in modulation of the amplitude or modulation of the periodicity, of the
voice signal. The case of periodicity modulation is referred to as jitter, while the case of amplitude
modulation is referred to as shimmer. Both these phenomena may occur during voice production,
especially in vowel phonation. Jitter is defined in that context as small fluctuations in glottal cycle
lengths [22] [31], while shimmer is defined as perturbations of the glottal excitation amplitude.
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Over successive speech cycles, jitter and shimmer help to give the vowel its naturalness in contrast
to constant pitch and amplitude that can result in a machine-like sound. Moreover, the two phe-
nomena contribute to the voice quality of a speaker. Note that humans are not able to differentiate
between the noise produced by jitter and shimmer, while they are able to differentiate modulation
from additive noise [19]. As it was mentioned above, a high degree of jitter and/or shimmer results
in a voice with roughness, that is usually perceived as noise in recordings of pathological voices.
Therefore, a reliable estimation of these phenomena can be used to discriminate between normo-
phonic and dysphonic speakers. The actual measurement may take place in the time domain, the
frequency domain (magnitude spectrum), or the quefrency domain.

Based on the definition of jitter, many acoustic analysis methods have been proposed for the
computation of a value that quantifies the aperiodicity that is introduced to the voice signal on
account of jitter [27] [11] [2] [29]. The most common methods are time domain ones that are based
on the estimation of a sequence of pitch period values, over a length of time that comprises several
periods. This sequence is then used to produce an average value of jitter over that duration. If N is
the total number of pitch periods and u(n) is the sequence of pitch period estimates, the definitions
of some widely accepted jitter measurements are given below:

• Local jitter is the period-to-period variability of pitch (%)

local jitter =

1

N − 1

N−1∑
n=1

|u(n+ 1)− u(n)|

1

N

N∑
n=1

u(n)

(1.1)

• Absolute jitter is the period-to-period variability of pitch in time

absolute jitter =
1

N − 1

N−1∑
n=1

|u(n+ 1)− u(n)| (1.2)

• Relative Average Perturbation (RAP) jitter provides the variability of pitch with a smoothing
factor of three periods (%)

RAP =

1

N − 2

N−2∑
n=1

|2u(n+ 1)− u(n)− u(n+ 2)|
3

1

N

N∑
n=1

u(n)

(1.3)

• Pitch Period Perturbation Quotient (PPQ) provides the variability of pitch with a smoothing
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factor of five periods (%)

PPQ =

1

N − 4

N−4∑
n=1

|4u(n+ 2)− u(n)− u(n+ 1)− u(n+ 3)− u(n+ 4)|
5

1

N

N∑
n=1

u(n)

(1.4)

Since these methods are based on pitch period estimation, they are sensitive then to the error of this
estimation. It is not uncommon for the same voiced speech segment to obtain different fundamental
period estimations when using different estimators of the pitch period. This will lead to quite dif-
ferent jitter estimates, making thus the above jitter measurements quite vulnerable to the variability
of pitch period estimators. This variability is partially due to the quasi-periodic character of speech
even for sustained vowels. A strictly periodic speech signal would have strong frequency com-
ponents at the integer multiples of the fundamental frequency (the reciprocal of the pitch period)
referred to as harmonics. From high frequency resolution speech analysis, results show that voiced
speech signals have strong components near the harmonic frequencies (but not on the harmonics)
usually referred to as inharmonics[25]. At low frequencies (≤ 700 Hz), the speech magnitude
spectrum has more of a harmonic structure compared to its structure in higher frequencies. If we
consider then only the lower frequencies of a voiced speech segment, this may be closer to be-
ing periodic than the corresponding full-band voiced speech segment. Consequently, the methods
trying to estimate the pitch period of quasi-periodic speech signals, either explicitly (by low-pass
filtering) or implicitly (by ignoring the quasi-periodic character of voiced speech), rely on the low
frequencies of speech signals. Furthermore, the average measurement of jitter, over a series of
pitch periods, is used by the majority of the methods as a means to to minimize the variance of the
jitter estimation. Methods based on the averaging of jitter are statistically biased, since it has been
found that they underestimate jitter [31]. Also, averaging implies that pitch cycle perturbations are
generated by an independent and identically distributed (Gaussian) stochastic process. It has been
shown, however, that there is correlation between successive values of jitter [10]. Therefore, this
correlation should be removed before applying the average operator [31].

The choice of applying jitter estimation methods on sustained vowels rather than on continuous
(running) speech, is mostly driven by the lack of robustness in the automatic extraction of the fun-
damental frequency of speech and on the limitations of the suggested estimators of jitter [26] [34].
However, there are arguments in favor of using continuous speech or isolated sentences, such as
reading text, for voice pathology detection, since difficulties in abducting or adducting, or asym-
metries in the vocal folds, because of pathology, may be revealed during non-stationary areas of
speech [20] [12]. Processing of continuous speech for voice pathology detection was studied be-
fore, for example in [14] [1] [21] [34] [12]. In [1] patients read a tale for a duration of approxi-
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mately 40 seconds, and then seven acoustic measures of cycle-to-cycle perturbations in the speech
waveform were investigated. It was suggested that the standard deviation of the distribution of the
relative frequency differences between consecutive pitch periods provides a useful acoustic mea-
sure of waveform perturbations. Since these approaches are based on the pitch period estimation,
their accuracy is a function of the accuracy of the pitch period estimators. Given the pseudo-
periodic character of voiced speech there is an ambiguity in pitch period estimation and therefore
an ambiguity in the estimation of jitter. Moreover, there is no control if the perturbations ob-
served in the speech waveform are due to jitter, or shimmer, or other sources (vocal folds and vocal
tract interactions) [1]. In [34], a time-frequency (TF) representation based on the matching pursuit
decomposition with Gabor TF atoms of various scale factors was used. It was found that the dis-
tribution of these scale factors is a potential feature for discrimination of normal and pathological
speech signals. In [12] hearing and phonetic criteria in voice measurement were discussed. Various
features were considered taking into account functions of the estimated fundamental frequency and
vocal fold closed quotient during connected speech. It was found that these measurements were
related both to vocal fold function and to the perceptual attributes of pitch, loudness, and voice
quality.

For shimmer, as well, many acoustic analysis methods that quantify the phenomenon have
been proposed. Such methods are usually based on peak extraction, in order for a time-series
of amplitude values, one for each pitch period, to be established. This series is used to provide an
average value of shimmer over a number of several periods. IfN is the total number of pitch periods
and a(n) is the peak amplitude sequence, the definitions of widely accepted shimmer measurements
are given below:

• Local shimmer is the period-to-period variability of the peak-to-peak amplitude (%)

local shimmer =

1

N − 1

N−1∑
n=1

|a(n+ 1)− a(n)|

1

N

N∑
n=1

a(n)

(1.5)

• Absolute shimmer is the period-to-period variability of the peak-to-peak amplitude in dB

absolute shimmer = 20
1

N − 1

N−1∑
n=1

| log10[a(n+ 1)− a(n)]| (1.6)

• Amplitude Perturbation Quotient (APQ) provides the variability of the peak-to-peak ampli-
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tude with a smoothing factor of 11 periods (%)

APQ =

1

N − 10

N−10∑
n=1

|10a(n+ 5)−
∑4

k=0 a(n+ k)−
∑10

k=6 a(n+ k)|
11

1

N

N∑
n=1

a(n)

(1.7)

These methods exhibit problems similar to those of time-domain jitter methods, regarding averag-
ing, pitch period estimation sensitivity and reliance to low frequencies.

The previous pitch-period based methods for measuring jitter and shimmer can be considered
to model the effects of these phenomena using solely their assumed temporal properties. Another
approach is to model each phenomenon using its spectral characteristics. In [24], by taking the
Fourier series of two periods of the glottal pulse waveform, it was shown how these terms contribute
to the different frequencies appearing in the spectrum, for different kinds of perturbations. For
jitter (i.e., having two periods of different length) and for shimmer (i.e., having two periods of
different amplitude), interesting trends between the harmonic and subharmonic subspectra were
noted. Regarding jitter, the pattern persisted in synthetic jittered glottal airflow signals, with either
cyclic or random variation of the fundamental frequency. Similarly for shimmer, the respective
pattern was also present in synthetic shimmered glottal airflow signals, with either cyclic or random
variation of the glottal signal amplitude. However, these models were developed in a heuristic
manner, and no mathematical proof was provided.

In this work, we present a new method for the estimation of jitter, based on a mathematical
description of the time domain properties of the jitter phenomenon. More specifically, we show
how jitter can be described as the combination of two periodic events. When these two events
are viewed through a single prism, then they can achieve the local aperiodicity that is jitter. This
modeling of jitter as a cyclic process, allows us to identify it quantitatively as the shift of one of
the two periodic events with respect to the other. By transforming this model to the frequency
domain, it is shown that jitter leads to a beat spectrum defined by the above mentioned shift of the
two periodic events. This spectral behavior is in concordance with the afore-mentioned heuristic
development and can be used then to indirectly estimate the value of jitter by counting the number
of intersections between harmonic and subharmonic subspectra [37]. Based on this we created a
novel short-time jitter estimator, referred to as Spectral Jitter Estimator (SJE), that allows for time-
varying measurement with a high local accuracy, as it was demonstrated on synthetic phonation
signals with known jitter. Although SJE uses pitch period information, it was shown that this is not
crucial in counting the number of intersections between the harmonic and subharmonic subspec-
tra [35]. Additionally, by producing a short-time sequence of local jitter values on small intervals,
SJE provides estimates without assuming long-term periodicity as in the purely time domain ap-
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proaches. The performance of SJE in discriminating between normal and pathological voice status
was compared to jitter measurements obtained by two established systems for quantitative acoustic
assessment of voice quality, namely Praat [4] and Multi-Dimensional Voice Program (MDVP) [9]
of KayPENTAX. On two different databases of sustained vowel recordings, the Massachusetts Eye
and Ear Infirmary (MEEI) Disordered Voice Database [8] and the Prı́ncipe de Asturias (PdA) Hos-
pital in Alcalá de Henares of Madrid database [13], the estimates of SJE were shown to be more
correlated with pathology than the estimates by Praat and MDVP.

