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Abstract

Since the Internet’s growth, network security plays a vital role in the computer industry.

Attacks are becoming much more sophisticated and this fact lead the computer community

to look for better and advanced anti-measures. Malicious users existed far before the

Internet was created, however the Internet gave intruders a major boost towards their

potential compromisations. Naturally, the Internet provides convenience and comfort to

every users and “bad news” is merely an infelicity. Clearly the Internet is a step forward;

it must be used for the correct reasons and towards the right cause, nevertheless.

As computer technology becomes more elaborate and complex, programme vulnerabil-

ities are more frequent and compromisations effortless. A means of attack containment are

the so called “Intrusion detection systems” (IDS).

In this thesis we built a network anomaly IDS, using statistical properties from the

network’s traffic. We were interested in building general purpose, adaptive and data inde-

pendent system with as few parameters as possible. The types of attacks it can detect are

Denial of Service attacks and probing attacks. We used three models for our experiments;

Fisher’s Linear Discriminant, Gaussian mixture model and Support vector machines.

In our experiments we found that the most important part of statistical intrusion

detection is the feature selection. Better results can be achieved when both classes are

modeled (attack and normal traffic). Best results were achieved using Fisher’s Linear

Discriminant method, that is 90% detection rate with 5% false alarm rate
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Chapter 1

Introduction

The Internet is a worldwide publicly available network of interconnected computer networks

that transmit data by packet switching using the standard Internet Protocol (IP) (see figure

1.1). It is a “network of networks” that consists of million of smaller domestic, academic,

business and government networks, which together carry various information and services,

such as electronic mail, on-line chat, file transfer, and the interlinked Web pages and other

documents of the World Wide Web.

The Internet in the last decades has evolved into the greatest and most popular network

in the world. With the rapid growth of the Internet, networked computers are becoming

more and more vital in our society. Despite all the benefits the Internet brings, many

drawbacks come with it as well. It has been reported that the number of computer attacks

has been increasing exponentially in the last years. In addition, sophistication and severity

of the attacks have been rising. The fact that attacking tools are widely available, helped

notably the malicious users.

To protect computers from being infected, defensive mechanisms were developed (an-

tivirus, firewall, antispywere, etc). Depending on the infection, each software performs a

different action. In this thesis we are going to built a new protection mechanism based on

statistical models that will hopefully prevent intruder from illegal acts. Below we describe

in details some types of observed attacks.
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Figure 1.1: A general view of the internet.
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Figure 1.2: Attackers’ Knowledge versus attack sophistication

1.1 Attacks

There exist a really fulfilling attack categorisation in [48]. On this basis, attacks can be

categorised depending on:

- The attack type

- The number of network connections involved in the attack (NoC)

- The source of the attack

- The environment

- The automation level

1.1.1 Attack type taxonomy

Denial of Service attacks: These attacks attempt to “shut down a network, computer,

or process; or otherwise deny the use of resources or services to authorized users” [61].

There are two types of DoS attacks: (i) operating system attacks, which target bugs

in specific operating systems and can be fixed with patches; (ii) networking attacks,
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which exploit inherent limitations of networking protocols and infrastructures. Typi-

cal example of networking DoS attack is a “SYN flood” attack (synchronisation flood

attacks), which takes advantage of three-way handshake for establishing a connec-

tion. In this attack, attacker establishes a large number of “half-open” connections

using IP spoofing. The attacker first sends SYN packets with the spoofed (faked) IP

address to the victim in order to establish a connection. The victim creates a record

in a data structure and responds with SYN/ACK message to the spoofed IP address,

but it never receives the final acknowledgment message ACK for establishing the

connection, since the spoofed IP addresses are unreachable or unable to respond to

the SYN/ACK messages. Although the record from the data structure is freed after a

time out period, the attacker attempts to generate sufficiently large number of “half-

open” connections to overflow the data structure that may lead to a segmentation

fault or locking up the computer. DoS and DDoS attacks have posed an increasing

threat to the Internet, and techniques to thwart them have become an active research

area [72, 66, 89, 68, 86]. Researchers that analyze DoS attacks have focused on two

main problems: (i) early detection mechanisms and identification of ongoing DoS

activities [50, 33, 85, 93]; (ii) response mechanisms for alleviating the effect of DoS

attacks (e.g. damage caused by the attack). Response mechanisms include iden-

tifying the origin of the attack using various traceback techniques [42, 45, 13] and

slowing down the attack and reducing its intensity [59, 61, 21] by blocking attack

packets. In addition to these two main approaches, some systems use measures to

suppress DoS attacks.

Probing (surveillance, scanning): These attacks scan the networks to identify valid

IP addresses and to collect information about them (e.g. what services they offer,

operating system used). Very often, this information provides an attacker with a

list of potential vulnerabilities that can later be used to perform an attack against

selected machines and services. Examples of probing attacks include IPsweep (scan-

ning the network computers for a service on a specific port of interest), portsweep

(scanning through many ports to determine which services are supported on a single

host), nmap (tool for network mapping), etc. The existing scan detection schemes
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essentially look for IP addresses that make more than N connections in T seconds.

Unfortunately, tools based on these techniques are quite inefficient at detecting

slow/stealthy scans or scans targeted specifically at the monitored enterprize - the

type of scans that analysts would really be interested in. Due to these reasons, sophis-

ticated adversaries typically attempt to adjust their scans by reducing the frequency

of their transmissions in order to avoid detection. For detecting stealthy scans, there

are a few recently proposed more sophisticated techniques based on collecting various

statistics [49, 20, 74, 65, 38, 28].

Compromises: These attacks use known vulnerabilities such as buffer overflows [9] and

weak security points for breaking into the system and gaining privileged access to

hosts. Depending upon the source of the attack (outside attack vs. inside attack),

the compromises can be further split into the following two categories:

1. R2L (Remote to Local) attacks

In this attack the intruder gains access (either as a user or as root) to a machine

over a network, without his having an account on that machine. In most

R2L attacks, the attacker breaks into the computer system via the Internet.

Typical examples of R2L attacks include guessing passwords (e.g. guest and

dictionary attacks) and gaining access to computers by exploiting software

vulnerability (e.g. phf attack, which exploits the vulnerability of the phf

program that allows remote users to run arbitrary commands on the server).