As it was mentioned earlier, it has been shown that methods that produce an average estimate for
jitter are statistically biased and actually underestimate jitter [31]. For short-time jitter estimators,
however, averaging is not necessary. Actually, the generated sequence of local measurements of
jitter can be used to gain further insight on the temporal behavior of jitter, for both healthy and
pathological voices. For this purpose, we extended the use of SJE on reading text recordings by
suggesting new features for analysis of continuous speech, based on the short-time measurements of
jitter as provided by SJE. Through cross-database comparison, we determined a relevant threshold
for pathology that leads to high discrimination for normal versus pathological voices, in databases
of either sustained phonation recordings or reading text recordings. Using this threshold and based
on the time-series of local jitter estimations from SJE, three new features have been suggested [36].
It has been shown that all three features have a high correlation with the existence of pathology,
while they are ideal for voiced segments of running speech signals. Furthermore, one of these three
features can be efficiently used to monitor the jitter effect in running speech.

A mathematical model of the time domain properties of shimmer, as this is achieved by two
periodic events, was also examined. The amplitude deviation that characterizes this cyclic shimmer
process leads to a frequency domain where two regimes of constant magnitude are observed, one
for the harmonic part and another for the subharmonic part [38]. This spectral property, previously
noted in [24], can be used to create acoustic analysis features that are related to the shimmer phe-
nomenon. For the evaluation of this model four such features have been developed and tested on
synthetic signals and the databases MEEI and PdA.

The contents of this work are organized as follows. In Chapter 2 the mathematical model SJE
is based on and its properties in time and frequency are presented. The algorithm of SJE is also
given in this Chapter. The synthetic signals and databases of recordings used in our experiments, as
well as the applied evaluation procedures, are described in Chapter 3. The evaluation of SJE takes
place in Chapter 4. Specifically, initial validation was conducted using synthetic signals, while
the performance of SJE regarding discrimination of normal and pathological voices, compared to
jitter estimations from Praat and MDVP, was examined in two databases of sustained phonation
recordings. The results from these experiments lead to the establishment of a pathology threshold
for SJE. The Chapter is closed with the study of the short-time statistics of SJE and the introduction
of three new voice quality assessment features especially for running speech. The mathematical



Chapter 1. Introduction 7

model for shimmer and its evaluation are presented in Chapter 5. Finally, Chapter 6 concludes this
work and provides information on future work and possible extensions. Note that parts of this work
have been initially presented in the following journals

• M. Vasilakis and Y. Stylianou. Spectral jitter modeling and estimation.
Biomedical Signal Processing & Control Special Issue: M&A of Vocal Emissions, to appear. [35]

• M. Vasilakis and Y. Stylianou. Voice pathology detection based on short-time jitter estima-
tions in running speech. Folia Phoniatrica et Logopaedica, to appear. [36]

and the following workshops

• M. Vasilakis and Y. Stylianou. A mathematical model for accurate measurement of jitter. In
MAVEBA 2007, pages 710, Florence, Italy, 2007. [37]

• M. Vasilakis and Y. Stylianou. A mathematical model for accurate measurement of shim-
mer. In 2nd Advanced Voice Function Assessment International Workshop, Aachen, Ger-
many, 2008. [38]

• M. Vasilakis and Y. Stylianou. Spectral jitter estimation revisited.
In 3rd Advanced Voice Function Assessment International Workshop, submitted, Madrid, Spain,
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Chapter 2

Spectral Jitter Estimator development

In this chapter a mathematical model of jitter is presented that exhibits notable spectral behav-
ior. This behavior is utilized in order to develop a short-time Spectral Jitter Estimator (SJE). The
algorithm of SJE is also given here.

2.1 Mathematical model of jitter

Jitter is defined as cycle-to-cycle perturbations of the glottal cycle lengths, which lead to a local
aperiodicity. This kind of perturbations can be modeled and generated by considering two periodic
events, which, when combined appropriately, may produce the observed perturbations. Let us
consider a mathematical model that describes two periodic events. The local aperiodicity of jitter
can be defined then, in relation to these two events, as the shift of one of the two with respect to the
other. This shift can be measured to provide us with a quantitative value for jitter [37]. Therefore, a
jittered impulse train can be obtained by applying a constant pitch deviation every second impulse,
achieving thus a cyclic perturbation that creates the two aforementioned events [28] (pgs. 102-103).
We can then model the glottal airflow signal under the presence of jitter as the convolution of the
glottal signal over one glottal cycle with such a jittered impulse train. The jittered impulse train can
be expressed then as

g[n] =
+∞∑

k=−∞

δ[n− (2k)P ] +
+∞∑

k=−∞

δ[n+ ε− (2k + 1)P ] (2.1)

where P is the pitch period and ε is the pitch deviation, both in samples. In this model, shown in
Fig. 2.1, ε is the shift that corresponds to jitter. The value of ε can range from 0 (no jitter) to P
(pitch halving).
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Figure 2.1: Jittered impulse train of the two event model for jitter.

The Fourier transform of the cyclically jittered impulse train (2.1) is

G(ω) =
+∞∑

n=−∞

g[n]e−jωn

=
+∞∑

n=−∞

(
+∞∑

k=−∞

δ[n− (2k)P ] +
+∞∑

k=−∞

δ[n+ ε− (2k + 1)P ]

)
e−jωn

=
+∞∑

k=−∞

e−jω2kP +
+∞∑

k=−∞

e−jω[(2k+1)P−ε]

=
(
1 + e−jω(P−ε)) +∞∑

k=−∞

e−jω2kP

=
(
1 + e−jω(P−ε)) +∞∑

k=−∞

2π

2P
δ

(
ω − k 2π

2P

)
=

(
1 + e−jω(P−ε)) +∞∑

k=−∞

ω0

2
δ
(
ω − kω0

2

)

(2.2)

where ω0 =
2π

P
is the fundamental frequency in rad.

The squared of the magnitude spectrum (2.2) is then given by

|G(ω)|2 = G(ω)G∗(ω)

=
(
1 + e−jω(P−ε)) (1 + e+jω(P−ε)) [ +∞∑

k=−∞

ω0

2
δ
(
ω − kω0

2

)]2

=
ω2

0

4

(
1 + e+jω(P−ε) + e−jω(P−ε) + 1

) +∞∑
k=−∞

δ
(
ω − kω0

2

)
=

ω2
0

2
(1 + cos [(P − ε)ω])

+∞∑
k=−∞

δ
(
ω − kω0

2

)
=

ω2
0

2

+∞∑
k=−∞

(
1 + cos

[
(P − ε) kω0

2

])
δ
(
ω − kω0

2

)
(2.3)
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The cosine term inside the sum corresponds to a beat spectrum described by the formula

1 + cos
[
(P − ε) kω0

2

]
= 1 + cos (kπ) cos (k

ε

P
π) (2.4)

This beat spectrum has a center period of 2π/P and a deviation period of 2π/ε, both in rad. There-
fore, the frequency interval between intersections of the envelope in the beat spectrum is π/ε (rad).
Since both cosine signals in (2.4) have zero phase, the intersections can be located at frequencies

ωk =

(
k +

1

2

)
π

ε
(2.5)

with ωk ≤ π.

From (2.3) the log magnitude spectrum of (2.1) is be shown to be

20 log10 |G(ω)| = 10 log10 |G(ω)|2

= 10 log10

(
ω2

0

2
(1 + cos [(P − ε)ω])

) +∞∑
k=−∞

δ
(
ω − kω0

2

)
= 10 log10

(
ω2

0

2
(1 + cos [(P − ε)ω])

)[ +∞∑
l=−∞,k=2l

δ
(
ω − kω0

2

)
+

+∞∑
l=−∞,k=2l+1

δ
(
ω − kω0

2

)]

= 10 log10

(
ω2

0

2
(1 + cos [(P − ε)ω])

)[ +∞∑
l=−∞

δ (ω − lω0) +
+∞∑
l=−∞

δ

(
ω − (l +

1

2
)ω0

)]
(2.6)

Based on (2.6), we can divide the spectrum to a harmonic and a subharmonic part, by sampling
this beat spectrum at frequencies lω0, which are multiples of the fundamental frequency and at
frequencies (l + 1/2)ω0, which are in between the harmonic locations, respectively, where we
remind that ω0 = 2π/P . The harmonic part of the log magnitude spectrum, as it is influenced by
jitter, is described then by

H(ε, lω0) = 10 log10

(
ω2

0

2
(1 + cos [(P − ε) lω0])

)
, l ∈ N (2.7)

while the subharmonic part of the log magnitude spectrum, that appears because of the existence
of jitter, is given by

S(ε, (l + 1
2
)ω0) = 10 log10

(
ω2

0

2

(
1 + cos

[
(P − ε) (l + 1

2
)ω0

]))
, l ∈ N (2.8)

Examples of the two subspectra, for various values of ε, are depicted in Fig. 2.2. It can be observed
that the harmonic and subharmonic parts follow a specific pattern, where for a specific value of ε
the two parts intersect ε times. As it was mentioned previously, the locations of the intersections



12 Chapter 2. Spectral Jitter Estimator development

are provided in (2.5). For example, when ε = 2 the intersections are located at frequencies π/4
and 3π/4 (rad), as it is also shown in Fig. 2.2. It is very important to observe that the locations
of the intersections in the beat spectrum only depend on ε and not on the pitch period (P ) of the
signal. Hence, by counting the number of intersections between the harmonic and subharmonic
subspectra, an estimation of ε, and therefore of jitter, can be obtained. It is also interesting to note
that this spectral property has been confirmed previously in a heuristic manner for synthetic jittered
glottal airflow signals, with either cyclic or random variation of the fundamental frequency [24].
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Figure 2.2: Log magnitude spectra of the harmonic and subharmonic parts of the mathematical
model for jitter. It is worth to note that the circled intersections between the two parts, reveal each
time the value of jitter.

2.2 Spectral Jitter Estimator

If a jittered impulse train, such as in (2.1), is used as the input of a linear system, then the afore-
mentioned spectral structure remains visible also in the output. Therefore, it is expected to observe
such a spectral behavior in phonation recordings, whenever jitter is present. Exploiting this fact,
a short-time Spectral Jitter Estimator (SJE) has been developed, based on the previously observed
properties of the log magnitude spectrum in the presence of jitter [35].

In the mathematical model for jitter it was assumed that the two periodic impulse trains have
infinite duration and so a cyclic jitter is modeled. In real speech signals, however, the value of
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jitter may be modified from period to period. By windowing the signal with a sliding frame this
problem is alleviated; we are allowed to examine the signal gradually in time and thus to calculate
a sequence of local jitter estimates. Given a phonation recording s[n] of , with n = (0 : N − 1),
the implemented algorithm is presented in pseudo code in Table 2.1. The pitch period is estimated

jitter = []
time = []
index = 0
start = 0
pitch = []
pitch = pitch period sequence estimation(s[n])
while start < N

if the current frame is unvoiced
P = average(pitch)

else
P = pitch[index]

endif

 or

 P = average(pitch)


end = start+ L ∗ P − 1
frame = s[start : end]
frame = Hanning window(frame)
F = 20 log10(|FFT(frame)|)
H = F[harmonic frequencies]
S = F[subharmonic frequencies]
intersections = locations of valid intersections between the two parts(H, S)
candidateJitter = length(intersections)
while candidateJitter > 0

if intersections satisfy candidateJitter expected locations then break from the loop
candidateJitter - -

endwhile
jitter[index] = candidateJitter
time[index] = (start+ end)/2
start += S ∗ P
index++

endwhile
return jitter, time

Table 2.1: The algorithm of the short-time Spectral Jitter Estimator described in pseudo code.

beforehand and we can either use the local value of the pitch period or the average pitch period of
the whole signal. Most usually the input signal is a sustained phonation recording of duration 1-2
seconds. In these cases especially, using the average pitch period may provide a more robust result.
The size and step of the sliding frame, indicated by the variablesL and S, respectively, are chosen to
be multiples of the pitch period. Specifically for the frame size, in order to compute the perturbation
from one period to the next, at least two periods are required. Because of discontinuities of the time
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domain signal (end effects), alias frequencies may appear in the computed log magnitude spectrum.
In order to avoid this the windowing of the frame is suggested. For this purpose a Hanning window
is used. However, with a tapered window like Hanning, the data is distorted. To minimize the effect
of this distortion we concluded from our experiments that a window length of three or four periods
provides a high enough resolution in the computed spectrum for the estimation to be successful,
while the applied Hanning window concentrates on the two middle periods, providing thus the
desired short-time precision. The log magnitude spectrum of the Fourier transform of the frame is
then computed and using the local pitch period (or the average pitch period) estimate, the magnitude
spectrum is split into the harmonic and subharmonic spectra.

By taking into account the two subspectra, the locations of the occurring intersections between
them are computed. In order to overcome potential resolution problems in the spectral magnitude,
a threshold is used to determine if an intersection is rightfully indicated as such. For any given
intersection, if the harmonic and subharmonic parts after its occurrence never reach a difference
in amplitude over the threshold, before the next potential intersection, then these two intersec-
tions are rejected. The remaining intersections are termed as “valid intersections” in the algorithm.
Through experiments with synthetic jittered signals, this threshold has been set to 3 dB. It is worth
mentioning that this threshold has been kept constant during subsequent experiments. The valid
intersections are further examined, by taking into account the prior knowledge of their expected
locations, for each possible jitter value, as these are given in (2.5). In detail, starting with the can-
didate jitter of the highest possible value, which is the number of all valid intersections, we divide
the spectrum in that many equal segments. It is expected that at least one intersection exists in the
area around the center of each segment. If this is true, then the candidate jitter value is accepted as
our estimation. Otherwise, the candidate jitter is decreased by one and the process is repeated until
either the structural requirement is met or zero is reached. This refinement is necessary to suppress
any spurious intersections that may arise between the harmonic and subharmonic spectral parts,
especially in higher frequencies. In essence this process enhances the intersections by eliminating
the spurious ones and grouping neighboring ones in clusters. An example of this enhancement is
illustrated in Fig. 2.3. The algorithm of SJE is also shown as a block diagram in Fig. 2.4, while
visual examples of its usage on a frame from a synthetic jittered phonation signal and a frame from
an actual sustained vowel recording are presented in Figs. 2.5 and 2.6, respectively.

The obtained short-time sequence of SJE estimations is quantized and consists of integer values
that represent the jitter deviation in samples. Other methods that quantify the phenomenon of
jitter produce estimates in time units. For comparison purposes the SJE estimates should also be
converted from samples to the appropriate time units. Absolute jitter in (1.2) is one of the most
common time domain methods. In relation to the mathematical model used for our estimator,
absolute jitter provides a value of 2 × ε̂, where ε̂ is the jitter estimate. Both Praat and MDVP
implement this kind of measurement and in fact return results in µs. Converting the samples value
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Figure 2.3: An example of intersections enhancement for a frame from a pathological signal. Prior
to the enhancement SJE estimates jitter to ε̂ = 8 samples, while after enhancement it produces a
value of ε̂ = 3 samples.
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Figure 2.4: Block diagram of the short-time Spectral Jitter Estimator algorithm.
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tural behavior of jitter in this synthetic example is clearly demonstrated. (b) One example of a valid
intersection and one example of a pair of rejected intersections.
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Figure 2.6: Harmonic and subharmonic spectra from a frame of an actual sustained phonation
recording. The Spectral Jitter Estimator results, after intersections enhancement, to an estimate of
ε̂ = 2.

accordingly, again a quantized value is computed, with a quantum of

ε̂q(Fs) =
2× 106

Fs
(µs) (2.9)

where Fs is the sampling frequency in Hz. It is evident, that the larger the sampling frequency, the
larger the resolution of the measurement. Consider as an example a signal sampled at 50 kHz that
is estimated to have a jitter value of 1 sample, which translates to 20 µs in time units (40 µs for
the absolute jitter equivalent). If this same signal were down sampled at 25 kHz, then it could be
the case that the estimation revealed no jitter at all. However, if an up sampling took place at 100
kHz, then the estimated jitter would be 2 samples, which in time units is again 20 µs. Therefore,
a higher sampling frequency would improve the results resolution-wise, only if the information in
the signal is not already enough for an accurate estimation.



Chapter 3

Data and evaluation procedures

The signals used for validation and experiments are described in this chapter. They consist of
synthetic signals that were created for the purposes of this work and also existing databases of
recordings from healthy and pathological voices. The procedures employed for evaluation of the
proposed methods are also presented here.

3.1 Synthetic jittered phonation signals

For the initial verification of the validity of the proposed methods, synthetic signals of sustained
phonation were created with specific jitter perturbations. For all the synthetic signals, a vocal tract
autoregressive model of order 50 was used. The model was created from one period of a sustained
phonation recording of the vowel /a/, with average fundamental frequency of 125 Hz. The vocal
tract envelope was excited then by jittered impulse trains as these are described in (2.1). Signals
were created for sampling frequencies of both 16 and 48 kHz. The value of ε varied from 0 samples
to 10% of the pitch period, that is up to 13 and 39 samples, for the sampling frequencies of 16 and
48 kHz, respectively. The duration of the signals were set to 1 seconds.

3.2 Databases of recordings

Databases of actual signals from both healthy and pathological speakers were used for further
evaluation experiments of the proposed methods. Specifically, two databases of sustained phonation
recordings and one database of reading text recordings were used. The signals in all databases have
been labeled as normal or pathological by clinical doctors of the institute that created each database.
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3.2.1 Massachusetts Eye and Ear Infirmary Disordered Voice Database

The Massachusetts Eye and Ear Infirmary (MEEI) Disordered Voice Database [8] contains record-
ings of the sustained vowel /a/, from 53 subjects with a healthy voice and 657 subjects with a
wide variety of pathological conditions. The subjects were labeled accordingly by clinical doctors.
There are also included, for most of the recordings, the acoustic analysis parameters produced by
the Multi-Dimensional Voice Program [9] (MDVP). For the purposes of our experiments, the sus-
tained phonation recordings with the MDVP parameters available were selected. Specifically, this
concerns all 53 of the healthy voice cases and 631 of the pathological ones. All normal signals
have a sampling frequency of 50 kHz, while the pathological signals may have either 25 or 50 kHz,
all with 16 bits per sample. In order to avoid potential correlation of the results with the sampling
frequency, all 50 kHz signals used were resampled to 25 kHz. The duration of the normal signals
ranges from 2 to 3 seconds, while that of the pathological ones from 0.4 to 1.4 seconds. This
database will be referred to as “MEEI”.