2. U2R (User to Root) attacks

An attacker who has an account on a computer system is able to misuse/elevate

their privileges by exploiting a vulnerability in computer mechanisms, a bug

in the operating system or in a program that is installed on the system.

Unlike R2L attacks, where the hacker breaks into the system from the

outside, in U2R compromise, the local user/attacker is already in the system

and typically becomes a root or a user with higher privileges. The most

common U2R attack is buffer overflow, in which the attacker exploits the

programming error and attempts to store more data into a buffer that
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is located on an execution stack. Since buffers are created to contain a

specific amount of data, the additional information used by the attacker

can overflow into adjacent buffers, corrupting or overwriting the valid data

held in them. This data may contain codes designed to trigger specific

actions, such as damaging users files or providing the user with root access.

Many approaches have recently been proposed for detection and prevention

of buffer overflow attacks [34, 53] due to increased interest in them. It

is important to note that buffer overflow attacks can also belong to R2L

attacks, where remote users attempts to compromise the integrity of target

computer. For example, a vulnerability discovered in Microsoft Outlook

and Outlook Express in July 2000 [6] allowed the attackers to simply send

an e-mail message and to overflow the specific areas with superfluous data,

which allowed them to execute whatever type of code they desired on the

recipient’s computers.

Viruses/Worms/Trojan horses: They are programs that replicate on host machines

and propagate through a network.

1. Viruses are programs that reproduce themselves by attaching them to other

programs and infecting them. They can cause considerable damage (e.g. erase

files on the hard disk) or they may only do some harmless but annoying tricks

(e.g. display some funny messages on the computer screen). Viruses typi-

cally need human interaction (e.g. trading files on a floppy or opening e-mail

attachments) for replication and spreading to other computers. One of the

most well known virus examples is Michelangelo virus that infects the hard

disks master boot record and activates a destructive code on March 6, which

is Michelangelo’s birthday. There are various types of viruses, classifying them

is not easy, as many viruses have multiple characteristics and may belong into

multiple categories. Most commonly viruses are classified depending on: the

environment, the operating system, different algorithms of work and destruc-

tive capabilities [64], although there are other categorizations based on what

and how viruses infect [22, 35].
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2. Worms are self-replicating programs that aggressively spread through a network,

by taking advantage of automatic packet sending and receiving features found

on many computers. Worms can be organized into several categories:

• traditional worms (e.g. Slammer [8]) usually use direct network connections

to spread through the system and do not require any user interaction.

• e-mail (and other client application) worms, (e.g. Melissa worm [4] ) infect

other hosts on the network (Internet) by exploiting users e-mail capabilities

or utilizing other client applications (e.g. ICQ - “I seek you”).

• windows file sharing worms (e.g. ExploreZip [?]) replicate themselves by

utilizing MS Windows peer-to peer service, which is activated every time a

networking device is detected in the system. This type of a worm very often

occurs in combination with other attacks, such as MS-DOS and Windows

viruses.

• hybrid worms (e.g. Nimda [7]) typically exploit multiple vulnerabilities

that fall into different categories specified above. For example, Nimda used

many different propagation techniques to spread (e-mail, shared network

drives and scanning for backdoors opened by the Code Red II and Sadmind

worms). Success of Nimda demonstrated that e-mail and http traffic are

effective ways to penetrate the network system, and that the file sharing is

quite successful in replicating within the system [83].

It is important to note that some of the worms that appeared recently have

also been used to launch DoS attacks [57]. For example, the erkms and li0n

worms were used to deploy DDoS tools via BIND vulnerabilities [57], while

Code Red was used to launch TCP SYN DoS attacks [57]. However, traditional

DoS attacks typically target a single organization, while worms (e.g. SoBig.F

worm) typically affect a broad range of organizations. Over the last few years,

many DoS attacks have gradually mutated and merged with more advanced

worms and viruses (e.g. Blaster worm in August 2003). Analysts also expect

that in the future DoS attacks will be more often part of worm payloads [57].

3. Trojan horses Trojan horses are defined as “malicious, security-breaking pro-
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grams” that are disguised as something benign [56]. For example, the user may

download a file that looks like a free game, but when the program is executed,

it may erase all the files on the computer. Victims typically download Trojan

horses from an archive on the Internet or receive them via peer-to-peer file ex-

change using IRC/instant messaging/Kazaa etc. Some actual examples include

Silk Rope and Saran Wrap. Many people use terms like Trojan horse, viruses

and worms interchangeably since it is not easy to make clear distinction be-

tween them. For example, “Love Bug” is at the same time a virus, worm, and

Trojan horse. It is a trojan horse since it pretends to be a love letter but it

is a harmful program. It is a virus because it infects all the image files on the

disk, turning them into new Trojan horses. Finally, it s also a worm since it

propagates itself over the Internet by hiding in trojans that it sends out using

peoples email address book, IRC client, etc.

1.1.2 NoC taxonomy

Attacks that involve multiple network connections: Typical examples of such at-

tacks are DoS, probing and worms.

Attacks that involve single or very few network connections: Typical attacks in

this category usually cause compromises of the computer system.(e.g buffer over-

flow)

1.1.3 Source of the attack

Computer attacks may be launched from a single location (single source attacks) or from

several different locations (distributed/coordinated attacks). Most of the attacks typically

originate from a single location (e.g. simple scanning), but in the case of large distributed

DoS attacks or other organized attacks, multiple source locations may participate in the

attack. In addition, very often distributed/coordinated attacks are targeted not only to

a single computer, but also to multiple destinations. Detecting such distributed attacks

typically requires the analysis and correlation of network data from several sites.



Chapter 1. Introduction 9

1.1.4 Environment

Intrusions on the host machine: Intrusions that occur on a specific machine, which

may not even be connected to the network. These attacks are usually detected by

investigating the system information (e.g. system commands, system logs). The

identity of the user that performs an attack in this case is typically associated with

the username, and is therefore easier to discover.

Network intrusions: Intrusions that occur via computer networks usually from outside

the organization. Detection of such intrusions is performed by analyzing network

traffic data (e.g. network flows, tcpdump data). However, such analysis often cannot

reveal the precise identity of the attackers, since there is typically no direct association

between network connections and a real user.

Intrusions in a P2P environment: Intrusions that occur in a system where connected

computers act as peers on the Internet. Unlike standard “client/server” network

architectures, in P2P environment, the computers have equivalent capabilities and

responsibilities and do not have fixed IP address. They are typically located at “the

edges of the Internet” [90], and actually disconnected from the DNS systems. Al-

though P2P file sharing applications can increase productivity of enterprize networks,

they can also introduce vulnerabilities in them, since they enable users to download

executable codes that can introduce rogue or untraceable “backdoor” applications

on users’ machines and jeopardize enterprize network security.

Intrusions in wireless networks: Intrusions that occur between computers connected

through wireless network. Detection of attacks in wireless networks is based on

analyzing information about the connections in wireless networks, which is typically

collected at wireless access points [92].

1.1.5 Automation level

Depending on the level of the attack automation, there are several categories of attacks as

follows:
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Automated attacks Attacks that use automated tools that are capable of probing and

scanning a large part of the Internet in a short time period. Using these easily

available tools, even inexperienced attackers may create highly sophisticated attacks.

Such attacks are probably the most common method of attacking the computer

systems today.

Semi-automated attacks Attack that deploy automated scripts for scanning and com-

promise of network machines and installation of attack code, and then use the handler

(master) machines to specify the attack type and victims address.

Manual attacks Attacks that involve manual scanning of machines and typically require

a lot of knowledge and work. Manual attacks are not very frequent, but they are

usually more dangerous and harder to detect than semi-automated or automated

attacks, since they give to attackers more control over the resources. Experts or

organized groups of attackers generally use these attacks for attacking systems of

critical importance.

1.2 Intrusion Detection/Prevention Systems (IDS/IPS)

1.2.1 IDS Taxomonomy

There has been many attempts to categorize Intrusion Detection Systems. We will use one

that has been proposed in [48].

1. Information source. This criterion discriminates between IDS based on what

source the information comes from, e.g. a host machine, a network etc.

• Host based. They analyse users’ normal behaviour and habits on a specific

host. This provides host based IDSs the advantage of having high quality data.

The drawback however is that it may be create a major processing load on

the machine they are running. Aside from that, audit sources (in host based

intrusion analysis), can be easily modified by a successful attack. Hence, the

host-based IDS must process so fast the audit trail as to be able to raise alarms

before the attacker can modify the audit trail.
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There are several helpful information types used in host-based IDSs, e.g. system

commands [26, 52, 76, 43], system accounting [19, 30], syslog [2, 25, 37, 39] etc.

• Network based. They search for network attacks, that have been more popular

since the growing of the Internet’s esteem. Apart from that, analysing packet

flow and payload several intrusions against servers can be detected [10, 1]. Net-

work based IDSs have several benefits compared to host-based IDSs. Firstly,

they do not burden the mainframes. Secondly, they are more resistant since they

do not reside on the hosts that could be compromised. Thirdly, they usually do

not depend on the operating systems and can extract information at network

level. Last but not least, they can be placed carefully at certain routers and

nodes generally where all traffic flows can be observed. A considerable draw-

back however is the high possibility for dropping packets and they are unable

to perform detection on encrypted data.

• Application log files. They monitor only specific applications such as database

management systems, content management systems, etc. Application based

IDSs have access to information types that the former IDS do not have. For in-

stance, analysing application log files, application based IDSs can detect many

attack types, suspicious activity that may became tricky for a host or a net-

work based IDS. In addition, they are able to identify unauthorized activities

from individuals or to analyse encrypted data by employing application-based

services [18].

• Wireless networks. They try to contain intrusions in wireless networks. The

modern trend towards wireless networks has lead to many serious threats have

been emerged in wireless networks, with potentially devastating results, which

are due to the following reasons [12, 73, 92]:

– Physical layer in wireless networks is essentially a broadcast medium and

therefore less secure than in fixed computer networks. For example, an

attacker that enters the wireless network, bypasses existing security mech-

anisms and can easily sniff sensitive and confidential information. In addi-

tion, the attacker also has access to all the ports that are regularly available
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only to the people within the network. In wired networks, attempts to ac-

cess these ports from outside world through Internet are stopped at the

firewalls. Finally, the attacker can also excessively load network resources

thus causing denial of service to regular users.

– There are no specific traffic concentration points (e.g. routers) where pack-

ets can be monitored, so each mobile node needs to run an intrusion detec-

tion system.

– Separation between normal and anomalous traffic is often not clear in wire-

less ad-hoc networks, since the difference between compromised or false

node and the node that is temporarily out of synchronization due to volatile

physical movement can be hard to observe.

2. Analysis Strategy. There are two major techniques for attack detection. The so

called misuse detection is one and anomaly detection the other. Misuse detection,

uses the extensive information about existing attacks (extracted by human experts).

These kind of approaches can detect exceptionally accurately known vulnerabilities.

However, they are unable to detect unknown attacks.

On the other hand, anomaly detection, creates model for normal behaviour of users,

hosts or network connections. Numerous methods have been applied for the char-

acterisation of legitimate traffic. The main benefit of anomaly detection compared

to misuse is that they can potentially detect unknown attacks. However, they have

usually high false alarm rate.

• Misuse detection. Misuse detection can be classified into the subsequent classes:

Signature based techniques. These IDSs operate analogously to virus scan-

ners. They search a database of signatures for a known signature for each

specific In signature-based IDSs, monitored events are matched against a

database of attack signatures to detect intrusions. Each signature has to

be manually built for each new type of intrusion that is discovered. Typical

examples of signature based IDS are, snort [11], NetRanger [41], RealSe-

cure [3], etc.
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Rule-based systems. Rule-based systems, consist of a set of if-then-else com-

mands to detect vulnerabilities. Packet traffic is observed carefully and

events regarding attacks are converted into rules. These rules are used

later for traffic labeling. Some rule-based IDSs are, IDES [27, 44, 87, 58],

NIDX [17], ComputerWatch [29], P-BEST [55] , AutoGuard [79, 80], Pi-

ranha [15], E2xB [16] etc.