3.2.2 Prı́ncipe de Asturias database

The database from the Prı́ncipe de Asturias (PdA) Hospital in Alcalá de Henares of Madrid [13]
also consists of recordings of the sustained vowel /a/. The stored signals have the first and last
part of the utterance removed to avoid onset and offset effects. 238 samples from normophonic
speakers and 201 samples from dysphonic speakers, with a wide range of disorders, were used for
our experiments. The labeling of the speakers was done from the clinical doctors of the hospital.
All signals have a sampling frequency of 25 kHz, with 16 bits per sample, and their duration ranges
from 1.5 to 4 seconds. This database will be referred to as “PdA”.

3.2.3 MEEI reading text database

The MEEI Disordered Voice Database, apart from sustained phonation recordings, also includes
reading text recordings of the standard text “The Rainbow Passage”. These recordings are limited
to 12 seconds, usually including up to the two first sentences of the text, which are the following:
“When the sunlight strikes raindrops in the air, they act as a prism and form a rainbow. The rainbow
is a division of white light into many beautiful colors.”
For our experiments 53 signals from healthy voices and 660 signals from pathological voices were
used. 683 of these signals have a sampling frequency of 25 kHz (36 normal and 647 pathological)
and 30 have a sampling frequency of 10 kHz (17 normal and 13 pathological), all with 16 bits per
sample. This database will referred to as “MEEIRainbow”.
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3.3 Absolute jitter comparison

Absolute jitter is a widely implemented measurement of the period-to-period variability of pitch in
time [27]

absolute jitter =
1

N − 1

N−1∑
n=1

|u(n+ 1)− u(n)| (3.1)

where N is the total number of pitch periods and u(n) is the pitch period sequence. This type of
jitter estimation is implemented by two of the most established systems for acoustic voice quality
assessment, the Praat [4] system and the Multi-Dimensional Voice Program (MDVP) [9]. Praat
implements it as the Jitter (local, absolute) function, while MDVP provides the Jita analysis pa-
rameter. Both systems produce a single absolute jitter estimate for the whole input signal in µs.
In the experiments with actual speech recordings, SJE was compared to the above methods. Since
SJE produces a sequence of local estimates in samples, these measurements were first converted to
µs accordingly, and then the average value of the new sequence was computed for the purpose of
comparison.

3.4 Receiver Operating Characteristic analysis

The ability of a method to discriminate samples, from a given set, that belong to two different
classes, based solely on a single score that is provided by the method for each sample, can be
examined through Receiver Operating Characteristic (ROC) analysis [7]. The ROC curve of the
method, that is the True Positive Rate (TPR) vs. False Positive Rate (FPR) curve, is determined by
considering a variable discrimination threshold. This curve describes in essence the performance
of all possible binary classifiers based on the examined method. The discriminative efficiency of a
method can be then summarized in an accuracy index referred to as Area Under the Curve (AUC),
which is the area under the ROC curve produced for the method. For the specific problem of two
class discrimination, such as normal versus pathological voices, AUC is an index that is analogous
of discrimination power. AUC is preferred over other measurements of discrimination performance,
because it is free from any bias due to the size of the set of each class. The standard error of the
AUC index provides additional information regarding its confidence interval [15].
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Chapter 4

Spectral Jitter Estimator evaluation

The validity and performance of the Spectral Jitter Estimator (SJE) was evaluated using synthetic
signals and databases of actual speech recordings. The results of the performed experiments are
presented in this chapter. SJE has been initially validated using synthetic signals. Comparison
with the Praat system and the Multi-Dimension Voice Program (MDVP) on the MEEI and PdA
databases have shown that SJE is more discriminant than the other methods. Building on these
results, a threshold for pathology has been established for SJE, through cross-database examination.
Furthermore, since SJE is able to provide short-local estimations, short-time statistics of those have
been also examined. Finally, experiments with reading text recordings from MEEIRainbow have been
conducted that led to the creation of new features especially for running speech.

4.1 Synthetic Signals

Applying the short-time Spectral Jitter Estimator (SJE) on synthetic signals, with prior knowledge
of the actual pitch period, the results did confirm our theoretical observations. The structural pattern
of the jittered impulse train is maintained on the final signal and thus the exact measurement of
jitter, in a short-time fashion, is possible. The previously mentioned Fig. 2.5 shows a frame from
a synthetic jittered phonation signal with sampling frequency of 48 kHz and pitch deviation of 5
samples (ε = 5). The number of counted intersections indeed corresponds to the value of ε, while
two false intersections were correctly rejected using the 3dB threshold.

To assess the legitimacy of the synthetic signals used, and consequently that of SJE, Praat [4]
was used as a reference system, comparing the absolute jitter estimates of the two methods. We
remind that the measurement provided by Praat is a single estimate for the whole signal, while SJE
computes a sequence of short-time values. Therefore, for the purpose of comparison the average
value of this short-time sequence was used. The average value is also doubled and then converted
from samples to µs, so that it is analogous to the absolute jitter units from Praat.

The error difference, between the theoretical jitter value and the estimates from SJE and Praat,
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for all the synthetic jitter signals, is presented in Fig. 4.1. As SJE has given precise local values,
the zero error was to be expected. The results were the same using a frame size of either three or
four times the pitch period. The error difference of Praat is in the order of some µs, for almost all
different values of ε. For three cases at 48 kHz, Praat determined the signals as unvoiced and thus
it did not provide a jitter measurement. Given that for the 16 kHz case the estimate quantum is 125
µs, and for the 48 kHz case it is 41.7 µs, the error produced by Praat can be considered negligible,
and so the validity of the synthetic signals can be ascertained.
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Figure 4.1: Absolute jitter error difference between theoretical value and estimation on synthetic
jittered phonation signals with sampling frequency of (a) 48 kHz and (b) 16 kHz. The minimal
error in the estimates of Praat verifies the validity of SJE, which presents zero error.

4.2 Databases of recordings

Further evaluation of Spectral Jitter Estimator (SJE) was performed using actual sustained phona-
tion recordings from two databases. SJE was compared to absolute jitter measurements provided
by Praat and MDVP. The initial pitch estimation required by SJE was taken from four sources:

• average of pitch period sequence computed by the YIN [5] pitch estimator (PYIN(average))

• local pitch period again estimated by YIN (PYIN(local))

• average pitch period estimated by Praat (PPraat(average))

• average pitch period estimated by MDVP (PMDVP(average))

We remind that for SJE the average value of the produced short-time sequence is used.
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4.2.1 Massachusetts Eye and Ear Infirmary Disordered Voice Database

The Massachusetts Eye and Ear Infirmary (MEEI) Disordered Voice Database was used for ex-
periments with actual recordings from healthy and pathological voices. The distributions of the
absolute jitter measurement from the three different methods, for normal and pathological signals,
are presented in Fig. 4.2. For SJE, the case depicted is the one where PMDVP(average) is taken as the
initial pitch estimation, with a frame size of four times that. All methods have similar distributions,
with slight differences in the produced values. Specifically, Praat has a smaller range for normal
signals, while MDVP has twice the range of the other methods for pathological signals. This dif-
ference can be attributed to the fact that Praat is less sensitive to additive noise than MDVP [3].
In Fig. 4.3 the absolute jitter estimates from the three methods for each signal in MEEI are shown
(the estimates are plotted after sorting the jitter estimations by MDVP). SJE gives average values
which are in general larger than the estimates from MDVP and Praat. This is partly explained by
the fact that SJE produces quantized values, described in (2.9), but the main reason is the differ-
ent nature of the three methods. Although in theory all three methods measure absolute jitter, the
implementations of MDVP and Praat depend too much on the notion of periodicity, while MDVP
even takes steps to alleviate quasi-periodicity of speech through low-pass filtering [6]. Therefore,
either explicitly or implicitly, these methods work on low-pass information and don’t capture the
full range of the jitter phenomenon. SJE, on the other hand, looks for the structural effects of jitter
on the full spectrum.
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Figure 4.2: Distributions of the absolute jitter estimates for normal and pathological signals in
MEEI, from three methods (a) MDVP, (b) Praat and (c) SJE. Praat has a smaller range of estimates
for normal signals, while MDVP produces a larger range for pathological ones.
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Figure 4.3: Absolute jitter estimates from three methods for (a) normal and (b) pathological signals
in MEEI. The values are sorted by the estimation of MDVP for convenience. The SJE average is in
general larger than the estimates of other absolute jitter methods.

Since a direct comparison between the results of the different methods is of no use, the Receiver
Operating Characteristic (ROC) analysis of their ability to discriminate healthy from pathological
voices allows for an indirect comparison. The ROC curves for the three methods in contest are
portrayed in Fig. 4.4. Notice that SJE using four different pitch estimators has a steady performance
in classification, as it is shown by the very similar ROC curves and Area Under the Curve (AUC)
indexes. This provides proof that SJE is robust enough to perform consistently without relying so
much to the initial pitch period estimation. Additionally, with an improvement of nearly 4% in the
AUC index, our method is indeed more discriminant by both MDVP and Praat. When a frame size
of three times the pitch period is used for SJE, the performance in discrimination doesn’t change
significantly. The AUC score and its standard error, for all the cases tested, are given in Table 4.1.