Methods based on state-transition analysis. State-transition systems uti-

lize a finite state machine. Depending on the event that has been monitored,

the FSM transists from a state to another. Different states correspond to

different states of the network protocol stacks or to the integrity and valid-

ity of current running processes or certain files. USTAT [70], NetSTAT [88]

and STRIDE [69] are such IDSs.

Data mining based techniques. Data mining systems, contain a learning

algorithm that is trained over certain labeled data (normal or intrusive).

These systems can smoothly adjust to different input data (different net-

work in other words) as long as, they are appropriately labeled. Unlike

signature-based intrusion detection, models are created automatically, this

leads to more precise and sophisticated signatures. MADAM ID [84, 54],

Earlybird and “The Network that Never Forgets” [14] are systems that use

data. minining techniques.

• Anomaly detection. The interested in anomaly detection techniques has been

raised substantially, due to the increasing number of unseen computer attacks.

There exist many types of anomaly detection algorithms proposed in the liter-

ature that differ according to the information used for analysis and behaviour.

These techniques can be chategorised in five groups, statistical methods, rule

based methods, distance based methods, profiling methods and model based

approaches.

Statistical methods. Statistical methods measure specific variables over a

specific time window. After the variables have been computed the sys-

tem checks whether certain thresholds have been exceeded. Some advanced
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statistical models create long-term and short-term user activities. Such

anomaly detection algorithms were used in IDES [27, 44, 87, 58], EMER-

ALD [67], and SPADE [38]

Distance based methods. Statistical models have difficulty of detecting out-

liers in higher dimensional spaces, as it is extremely inaccurate to estimate

multidimensional distributions. In distance based approaches we compute

the distance between the points. As a result, the limitation statistical mod-

els is eliminated. MINDS [51] is an example of this method.

Rule based methods. Rule based methods characterise what consists normal

behaviour by a set of rules for users, networks and/or computer systems.

ComputerWatch [29] is a typical Rule based system.

Profiling methods. In profiling methods, normal behaviour for network traf-

fic, users, programmes etc, is build individually (one profile for each entity).

Profiling methods have a number of utilisations ranging from data mining

techniques to heuristic-based approaches. ADAM [91], PHAD [60], AD-

MIT [81] are examples of these methods.

Model based methods. In the model-based approaches, anomalies are de-

tected as deviations for the model that represents the normal behavior.

3. Prediction Time. There two main sets considering the prediction Time: real-time

(on-line) IDSs and off-line IDSs. Real-time IDSs must raise an alarm as soon as an

attack is detected, as a result the proper action will be taken.

Off-line IDSs investigate stored audit data. This method of audit data analysis is

common among security analysts who often examine network behavior, as well as

behavior of different attackers, in an off-line (batch) mode. Many early host-based

IDSs used this timing scheme, since they used operating system audit trails that were

recorded as files.

Off-line analysis is also often performed using static tools that analyze the snapshot

of the environment (e.g. host vs. network environment), look for vulnerabilities

and configuration errors and assess the security level of the current environment
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configuration.

4. Architecture. IDSs may be centralised or distributed depending on the architec-

ture. There has been observed a recent trend towards distributed IDSs, due to the

increasing coordinated and distributed attack [82]. Centralised architectures are still

dominant, however. Many modern attacks are unnoticeable by analysing a singe node

(which is the common practice for most IDSs). Despite several, drawbacks of dis-

tributed IDSs, many commercial vendors adapted their system to detect distributed

cyber attacks.

5. Response. IDSs can respond in an possible compromisation in two ways, either

passively or actively. The majority of IDSs react passively; they just sound an alarm

to the responsible staff.

On the other hand, IDSs may also take preventing measures. Specifically, an IDS

could log off a user, reconfigure routers and firewalls or disconnect a port.

One of the most harmless, but often most productive, active responses is to collect ad-

ditional information about a suspected attack and to perform damage control. This

might involve increasing the sensitivity level of information sources (e.g., increasing

the number of events logged by an operating system audit trail, or increasing the sen-

sitivity of a network monitor that captures all packets). This additional information

is most likely to help us in resolving the detection of the attack (assisting the system

in diagnosing whether an attack did or did not take place in the first place) thus

allowing the IDS to gather information that can be used to support investigation of

the attacker.

1.2.2 IDS Performance

Prediction Performance. Intrusion Detection systems need to classify correctly both

intrusions and legitimate actions. False alarm rate and detection rate are the most

typical measures for evaluating IDS performance. Detection rate is ratio of the

number of successfully detected attacks and the total number of attacks, while false

alarm rate is the ratio of the misclassified normal connections and the total number of
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Traffic Detected attacks Detected normal

Attacks True positives False negatives
Normal False positives True negatives

Table 1.1: Intrusion attack evaluation

connections (table 1.1). A visual representation of these rate is performed using ROC

(Receiver Operating Characteristics) curves. The ROC curve is a plot of detection

rate versus false alarm rate [75].

Time Performance. The time performance is another important measure for an IDS.

It represents the time needed for the IDS to decide whether the observed traffic is

intrusive or not! If this rate is sufficiently small then real-time prediction is out of

the question and any damage will be difficult to be contain quickly.

Fault tolerance. The IDS should be independent, robust and resistance to attacks. It

should be able to recover quickly from successful attacks and to continue provide a

secure service. This is especially true in the case of very large DoS attacks, buffer

overflow attacks and various deliberate attacks that can shut down the computer

system and thus IDS.

For more information see [25, 70]

In this thesis we are going to build a network based and anomaly detection IDS, that

uses statistical properties for the detection of the attacks. This IDS will detect two attack

types, DoS attacks and probing attacks. The statistical models tested in this study were,

the Gaussian Mixture Model, the Fisher’s Linear Discriminant and the Support Vector

Machines. The required features for the charactersation of the normal traffic were drown

from transferred packets’ header through the network. The features extracted were the

following: For a window of 10 seconds, the number of connections, the number of packets

and bytes transferred, the maximum number of connections to a specific destination, the

number of packets and bytes transferred to a specific destination, the number of distinct

services and the differential of the number of connections during the time window.

The remainder of this thesis is organised as follows. Chapter 2 focuses on the previous

work in the field of anomaly detection. In Chapter 3 we provide the required background of
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the statistical models we used. In Chapter 4 we illustrate and explain our results. Finally

a summary and a possible future work are provided in the last Chapter.



Chapter 2

Previous Work

2.1 Statistical Traffic Modeling for Network Intrusion

Detection

In [77] a statistical system for Network Intrusion Detection is described. This is used

to detect Denial of Service attacks and scanning attacks by monitoring network traffic

volume, which is modeled as a poisson process. We recall some properties of poisson

processes below.

Poisson process. Suppose that X(t) defines the number of events taking place in time

interval [0,t). If the number of waiting time before an event occurs follows exponential

PDF (i.i.d.), with common parameter λ then X(t) is a Poisson Process.

1. P [X(t) = k] = λk

k!
e−λ

2. X(t2)−X(t1), X(t3)−X(t2), . . . , X(tn)−X(tn−1) are independent for 0 ≤ t1 ≤
t2 ≤ . . . ≤ tn

3. If X1(t), X2(t), . . . , Xn(t) are independent Poisson processes with parameters

λ1, λ2, . . . , λn, then Y (t) =
∑n

i=1 Xi(t) is also a Poisson process with parameter

λ =
∑n

i=1 λi

In [77] DARPA’s 1998 Offline Intrusion Detection Evaluation was used for the exper-

imental work. This data set consists of 7 weeks of training data and 2 weeks of testing

data. The weeks from 3 to 7 were only used for attack characterization.
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The following notations were introduced in [77],

• XT
N(k): Total number of normal connections in a time interval [kT, (k + 1)T ).

• XT
A(k): Total number of attack connections in a time interval [kT, (k + 1)T ).

• XT
C (k): Total number of connections in a time interval [kT, (k + 1)T ). Obviously

XT
C (k) = XT

N(k) + XT
A(k).

and the following features were observed in the DARPA dataset,

• Diurnal patterns for the normal connections. There are three operating

regimes for XT
N(k). Day regime from 8 am to 4 pm, a evening regime from 4 pm

to 8 pm and a night regime from 8 pm to 6 am the next day.

• Poisson models for the normal connections. For the day and night regimes,

X10
N (k) and X100

N (k) were used.

• Heterogeneous behaviour for the attacks connections. The DoS and Probe

attacks appear in bursts, with widely varying amplitudes, which are hard to charac-

terize statistically.

The attack and the normal intervals were defined as follows:

XT
A(k) > XT

N ⇒ [kT, (k + 1)T )window, attack interval

XT
A(k) ≤ XT

N(k) ⇒ [kT, (k + 1)T )window, normal interval

In [77] the discriminating power of XT
C (k) is provided and it is reproduced in table 2.1.

We observe that results for the day regime are substantially better if a window interval

100 seconds is chosen. However, for night regime better results are observed if 10 seconds

window is used.



Chapter 2. Previous Work 20

Regime Window Detection
rate

False posi-
tive rate

Day 10 62% 10%
Day 10 61% 5%
Day 10 60.5% 1%
Day 100 88% 10%
Day 100 85% 5%
Day 100 82% 1%
Day 1000 77% 10%
Day 1000 74% 5%
Day 1000 72.5% 1%
Night 10 63% 10%
Night 10 25% 1%
Night 100 18% 10%
Night 100 10.5% 1%
Night 1000 17% 10%
Night 1000 10% 1%

Table 2.1: Performance of the Statistical Traffic Modeling for Network Intrusion Detection
for day and night regimes, 10, 100 and 1000 seconds length windows.

2.2 A Geometric Framework for Unsupervised Anom-

aly Detection: Detecting Intrusion in Unlabeled

Data.

Eleazar Eskin et al. [71] presented a geometric framework for unsupervised anomaly detec-

tion. Signature based-techniques provide detection for already known attacks, information

extracted by human experts. Thus, much research has been done in data mining and su-

pervised machine learning techniques. Supervised anomaly detection algorithms however,

require a set of exclusively normal data for their training. If there are buried instances

inside the training data the IDS will not be able to detect these instances in the future,

because they will be assumed normal. Having purely normal data is not the case in practise

that’s why unsupervised anomaly detection algorithm are important.

The geometric framework that Eleazar Eskin et al. proposed, maps the data from

Rd feature space to R. Afterwards, outlier points are found and labeled. Anomalies are

considered the points that are in sparse regions of the feature space. Once the mapping is

performed, the same algorithms are applied to these different kinds of data.
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The algorithms applied are all capable of handling high dimensional data efficiently

enough. The first algorithm is a variant of cluster-based algorithm presented in [31]. The

second algorithm is a k-nearest neighbour based algorithm. The third algorithm is a

Support Vector Machine-based algorithm.

2.2.1 Feature Spaces for Intrusion Detection

The choice of feature space for unsupervised anomaly detection is application specific. The

performance greatly depends on the ability of the feature space to capture information

relevant to the application.

In these experiments, two data sets were used. The first data set is a set of network

connection records. This data set contains records which contain 41 feature describing a

network connection. The second data set is a set of system call traces. Each entry is a

sequence of all of the system calls that a specific process makes during its execution.

Normalisation of the data is essential. Without normalisation an attribute could dom-

inate all the others if it is too large. The attributes are normalised to the number of

standard deviations away from the mean. This scales our distances based on the likelihood

of the attribute values.

2.2.2 Results

Two data sets where used for the results. The first one was the KDD Cup 1999 Data [5].

The simulated attacks in the data set are organised into the following attacks:

DOS - Denial of Service.

R2L - Unauthorised access from a remote machine.

U2R - Unauthorised access to superuser or root functions.

Probing - surveillance access and other probing for vulnerabilities.

The KDD data set was obtained by simulating a large number of different types of attacks,

with normal activity in the background. The goal was to produce a good training set for

learning methods that use labeled attacks. AS a result, the proportion of attack instances



Chapter 2. Previous Work 22

Programme
name

Total # of
Attacks

#Intrusion
Traces

#Intrusion
System
Calls

# Normal
Traces

# Normal
System
Calls

#Intrusion
Traces

ps 3 21 996 208 35092 2.7%
eject 3 6 726 7 1278 36.3%

Table 2.2: Licoln Labs Data Summary

to normal ones in the KDD training data set is very large as compared to data that we

would expect to observe.