AUC (standard error) % for MDVP on MEEI 90.66 (1.42)
AUC (standard error) % for Praat on MEEI 90.47 (1.44)

AUC (standard error) % for SJE on MEEI
Frame size PMDVP(average) PPraat(average) PYIN(average) PYIN(local)

Three times 94.73 (0.93) 93.09 (1.13) 94.68 (0.94) 91.70 (1.30)
Four times 94.82 (0.92) 93.17 (1.12) 94.77 (0.92) 91.37 (1.34)

Table 4.1: AUC score (and standard error) in % for all absolute jitter methods tested on MEEI. For
SJE, cases with four different pitch estimators and two different frame sizes are presented.
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Figure 4.4: ROC curves for the absolute jitter methods tested on MEEI. SJE is the most discriminant
among the three methods compared.

4.2.2 Prı́ncipe de Asturias database

Additional experiments with actual recordings were performed using the Prı́ncipe de Asturias
(PdA) database. The distributions of the absolute jitter measurements for the two groups of signals
are illustrated in Fig. 4.5. For SJE, the case shown is the one where PPraat(average) is used for the initial
pitch estimation, with a frame size of four times that. Similarly to the results of the previous ex-
periments, Praat has a smaller range of estimations for normal signals, while MDVP gives a larger
range for pathological signals. It is worth mentioning that SJE provides absolute jitter measure-
ments with a smaller overlap between the two classes as compared to the other two estimators. In
Fig. 4.6, the estimations of jitter per signal from the three estimators are depicted (again the signals
are sorted by their corresponding estimations from MDVP). It can be observed that for PdA, same
as for MEEI, SJE provides larger values for the estimation of jitter.

When it comes to the discrimination ability between healthy and pathological voices, SJE is the
most discriminant for this database as well. In Fig. 4.7 the Receiver Operating Characteristic (ROC)
curves for classification of normal vs. pathological signals are depicted, using the absolute jitter
results from Praat, MDVP, and SJE. For SJE four cases are presented with different initial pitch
estimations. Praat is by far the least discriminant, while the SJE average is better by both Praat
and MDVP in all cases. Using Praat’s own pitch estimate our method provides an improvement in
the area under the curve (AUC) index of more than 20% from Praat, and almost 14% from MDVP,
while for the other pitch estimators the AUC index is also quite high. If we instead use a frame size
of three times the pitch period, then SJE performs more or less the same. In Table 4.2 the AUC
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Figure 4.5: Distributions of the absolute jitter estimates for normal and pathological signals in PdA,
from three methods (a) MDVP, (b) Praat and (c) SJE. The overlap between the distributions of the
estimates for the normal and pathological signals is significantly smaller for SJE.
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Figure 4.6: Absolute jitter estimates from three methods for (a) normal and (b) pathological signals
in PdA. The values are sorted by the estimation of MDVP for convenience. The SJE average is
again larger than the estimates of the other absolute jitter methods.

score and its standard error for all different experiments are shown.
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AUC (standard error) % for MDVP on PdA 70.65 (2.50)
AUC (standard error) % for Praat on PdA 62.94 (2.67)

AUC (standard error) % for SJE on PdA
Frame size PMDVP(average) PPraat(average) PYIN(average) PYIN(local)

Three times 79.73 (2.17) 84.10 (1.95) 78.46 (2.23) 77.76 (2.26)
Four times 79.71 (2.17) 84.65 (1.92) 78.13 (2.24) 77.61 (2.26)

Table 4.2: AUC score (and standard error) in % for all absolute jitter methods tested on PdA. For
SJE, cases with four different pitch estimators and two different frame sizes are presented.
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Figure 4.7: ROC curves for the absolute jitter methods tested on PdA. SJE is the most discriminant
among the three methods compared for this database as well.

4.2.3 Intersections enhancement impact

It is interesting to examine what the estimates of SJE would be like without the enhancement of
intersections described in section 2.2. In Figs. 4.8 and 4.9 the absolute jitter estimates from the
application of SJE on MEEI and PdA, respectively, with and without enhancement are presented
(the estimates are plotted after sorting the corresponding jitter estimations by MDVP, similarly
to Figs. 4.3 and 4.6). The estimates of SJE without enhancement are significantly larger than
those after the enhancement process. However, even with these flawed results, the AUC score is
very high, specifically 96.64% with a 0.68% standard error for MEEI, and 83.33% with a 2.00%
standard error for PdA. The reason is that while the spurious intersections occur in both healthy
and pathological voices, they tend to appear more frequently in the pathological ones.
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Figure 4.8: Absolute jitter estimates from SJE with and without enhancement, for (a) normal and
(b) pathological signals in MEEI. The values are sorted by the corresponding estimation of MDVP
for convenience.
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Figure 4.9: Absolute jitter estimates from SJE with and without enhancement, for (a) normal and
(b) pathological signals in PdA. The values are sorted by the corresponding estimation of MDVP
for convenience.

4.3 Pathology Threshold for SJE

We can take advantage of the results of the experiments presented in the previous section, in order
to suggest a threshold for pathology when using SJE. Since two databases have been used, it is
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interesting to examine the consequences of using one database to determine the threshold, and then
apply the result to the other database. This allows us to perform cross-database study comparisons
which is quite rare in the literature of voice pathology detection. A threshold can be determined by
taking into account the ROC curve for SJE, separately for each database, providing therefore two
thresholds, one per database. Given the ROC curve, the discrimination instance that provides the
best classifier is the one where the difference of the TPR to the FPR is the largest. For the case of
SJE (with PMDVP(average) as the pitch period estimation) on the MEEI database , the largest difference
is achieved when TPR=89.07% and FPR=7.55%, leading to a threshold of 124.24 (µs), which we
will referred to as “ThrMEEI”. Similarly, the ROC curve regarding SJE (with PPraat(average) as the pitch
period estimation) for the PdA database suggests a threshold of 161.08 (µs), when TPR=80.10%
and FPR=24.37%. This threshold which will be referred to as “ThrPdA”. To compare the two
thresholds a series of experiments were performed on the two databases. Initially, the classification
rate (CR) was measured, which is the number of correct detections from both classes divided by
the total number of detections, using each threshold.

Since SJE provides a short-time sequence of jitter values for each signal, three new features,
that make use of the thresholds presented above, were also calculated. Having in mind that each
short-time value corresponds to an analysis frame, then the three features are defined as

• the percentage of frames that are over the threshold,
referred to as “Over”,

• the maximum number of consecutive frames that are over the threshold,
referred to as “Max Over”, and

• the maximum number of consecutive frames that are under the threshold,
referred to as “Max Under”.

The three features are based on frames rather than time, since for each signal all frames were equal
in size, because the analysis window per signal was determined by the average pitch period of the
signal, as four times this value, and also a fixed step size was used, equal one time the same value.
Consequently, the AUC index for these three features, for each threshold and for each database, was
calculated. All the results are summarized in Table 4.3. It is interesting to add that the threshold of
83.20µs provided by MDVP [6] for its own implementation, offers a classification rate of 60.23%
for MEEI and 64.46% for PdA, both lower than those provided by ThrMEEI (89.33% for MEEI
and 67.88% for PdA) and ThrPdA (75.15% for MEEI and 77.68% for PdA) in the case of SJE. As it
was expected, the threshold which was defined in a specific database provides the best classification
score for that database. Therefore, ThrMEEI gives a better classification score for the MEEI database,
while in PdA the best classification score is obtained by ThrPdA. However, using ThrMEEI provides,
in general, better results than ThrPdA. Given also that it represents a low FPR of 7.55%, for all the
following experiments ThrMEEI has been used.
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ThrMEEI 124.24 (µs)
database CR % Over AUC % Max Over AUC % Max Under AUC %

MEEI 89.33 94.52 (0.96) 82.97 (2.22) 96.48 (0.70)
PdA 67.88 83.93 (1.96) 81.98 (2.07) 79.62 (2.18)

ThrPdA 161.08 (µs)
database CR % Over AUC % Max Over AUC % Max Under AUC %

MEEI 75.15 92.79 (1.17) 81.44 (2.36) 97.50 (0.55)
PdA 77.68 83.86 (1.97) 79.14 (2.20) 81.28 (2.10)

Table 4.3: Cross-database evaluation of thresholds determined by SJE in terms of Classification
Rate (CR), and AUC with its standard error for number of frames which are over a threshold (Over),
maximum consecutive frames that are over a threshold (Max Over), and maximum consecutive
frames that are under a threshold (Max Under).

4.4 Short-time statistics

The local estimates produced by SJE have interesting statistical properties. These may be examined
to gain insightful information on the difference between healthy and pathological voices, or even
between different kinds of pathological disorders. Since all signals used in the experiments are of
the same sampling frequency 25 kHz, local absolute jitter value in µs can be used for comparison
between the two databases. In Fig. 4.10 and 4.11 the average distribution of the short-time SJE
estimation for the MEEI and PdA databases, respectively, reveal a certain consistency for the two
cases of normal and pathological signals. The distribution of the estimates for pathological signals
has a larger variance, with a peak around 200 µs, while that for normal signals concentrates on
small values of absolute jitter, with a peak around 100 µs.