In order to make the data realistic many of the attacks were filtered so that the resulting

data would be 1% to 1.5% attack and 98.5% to 99% normal instances.

The second data set was from BSM data portion of the 1999 DARPA Intrusion Detec-

tion Evaluation data data created by MIT Lincoln Labs. The data consist of 5 week of

BSM data of all processes run on a Solaris machine. Three weeks of programmes’ traces

were examined which were attacked during that time. The programmes examined were

eject, and ps.

Table 2.2 summarises the system call trace data sets and list the number of system

calls.

Each of the data set is split into two groups the training and the testing data. The

parameters are set on the training set. Finally for each algorithm a ROC curve over the

data set is obtained.

In the case of the system call data, each of the algorithm performed extremely satisfy-

ingly. This means, that at a certain threshold, there was at least one process trace from

each of the attacks identified as being malicious without any false positives.

As far as the network connections are concerned, data is not so regular as the system

call traces. They have certain kinds of attacks that could not be detected. Table 2.3

shows the detection Rate and False positive Rate for some selected points from the ROC

curves.
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Algorithm Detection
rate

False posi-
tive rate

Cluster 93% 10%
Cluster 66% 2%
Cluster 47% 1%
Cluster 28% 0.5%
K-NN 91% 8%
K-NN 23% 6%
K-NN 11% 4%
K-NN 5% 2%
SVM 98% 10%
SVM 91% 6%
SVM 67% 4%
SVM 5% 3%

Table 2.3: Performance of each algorithm used in the geometric unsupervised anomaly
detection approach over the KDD Cup 1999 Data.



Chapter 3

Statistical Properties

In this chapter, the background for the statistical models is provided. The performance of

three models was tested; the Gaussian Mixture Model, the Fisher’s Linear Discriminant

and the Support Vector Machines. The GMM model and SVM are two very powerful

learning tools that have been used with success in other areas (such as voice recognition).

We expect to yield remarkable results in Intrusion Detection as well. The Fisher’s Linear

Discriminant is a very simple regression technique, that has provided noticeable results in

clustering.

3.1 EM algorithm

The Expectation Maximization algorithm is a very popular tool in statistical processing,

for estimation problems with missing (or incomplete) data, or in similar problems such as

mixture estimation [78, 62].

3.2 Convex Functions

Let f denote a real valued function, f : A → R, where A ⊆ R. f is said to be convex if

∀x1, x2 ∈ A and λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (3.1)
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rλf(x1) + (1− λ)f(x2)

rf(x2)

rrf(λx1 + (1− λ)x2)

Theorem 3.2.1 Let f be a convex function on an interval A. If x1, x2, . . . , xn ∈ A and

λ1, λ2, . . . , λn ≥ 0 with
∑n

i=1 λi = 1,

f
( n∑

i=1

λixi

)
≤

( n∑
i=1

λif(xi)
)

Proof. We will prove the theorem using the mathematical induction. For n = 1 f(λ1x1) ≤
λ1f(x1) is true. Suppose this is true for n = 1, . . . , k. We will show that is also true for

n = k + 1.
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f
( n+1∑

i=1

λixi

)
= f

(
λn+1xn+1 +

n∑
i=1

λixi

)

= f
(
λn+1xn+1 + (1− λn+1)

1

1− λn+1

n∑
i=1

λixi

)

≤ λn+1f(xn+1) + (1− λn+1)f
( 1

1− λn+1

)
n∑

i=1

λixi

)

= λn+1f(xn+1) + (1− λn+1)f
( n∑

i=1

λi

1− λn+1

xi

)

≤ λn+1f(xn+1) + (1− λn+1)
( n∑

i=1

λi

1− λn+1

f(xi)
)

= λn+1f(xn+1) +
n∑

i=1

λif(xi)

=
n+1∑
i=1

λif(xi)

Jensen’s inequality will be used in the EM algorithm for the GMM estimation in the

following manner:

ln

n∑
i=1

λixi ≥
n∑

i=1

λiln(xi).

3.2.1 The Expectation-Maximization Algorithm

The EM is an iterative method to estimate some unknown parameters Θ, given measure-

ment data X. However, we are not given some missing variables Y . The observed and

the missing data together form the complete data, which are essential for computing the

unknown parameters Θ. Let p be the joint PDF of the complete data with parameters

given by Θ: p(X,Y |Θ). In addition, note that the conditional distribution of the missing

data given the observed can be expressed as:

p(Y |X, Θ) =
p(X, Y |Θ)

p(X|Θ)
=

p(X|Y, Θ)p(X|Θ)∫
p(X|Y ∗, Θ)

An EM algorithm improves an initial estimation of Θ (Θ0). The estimation step takes
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the following form

Θn+1 = argmaxΘQ(Θ)

where Q(Θ) is the expected log-likelihood. We do not know the complete data, so we

cannot say what is the exact value of the likelihood, but given the data that we do know

(the x’s), we can find a posteriori estimates of the probabilities for the various values of

the unknown y’s. For each set of y’s there is a likelihood value for Θ, and we can thus

calculate an expected value of the likelihood with the given values of y’s.

Q(Θ) =

∫ + inf

− inf

p(y|x, θn)logp(x, y|Θ)dz

In other words, each iteration of the EM consists of two steps: The E-step and the M-

step. In the expectation step (E-step), the missing data are estimated given the observed

data and the current estimate of the model parameters. In the maximisation step (M-

step), the likelihood function is maximized under the assumption that the missing data

are known. The estimate from the E-step of the missing data are used in place of the

actual missing data.

The EM algorithm can alternatively find the maximum a posteriori (MAP) estimates

rather than the maximum likelihood, in the M-step. In this case, we have to maximise the

following,

Θ∗ = argmaxΘlogP (X, Θ) = argmaxΘlog
∑
y∈Y

P (X, Y, Θ)

The idea has been introduced previously, we start with an initial estimation of the para-

meters Θt and maximise the posterior. Instead we will use a lower bound B(Θ; Θt) which

is much easier than maximising P (Θ|X).

B(Θ; Θt) ,
∑
y∈Y

pt(Y )log
P (X, Y, Θ)

pt(Y )

By Jensen’s inequality,

B ≤ log
∑
y∈Y

log
P (X,Y, Θ)

pt(Y )
= logP (X, Θ)
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3.2.2 Gaussian Mixture

For a random vector x ∈ IRd, a density mixture is defined as

p(x) =
k∑

s=1

πsp(x|θs) (3.2)

where p(x|θs) is a distribution with parameters θs and k is the number of components

the mixture has. Notice that, each density has a prior probability πs, and πs denotes a

discrete prior distribution πs = p(s), over the components, where the random variable s

takes values from 1 to k. To sum up, the mixture in general, is fully dependent of its

parameters Θ = {π1, . . . , πk, θ1, . . . , θk}, and these parameters define it completely.

A Gaussian mixture, is a mixture that uses Gaussian distributions. Thus, θs = {ms, Cs}
and p(x|θs) = (2π)−d/2|Cs|−1/2 exp[−(x−ms)

>C−1
s (x−ms)/2], for this case.

Imagine a set of independent, identically distributed samples {x1, . . . , xn}, from a k-

component density mixture p(x). The learning task is to estimate the parameters Θ of the

mixture. We assume the best parameters of a mixture are the ones, that maximize the

log-likelihood L(Θ) =
∑n

i=1 log p(xi|Θ). However, it is impossible to solve ∂L(Θ)/∂Θ = 0,

without knowing which observation (xi) belong to which component. The EM algorithm

provides an appropriate solution below.

3.2.3 EM algorithm for Gaussian Mixtures

Let us now apply the EM algorithm to mixture distributions. Consider a set of random

vectors X = {x1, . . . , xn} distributed independent and identically from a mixture p(xi|Θ) =
∑k

s=1 πsp(xi|θs). We define a corresponding random vector zi ∈ Z for each sample xi as

follows: zi = (z1i, . . . , zki)
>, where zsi = 1 if xi belongs to the sth component. Using this

notation we can proceed to apply the EM to the mixture1. Therefore,

L(Θ) = p(X|Θ) =
n∏

i=1

k∑
s=1

p(xi, zsi|Θ)

1Samples xi are the incomplete data and zi the missing one.
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F(Θ, Θ(t)) =
∑

i

∑
s

log(p(xi, zsi|Θ))p(Z|X, Θ(t))

H(Θ, Θ(t)) =
∑

i

∑
s

log(p(zsi|X, Θ))p(zsi|X, Θ(t))

The likelihood of y = (x, z) is

p(y|Θ) = p(x|z, Θ)p(z|Θ) = πsp(x|θs)

which may be written as,

p(y|Θ) =
k∏

j=1

[πjp(x|θj)]
zj

Since zj is zero except for j = s. For n data points we have:

p(y1, . . . , yn|Θ) =
n∏

i=1

k∏
s=1

[πsp(xi|θs)]
zsi

with

log(p(y1, . . . , yn|Θ)) =
n∑

i=1

k∑
s=1

[zsi log(πs) + zsi log(p(xi|θs))

Now, we can describe the 2 steps of the EM specified for a mixture:

E-step:

F(Θ, Θ(t)) = E[log(p(y1, . . . , yn|Θ)|X, Θ(t))]

=
n∑

i=1

k∑
s=1

E[zsi|xi, Θ
(t)](log(πs) + log(p(xi|θs))) (3.3)

Note that qi(s) , E[zsi|xi, Θ
(t)] (responsibility) is the posterior probability of the

observed data. Using the bayes rule we get:

qi(s) =
π

(t)
s p(xi|θ(t)

s )∑
j π

(t)
j p(xi|θ(t))

(3.4)

M-step: Maximize F with respect to Θ. This yields the following updates:

πs =

∑n
i=1 qi

n
, ms =

∑n
i=1 qixi

nπs

, Cs =

∑n
i=1 qixix

>
i

nπs

−msm
>
s . (3.5)
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Hence, in the E-step we assign the responsibilities with the posterior probability for an

observation xi given the current parameters, while in the M-step we maximize F for the

qi found in the E-step.

Notice that, each of the equations in the M-step is an average. πs is the average of qi, ms

is the average of products qi(s)xi and Cs is the average of matrices qi(s)xix
>
i .

3.3 Fisher’s Linear Discriminant

There are many examples dimensionality reduction. The most popular one is “principal

component analysis (PCA)”. PCA searches for directions in the data set that have the

largest variance and projects the data onto it. We accomplished a “better” representation

that way, if we consider that the noisy directions are gone and fewer dimensions exist [32,

63].

Fisher’s liner discriminant is also looking for dimensionality reduction. It attempts to

express one dependent variable as a linear combination of other features/measurements. It

looks for linear combinations of these features which best explain the data. The difference

between the two methods is that Fisher’s linear discriminant tries to model the distinctions

between classes, while PCA does not take it into account.

Consequently, if Fisher’s linear discriminant is to be used, our features must have labels

of what class they belong to. Suppose that C classes exist and each class has µi mean and

Σi covariance, (i = 1, . . . , C). Then the “between classes scatter matrix” is defined as:

Σb =
C∑

i=1

Ni(µi − µ)(µi − µ)T

where Ni is the number of vectors in class i and µ is the mean if the class means.