Regarding the temporal behavior of jitter, a study of the transitions of the local jitter value from
one frame to the next is of interest. The average distribution of the transition from one short-time
SJE estimate to the next, for normal and pathological signals, from the MEEI and PdA databases,
are shown in Fig. 4.12. The main diagonal in the case of healthy voices indicates that areas where
jitter has a stable very small value, mostly from 0 to 2 samples of jitter, dominate the short-time
sequence. Pathological signals seem to also contain such areas, where the local jitter value is con-
stant, between 1 and 4 samples of jitter In general, for normal voices the variance of the distribution
is small, with a peak located near the origin. For pathological voices the distribution has a notice-
ably larger variance, including more steep transitions in the value of jitter from frame to frame.

4.5 Reading Text Experiments

Jitter analysis is preferably performed on sustained vowels, because during phonation the radiated
speech signal is expected to be quasi-periodic and therefore in the presence of jitter the aperiodic-



Chapter 4. Spectral Jitter Estimator evaluation 31

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

short−time SJE estimation (µs)

average distribution of the short−time SJE estimates on MEEI

 

 

normal
pathological

Figure 4.10: The average distribution of the short-time SJE estimates, for normal and pathological
signals on MEEI, reveals that pathological samples have a larger variance.
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Figure 4.11: The average distribution of the short-time SJE estimates, for normal and pathological
signals on PdA, is similar to that of MEEI, indicating the consistency of the short-time statistics.

ities that occur are more easily perceived. However, sustained phonation recordings are limited by
nature to a small duration. After the first few seconds of voicing, pathological speakers may feel
discomfort, while even healthy speakers may not be able to maintain a steady voice. To consider
the behavior of jitter for a larger period of time recordings of reading text may be used. Speakers
reading a text with a normal pace are able to breath occasionally, while in sustained phonation a
single intake of breath is involved. This allows us to attain longer recordings for examination and
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Figure 4.12: Average distribution of the transition of the short-time SJE estimates for (a) normal
and (b) pathological signals on MEEI, and (c) normal and (d) pathological signals on PdA. Healthy
voices are mostly characterized by large areas of constant small jitter, while the pathological ones
have a larger variance in the difference from one frame to the next.

since SJE provides a short-time sequence of jitter estimates, it is ideal for the examination of jitter
in running speech signals.

Using a 10 ms interval from frame to frame, an autocorrelation-based pitch estimator was em-
ployed to determine the local pitch period of all voiced frames [33], for each recording in the
MEEIRainbow database. To eliminate any onset and offset effects in the voiced areas, any voiced
frames that don’t have at least two voiced neighboring frames in each direction were disregarded,
along of course with the unvoiced frames. For the remaining voiced frames, referred to as “valid
frames”, the short-time Spectral Jitter Estimator (SJE) was used to measure the local absolute jitter
value, using a frame size of four times the local pitch period.

An initial examination of the local estimates from SJE shows that these are in concordance
with documented statistical behavior. It is expected that on average jitter decreases with increasing
fundamental frequencies [16] [18] [17] [30]. We verified this expectation by calculating the cor-
relation coefficient between estimated jitter and fundamental frequency, with confidence intervals
at 95%. Specifically, we found a correlation of −73.89% for the normal signals, −71.32% for the
pathological signals, and −84.33% for the database in whole. In Fig. 4.13 the average absolute
jitter per fundamental frequency, for frequencies between 80 and 400 Hz, is illustrated, for the two
classes of normal and pathological voices.

The sequence of local SJE estimates used to calculate several features that reflect the average
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Figure 4.13: Average absolute jitter from SJE as a function of fundamental frequency, for (a) normal
and (b) pathological signals from MEEIRainbow.

and short-time behavior of jitter. The average value of absolute jitter is only computed here for
comparison purposes. Specifically, if j(n) is the aforesaid sequence with length N , then for each
signal the following features were computed:

• The average absolute jitter from all valid frames which, referred to as “Jit Mean”.

Jit Mean =

N∑
n=1

j(n)

N
(µs)

• The percentage of valid frames that have an absolute jitter value over ThrMEEI, referred to as
“Over”.
Over = 100

|{j(n) : j(n) > ThrMEEI}|
N

(%)
where |A| denotes the cardinality of A, or otherwise the number of elements in the A set.

• The maximum number of consecutive valid frames that have an absolute jitter value over
ThrMEEI, referred to as “Max Over”.
Max Over = max(|{j(n) : j(n) > ThrMEEI and consecutive frames}|) (scalar)

• The maximum number of consecutive valid frames that have an absolute jitter value under
ThrMEEI, referred to as “Max Under”.
Max Under = max(|{j(n) : j(n) ≤ ThrMEEI and consecutive frames}|) (scalar)
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Note that there is no need to convert values that represent a number of frames to time units,
because the fixed interval used from frame to frame makes them equivalent. The short-time absolute
jitter estimation for two signals from MEEIRainbow, one normal and one pathological, are illustrated
in Fig. 4.14. In the same figure, the threshold ThrMEEI is also depicted (dashed line). It is worth
observing the number of frames that are over this threshold in the case of the pathological signal
compared to the corresponding number of frames for the normal signal. More than 80% of the
valid frames are over the threshold in the case of pathology, while only 13% of the valid frames
are above the same threshold for the normal case. The Max Over and Max Under intervals for
each signal are also indicated in Fig. 4.14 by arrows. Specifically, for this example of pathologic
voice, 11 consecutive valid frames are under the threshold, while 33 consecutive valid frames are
above the threshold. It is evident that the suggested threshold ThrMEEI does separate correctly the
majority of the local jitter estimates. The AUC indexes for the aforementioned features are given
in Table 4.4. All cases show very good discriminant ability with an AUC index over 90%.

AUC (standard error) % of features on MEEIRainbow using ThrMEEI

Jit Mean Over Max Over Max Under
96.26 (0.72) 95.69 (0.80) 93.32 (1.10) 91.61 (1.30)

Table 4.4: AUC score in % for the four features based on the SJE short-time sequence, on the
classification of reading text recordings from MEEIRainbow to normal and pathological voices.

Since we have based the above features on a sequence of short-time jitter estimations, we are
able to examine their gradual development in time, in terms of value and discrimination. In the
following, when we apply a feature gradually in time using a sliding analysis window of fixed size,
we will refer to it then as “local”. If instead we apply a feature using an analysis window that starts
from the origin and its duration is gradually extended up to the current time instant, then we will
refer to it as “running”.

To further investigate, and to some extend visualize the above results regarding the AUC scores,
the running average number of frames that are over the threshold ThrMEEI for normal and patholog-
ical voices was computed by analyzing all the MEEIRainbow database. To understand the function
of the running average consider as an example a running analysis window of 2 seconds duration
for the case of the normal class of speakers. Then, for each recording in this class the number of
frames that are over the threshold in the current analysis window, from 0 to 2 seconds, is counted.
If L is the number of recordings, obviously L values are computed. The running average number of
frames over the threshold for the current window is obtained by calculating the average of these L
values. After that, the running window is increased by 0.5 seconds, covering now the time interval
from 0 to 2.5 seconds, and the corresponding running average is again computed. This procedure is
repeated until the running window spans the whole duration of the signal (12 seconds). In Fig. 4.15
the running average of frames that are above the threshold ThrMEEI are depicted, for both the nor-
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Figure 4.14: Short-time absolute jitter estimates from SJE for (a) one normal and (b) one patholog-
ical signal from MEEIRainbow. Notice how the pathology threshold ThrMEEI, indicated by the dashed
line, is applied on the local SJE estimates. Arrows indicate the maximum number of consecutive
frames that are below or above the threshold for each signal.

mal and pathological voices. The running analysis window starts from 1 second and reaches up to
12 seconds. In fact, this running average is equivalent to an average accumulator of the number
of pathological frames. Therefore, as it is expected the computed values are monotonously in-
creasing. It is worth noting that for all running windows, the values computed for the pathological
voices are always higher than the values for the normal voices. More interesting, the increase rate
of the pathological class is much higher than the corresponding increase rate of the normal one. In
Fig. 4.16, the normalized per analysis duration running averages are depicted. Since the hop size
of the jitter estimation is constant and equal to 10 ms, it means that there are 100 frames per 1
second, considering both voiced and unvoiced frames. Hence, the numbers shown in the ordinate
axis of Fig. 4.16 can be interpreted as percent. We observe that on average a bit less than 25%
of frames in the normal signals may be above the threshold for pathology, while for pathological
signals about 45% of the frames may be above the threshold. Considering short running windows,
for example 2-3 seconds in the case of short phonation, the number of frames that are above the
threshold are reduced (just above 15%) in the case of normal voices, while for the pathological
voices the corresponding number of frames remains about the same (45%).

In Fig. 4.17 the running average Max Over and Max Under values, for both normal and patho-
logical signals, are depicted. As it was explained before, we calculated the average Max Over and
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Figure 4.15: Running average number of frames over ThrMEEI, for normal and pathological signals
on MEEIRainbow. The horizontal axis denotes the length of the analysis window in seconds.
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Figure 4.16: Normalized running average number of frames over ThrMEEI, for normal and patho-
logical signals on MEEIRainbow. The horizontal axis denotes the length of the analysis window in
seconds.

the average Max Under for the two classes of recordings, starting from the first second and incre-
menting by half a second, until the full 12 seconds length was reached. It can be observed that for
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normal signals the related Max Under feature rises with a higher rate than Max Over. For patho-
logical signals similar behavior is noted for the Max Over value, which increases more rapidly than
the corresponding Max Under value. While the other two values (Max Over for normal and Max
Under for pathological voices) also rise in the first seconds, they do so with a smaller rate (than
Max Over for pathological and Max Under for normal voices), and they both stabilize after the 8
seconds mark. In a similar fashion, the running AUC scores of the four features are presented in
Fig. 4.18. Jit Mean and Over reach stability very early while they are quite high from the beginning.
Max Over and Max Under on the other hand start with a lower AUC and fluctuate more, while they
follow closely the trend of the average pathological Max Over and the average normal Max Under
in Fig. 4.17, respectively.
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Figure 4.17: Running average of the (a) Max Over and (b) Max Under values for normal and
pathological signals on MEEIRainbow.

Among the short-time features examined (Over, Max Over, and Max Under), the Over feature,
that is the percentage of frames with a local absolute jitter value over the ThrMEEI threshold, has
the best performance regarding discrimination. As it is also shown in Fig. 4.18, this is true even
for signals of a small duration. Based on these results, it was investigated if Over could be used
to establish another threshold for pathology, especially for recordings of reading text. Specifically,
given that a threshold of pathology for SJE estimates is already selected (i.e., ThrMEEI), another
threshold for pathology could be set by computing the minimum value of Over that is required to
indicate a speech segment as pathological. In this way, it is possible to monitor the jitter estimations
during continuous speech (i.e., spontaneous speech). The FPR, TPR and threshold that correspond
to the best classifier of the Over feature, as this evolves over time, are illustrated in Fig. 4.19. For



38 Chapter 4. Spectral Jitter Estimator evaluation

1 2 3 4 5 6 7 8 9 10 11 12
84

86

88

90

92

94

96

running AUC scores for 4 metrics on MEEI
Rainbow

time (s)

A
U

C
 (

%
)

 

 

running Jit Mean AUC

running Over AUC

running Max Over AUC

running Max Under AUC

Figure 4.18: Running AUC score of the four features applied on MEEIRainbow database. The Jit
Mean and Over features are quite discriminant even from the third second.

example, for a running analysis window of 1.5 seconds, the best classifier, that is the one having
the highest distance between FPR and TPR, has a threshold of about 48% which corresponds to
an TPR of 80% and an FPR of 4%. In the last 3 seconds, FPR settles on 7.55% and TPR around
89.5%, while the threshold for Over ranges from 47.5% to 50%. We propose the use of 45% as
a maximum threshold of Over for normophonia and 50% as a minimum threshold of Over for
dysphonia. These limits, will be denoted by ThrOver. The region in between should be considered
as an indeterminate area that indicates the need for further information regarding voice quality
assessment. When ThrOver is applied to MEEIRainbow a classification rate of 87.80% is gained, with
an additional 3.65% (26 files in total, 24 pathologic and 2 normal) classified in the indeterminate
area.

An example of the potential use of ThrOver is presented in Figs. 4.20 and 4.21, for one nor-
mal and one pathological signal. The running Over percentage for the two signals is shown in
Fig. 4.20, while in Fig. 4.21 the corresponding local Over percentage is illustrated. The local
Over is computed using a sliding window of 1 second duration shifted by half a second. For
the particular normophonic signal, while the running Over feature is under ThrOver almost exclu-
sively (Fig. 4.20(a)), in the local Over plot, it exceeds the threshold of pathology in some intervals
(Fig. 4.21(a)). Nonetheless, it does remain in the normal region by majority. For the pathological
signal the remarks are alike. While it is clearly in the pathological region from early on regarding
the running Over feature (Fig. 4.20(b)), in the local Over estimates, it lies under the normal thresh-
old for a few intervals only (Fig. 4.21(b)). Hence, for the running Over, a recording of at least
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Figure 4.19: (a) FPR, (b) TPR and (c) optimum threshold for the best classifier based on the Over
feature, when applied on MEEIRainbow, as a function of time.. It is reminded that FPR and TPR
stand for False Positive Rate and True Positive Rate, respectively.

several seconds should be used, so that there are sufficient statistics for the estimation to converge
to a specific region without a doubt. Similarly, when we consider the local Over feature, we should
use an interval of adequate length. It is worth mentioning that the fluctuation of local Over feature
as shown in Fig. 4.21 corresponds to intervals where there is a short rest of phonation. Therefore,
just after these areas the local Over feature tends to decrease.
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Figure 4.20: Running Over estimate example for (a) one normal and (b) one pathological reading
text signal from MEEIRainbow. Given enough time the estimate settles in the normal or the patholog-
ical region.
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Figure 4.21: Local Over estimate example for one normal and one pathological reading text record-
ing from MEEIRainbow. The local Over value is computed using a sliding window of 1 second
duration shifted by half second.



Chapter 5

Shimmer modeling

In this chapter a mathematical model of shimmer is presented, that, like the model suggested for
jitter, has interesting spectral properties. Based on these properties four features for the detection
of pathology are developed and used as a means of evaluation of the model.

5.1 Mathematical model of shimmer

Shimmer may be modelled on an impulse train that consists of two periodic events, as a perturbation
of the amplitude of the pulses. A simple mathematical model may be obtained by considering a
cyclic perturbation, with a deviation of a constant value, applied alternately to either increase or
decrease the amplitude of each pulse [28](pgs.102-103). The shimmered impulse train can be
expressed then as

gs[n] = A(1 + ∆)
+∞∑

k=−∞

δ[n− (2k)P ] + A(1−∆)
+∞∑

k=−∞

δ[n− (2k + 1)P ] (5.1)

whereA is an amplitude modifier, P is the pitch period in samples, and ∆ is the shimmer amplitude
deviation. This model, depicted in Fig. 5.1, combines two periodic events with ∆ being the ratio
that characterizes the local aperiodicity of shimmer. The value of ∆ can range from 0 (no shim-
mer) to 1 (pitch halving). By convolution of the glottal signal over one glottal cycle with such a
shimmered impulse train, the glottal airflow signal under the presence of shimmer can be modelled.



42 Chapter 5. Shimmer modeling

0 P 2P 3P
time(samples)

am
p

lit
u

d
e

A(1+∆)

A(1−∆)

Figure 5.1: Shimmered impulse train of the two event model for shimmer.

The Fourier transform of the cyclically shimmered impulse train (5.1) is

Gs(ω) =
+∞∑

n=−∞

gs[n]e−jωn

=
+∞∑

n=−∞

(
A(1 + ∆)

+∞∑
k=−∞

δ[n− (2k)P ] + A(1−∆)
+∞∑

k=−∞

δ[n− (2k + 1)P ]

)
e−jωn

= A(1 + ∆)
+∞∑

k=−∞

e−jω2kP + A(1−∆)
+∞∑

k=−∞

e−jω(2k+1)P

= A
[
(1 + ∆) + (1−∆)e−jωP

] +∞∑
k=−∞

e−jω2kP

= A
[
(1 + ∆) + (1−∆)e−jωP

] +∞∑
k=−∞

2π

2P
δ

(
ω − k 2π

2P

)
= A

[
(1 + ∆) + (1−∆)e

−j2π ω
ω0

] +∞∑
k=−∞

ω0

2
δ
(
ω − kω0

2

)
= A

[
(1 + ∆) + (1−∆)e

−j2π ω
ω0

] ω0

2

[
+∞∑

l=−∞,k=2l

δ
(
ω − kω0

2

)
+

+∞∑
l=−∞,k=2l+1

δ
(
ω − kω0

2

)]

= A
[
(1 + ∆) + (1−∆)e

−j2π ω
ω0

] ω0

2

[
+∞∑
l=−∞

δ (ω − lω0) +
+∞∑
l=−∞

δ

(
ω − (l +

1

2
)ω0

)]
(5.2)

where ω0 =
2π

P
is the fundamental frequency in rad.

Similarly with the case for jitter, we can use (5.2) to divide the spectrum to a harmonic and a
subharmonic part, by sampling at harmonic frequencies lω0 and at subharmonic frequencies
(l + 1/2)ω0, respectively. The harmonic part of the spectrum, as it is influenced by shimmer, is
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described then by

Hs(∆, lω0) = A
[
(1 + ∆) + (1−∆)e

−j2π lω0
ω0

] ω0

2

=
Aω0

2

[
(1 + ∆) + (1−∆)e−j2lπ

]
=

Aω0

2
[1 + ∆ + 1−∆]

= Aω0, l ∈ N

(5.3)

while the subharmonic part of the spectrum, that appears because of the existence of shimmer, is
given by

Ss(∆, (l + 1
2
)ω0) = A

[
(1 + ∆) + (1−∆)e

−j2π (l+1
2 )ω0

ω0

]
ω0

2

=
Aω0

2

[
(1 + ∆) + (1−∆)e−j(2lπ+π)

]
=

Aω0

2
[1 + ∆− 1 + ∆]

= Aω0∆, l ∈ N

(5.4)

The magnitude of the two spectral parts, for various values of deviation ∆, are illustrated in fig-
ure 5.2. Both the harmonic and subharmonic parts have a specific level of amplitude, with the
former being constant, irregardless of the value of ∆, and the latter being analogous to the per-
centage of shimmer induced. This observation has been confirmed previously, through heuristic
analysis for synthetic shimmered glottal airflow signals, with either cyclic or random variation of
the glottal amplitude [24]. It is evident that the ratio of the magnitude of a subharmonic frequency
to that of a harmonic frequency is equal to the value of ∆.

5.2 Model evaluation

Unlike the case with the mathematical model for jitter, when speech signals under the effect of
shimmer are considered, the aforesaid spectral behavior of the model for shimmer can not be mea-
sured efficiently. If the shimmered impulse train in (5.1) is regarded as glottal excitation, then this
excitation is used as the source signal to a filter that is formed by the convolution of the glottal
signal with the vocal tract. The spectral envelope of this filter, since it is not of constant magnitude,
modifies the relation between the harmonic and subharmonic spectra. It would be possible to es-
timate the glottal excitation magnitude spectrum through inverse filtering, however, to achieve an
accurate estimation is a difficult task that is beyond the scope of this work.

An indirect evaluation of the model was performed by examination of four features that are
based on approximations of the above spectral properties. The four features are the following:

• The ratio of the first subharmonic to the DC component, referred to as “Par0”
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Figure 5.2: Magnitude spectra of the harmonic and subharmonic parts of the mathematical model
for shimmer. The harmonic part is the same for all values of ∆, while the subharmonic part is
affected accordingly.

Par0 = Ss(1
2
ω0)/Hs(0)

• The ratio of the first subharmonic to the first harmonic, referred to as “Par1”
Par1 = Ss(1

2
ω0)/Hs(ω0)

• The ratio of the average subharmonic to the average harmonic including the DC component,
referred to as “Rat0”
Rat0 = Ss((l + 1

2
)ω0)/Hs(lω0), l ∈ N

• The ratio of the average subharmonic to the average harmonic excluding the DC component,
referred to as “Rat1”
Rat1 = Ss((l − 1

2
)ω0)/Hs(lω0), l ∈ N∗

These features were computed for synthetic shimmered phonation signals using a sliding frame,
in a fashion similar to that of the Spectral Jitter Estimator (SJE) described in Section 2.2. The
synthetic signals were created by excitation of the vocal tract envelope mentioned in Section 3.1,
with shimmered impulse trains as these are described in (5.1). Signals were created for sampling
frequencies of both 16 and 48 kHz. The value of ∆ varied from 0% to 100% with a step of 0.1%,
while the duration of the signals were set to 1 seconds. The correlation coefficient between the
value of ∆ and the average of each feature for an input synthetic signal was found to be 100%, with
confidence intervals at 95%, for all four features.
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The four features for shimmer were also examined in the two databases of sustained vowel
recordings, MEEI and PdA. The estimation was done using a sliding Hanning window, with frame
size four times the average pitch period of the signal and hop size one time that. The average pitch
period estimation was taken from Praat (PPraat(average)) and MDVP (PMDVP(average)) The average of the
time-series generated for a feature, for each signal, was used to perform ROC analysis. The AUC
indexes for the four features, using the two different pitch period estimators, on MEEI and PdA, are
given in Tables 5.1 and 5.2, respectively. The AUC scores of the local shimmer (1) implementations
of Praat (Shimmer (local)) and MDVP (Shim) are also given for reference.

AUC (standard error) % for MDVP on MEEI 92.58 (1.19)
AUC (standard error) % for Praat on MEEI 90.63 (1.42)

AUC (standard error) % for four features on MEEI
Feature PMDVP(average) PPraat(average)

Par0 89.31 (1.57) 89.14 (1.59)
Par1 86.57 (1.86) 86.36 (1.88)
Rat0 88.46 (1.66) 86.14 (1.91)
Rat1 88.57 (1.65) 86.29 (1.89)

Table 5.1: AUC score (and standard error) in % for all shimmer features tested on MEEI.

AUC (standard error) % for MDVP on PdA 74.65 (2.38)
AUC (standard error) % for Praat on PdA 73.87 (2.40)

AUC (standard error) % for four features on PdA
Feature PMDVP(average) PPraat(average)

Par0 65.91 (2.62) 69.81 (2.53)
Par1 72.55 (2.45) 79.05 (2.20)
Rat0 70.40 (2.51) 79.25 (2.19)
Rat1 70.33 (2.51) 79.34 (2.19)

Table 5.2: AUC score (and standard error) in % for all shimmer features tested on PdA.
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Chapter 6

Conclusions

In this work we proposed the use of a mathematical description for modeling the jitter phenomenon,
when that is present in voice production. This model transforms the jitter estimation problem from
the time domain to the frequency domain and led us to the development of the short-time Spec-
tral Jitter Estimator (SJE). Experiments conducted with synthetic jittered phonation signals verified
that SJE produces accurate local estimates of jitter. Comparison of the method with equivalent
and widely adopted measurements of jitter, namely the implementations of Praat and MDVP for
absolute jitter (3.1), showed that SJE is more discriminant in the classification of normal versus
pathological sustained vowel recordings. We expanded on these results by determining through
a cross-database study a relevant threshold for pathology and also by applying SJE on reading
text recordings. The determined ThrMEEI threshold results indeed in high discrimination for healthy
versus pathological voices, in databases of either sustained vowel recordings or reading text record-
ings. These results, in addition to the statistical data gathered from local short-time measurements,
clearly show that SJE produces estimates that are highly correlated with the pathological nature of
jitter.

Based on the establishment of the ThrMEEI threshold and on the time-series of local jitter es-
timations from SJE, we also introduced three new features that have high correlation with the
existence of pathology and therefore can be considered as good candidates for use with continuous
speech signals. Specifically, these are the percentage of frames above ThrMEEI (Over), the maxi-
mum number of consecutive frames that are above ThrMEEI (Max Over), and the maximum number
of consecutive frames that are below ThrMEEI (Max Under). Moreover, we determined thresholds
for the Over feature, ThrOver, that can be used especially for monitoring the jitter effect in running
speech. A potential beneficiary of this monitoring ability can be vocal loading estimation. This is
the estimation of the stress inflicted on speech organs after sustained periods of voicing, which is
mostly of interest for healthy speakers that perform a vocal occupation, such as teachers, singers,
etc.

The jitter phenomenon also contributes to the appearance of noise in the spectrum. This may
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have implications in the estimation of a Harmonics to Noise Ratio (HNR). Based on the work pre-
sented in Chapter 2 regarding the spectral properties of jitter, we can identify in the magnitude
spectrum the noise induced by jitter; if this taken into consideration before HNR estimation, then it
may lead to a more accurate HNR value [23]. Indeed, the frequency points where the intersections
between the harmonic and subharmonic parts of the spectrum occur, are good candidates for de-
ciding which parts of the spectral noise should not be considered as additive but as of the structural
kind.

Several statistical properties of jitter have been documented in the past, as well. In Chapter 4
we examined and verified the behavior of local jitter as a function of fundamental frequency. Other
interesting properties could be examined in the future using the SJE short-time measurements.
One such property is that jitter in adjacent periods is correlated and thus, present time jitter could
be predictable from past values [32]. In [10] and in [32], the jitter time-series is modeled as an
Auto Regressive (AR) process. Following that, it is shown that the frequency and bandwidth of
the pole of the envelope is related to the rate of pathology perceived in the examined signal [10].
Therefore, it is straightforward to apply similar time-series modeling techniques to the short-time
jitter sequence estimated by SJE.

The short-time nature of SJE can lead to the extraction of multi-dimensional parameters that
may be of use in automatic pathological condition detection. Distributions of the time-series of the
short-time SJE estimations may be used for the classification of new unlabeled signals, through a
similarity measure between the distribution of the new signal and these of already labeled record-
ings. It will also be of great importance to test the proposed method, features and thresholds in
signals recorded before and after successful therapy. It is expected that, after treatment, the mea-
surements will show if not values under the threshold of pathology, at least significant reductions
compared to the ones before.

We also proposed a mathematical model for shimmer that was used to create four features re-
lated with the spectral properties of the phenomenon. Although accurate estimation of shimmer was
not achieved, the four parameters nonetheless exhibited good discrimination abilities, performing
in the same level with the implementations of Praat and MDVP for the local shimmer (1) parameter.
Inverse filtering or spectral envelop estimation could be used to approximate the glottal excitation
spectrum, by dividing the magnitude spectrum of a given speech segment with an estimated enve-
lope, in order to improve the accuracy of these features.



Appendix A

Discrete Dirac comb properties

The Kronecker delta function is the discrete analogue of the continuous Dirac function and is
defined as

δ[n] =

{
1, if n = 0

0, if n 6= 0
(A.1)

where n is the discrete time index.
It is obvious that for a time shift n0

δ[n− n0] =

{
1, if n = n0

0, if n 6= n0

(A.2)

Consequently we have
(δ[n− n0])

2 = δ[n− n0] (A.3)

The Kronecker delta has also the so-called sifting property, that is for a function x[n]

+∞∑
k=−∞

x[k]δ[n− n0] = x[n0] (A.4)

The discrete Dirac comb is a periodic impulse train that can be defined as

δT [n] =
+∞∑

k=−∞

δ[n− kT ] (A.5)

Using the properties of the Kronecker delta we can show that the Fourier transform of the discrete
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Dirac comb is itself a Dirac comb. Specifically

∆T (ω) =
+∞∑

n=−∞

δT [n]e−jωn

=
+∞∑

n=−∞

(
+∞∑

k=−∞

δ[n− kT ]

)
e−jωn

=
+∞∑

k=−∞

e−jωkT

=
+∞∑

k=−∞

2π

T
δ

(
ω − k2π

T

)
=

2π

T
δ2π/T (ω)

(A.6)

where ω is the frequency in rad.
Note also that

(δT [n])2 = δT [n] (A.7)

and that if y is a function of the combed x[k], then

y (x[k]δT [n]) = y (x[k]) δT [n] (A.8)
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