The “within classes scatter matrix” is defined as:

ΣW =
c∑

i=1

∑
j∈ci

(xj − µi)(xj − µi)
T

.
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The Fisher’s linear discriminant maximises the following objective:

S(w) =
wT Σbw

wT ΣW w
(3.6)

An important property to notice about the objective S is that it is invariant of the

vector’s rescalings w → αw. Hence, we can always choose w such that wT ΣW w = 1. For

this reason we can transform the problem of maximising S into the following constrained

optimisation problem,

minw −1/2wT Σbw

s.t. wT ΣW w = 1

corresponding to the lagrangian,

LP = −wT Σbw + λ(wT ΣW w − 1)

The KKT conditions tell us that the following equation needs to hold at the solution,

Σbw = λΣW w ⇒ Σ−1
W Σbw = λw

Using the fact that Σb is symmetric positive definite, we can apply the following trans-

formation: Σb = UΛUT → Σ
1
2
b = UΛ

1
2 UT . Let v be v = Σ

1
2
b w we have,

Σ
1
2
b Σ−1

W Σ
1
2
b v = λv

The problem is a regular eigenvalue problem for a symmetric, positive definite matrix

Σ
1
2
b Σ−1

W Σ
1
2
b and for which the solution λk and vk corresponds to solutions wk = Σ

− 1
2

b vk

We must now choose the correct eigenvalue and eigenvector for maximising S. We find,

S =
wT Σbw

wT ΣW w
= λk

wT ΣW w

wT ΣW w
= λ

which means that we have to choose the largest eigenvalue!
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3.3.1 Kernel Fisher’s LDA

In many cases linear discriminants are not suitable. Fisher’s LDA can be extended for use

in non-linear classification via the kernel trick. We use the following key assumption,

w =
∑

i

αiΦ(xi)

The objective S now becomes,

S(α) =
αT ΣΦ

b α

αT ΣΦ
W α

The scatter matrices are expressed as follows (after some algebra calculations)

ΣΦ
b =

C∑
i=1

kik
T
i − kkT ΣΦ

W = K2

C∑
i=1

Nik
T
i ki =

1

Ni

∑

j∈c(i)

Kijk =
1

N

∑
i

Kij (3.7)

The problem is now expressed in kernel terms, the objective has the same form as

before, hence the solution has the same form. The projections of the new data-points can

be found by,

wT Φ(x) =
∑

i

αiK(xi, x)

An extremely important issue is the regularisation, otherwise kernel machine will overfit.

A common regularisation is, ΣW → ΣW + βI. Now the small eigenvalues are not close to

zero and the computation of the inverse matrix is possible.

3.3.2 Two class case

Let x be a set of observations that belong in 2 classes y. Suppose, that the covariance

matrices (Σy=0, Σy=1) and the mean vectors (µy=0, µy=1) of them are known. The linear

combination of these attributes w·x have mean w·µy=i and variance wT Σy=iw (for i = 1, 2).

The separation between these two clusters that fisher defined is the ration of the variance

between the classes to the variance within the classes,

S =
w · (µy=0 − µy=1)

2

wT (Σy=0 + Σy=1)w
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The maximum separation occurs when w = (Σy=1 + Σy=0)
−1(µy=1 − µy=0)

3.4 SVM

Support vector machines (SVMs) are methods used for classification and regression and are

considered as supervised machine learning techniques [24, 40, 46]. They belong to specific

classifiers called “Generalised liner classifiers”. They are also know as maximum margin

classifiers, due to the fact that they simultaneously minimise the empirical classification

error and maximise the geometric margin.

Support vector machines map the input vectors to a higher dimensional space where

a maximal separating hyperplane is constructed. The separating hyperplane is the hyper-

plane that maximises the distance between the two parallel hyperplanes. An assumption is

made that the larger the margin or distance between these parallel hyperplanes the better

the generalisation error of the classifier will be.

There are many occasions in which we are required to classify data that belong to only

two classes. Each data point is represented by a p-dimensional vector (p numbers). We

would like to know weather the data are separated with a p − 1-dimensional hyperplane.

This is a typical form of a linear classifier and there exist many of them that satisfy this

property. Apart from that, we are interested in finding out if we can achieve maximum

separation (margin) between the two classes. By this we mean that we pick the hyperplane

so that the distance from the hyperplane to the nearest data point is maximized. Another

way of stating it is that the nearest distance between a point in one separated hyperplane

and a point in the other separated hyperplane is maximized. If such a hyperplane exists,

it is clearly of interest and is known as the maximum-margin hyperplane and such a linear

classifier is known as a maximum margin classifier.

3.4.1 Formal definition

Suppose we have data points:

(x1, c1), (x2, c2), . . . , (xn, cn)
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where ci is either 1 or−1 depending on which class x1 belongs to. Each x1 is a p-dimensional

real vector of normilised values( [0, 1]or[−1, 1] ). Normalisation is really important to guard

against features with large variances that might dominate over other ones. We can view

this as training data, which denotes the correct classification which we would like the SVM

to eventually distinguish, by means of the dividing (or separating) hyperplane, which takes

the form

w · x− b = 0

The vector w points perpendicular to the separating hyperplane. Adding the offset para-

meter b allows us to increase the margin. In its absence, the hyperplane is forced to pass

through the origin, restricting the solution.

As we are interested in the maximum margin, we are interested in the support vectors

and the parallel hyperplanes (to the optimal hyperplane ) closest to these support vectors in

either class. It can be shown that these parallel hyperplanes can be described by equations

(by scaling w and b if not)

w · xi − b ≥ 1 or

w · xi − b ≤ 1

which can be rewritten as:

ci(w · xi − b) ≥ 1, 1 ≤ i ≤ n. (3.8)

The problem that arises now is how to minimise |w| subject to the constrain 3.8. This

is a quadratic programming (QP) optimisation problem.

minimise
1

2
|w|2, subject to ci(w · xi − b) ≥ 1, 1 ≤ i ≤ n.

Writing the classification rule in its unconstrained dual form reveals that classification

is only a function of the support vectors, i.e., the training data that lie on the margin. The
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dual of the SVM can be shown to be:

max
n∑

i=1

αi − 1

2

∑
i,j

αiαjcicjx
T
i xj subject to αi ≥ 0, and

n∑
i=1

αici = 0

where the α terms constitute a dual representation for the weight vector in terms of the

training set:

w =
∑

i

αicixi

3.4.2 Soft margin

Corinna Cortes and Vladimir Vapnik suggested a modified maximum margin idea that

allows for mislabeled examples [23]. If there exists no hyperplane that can split the ”yes”

and ”no” examples, the Soft Margin method will choose a hyperplane that splits the

examples as cleanly as possible, while still maximizing the distance to the nearest cleanly

split examples. This work popularized the expression Support Vector Machine or SVM.

The method introduces slack variables, ξi, which measure the degree of misclassification

of the datum xi

ci(w · xi − b) ≥ 1− ξi, 1 ≤ i ≤ n (3.9)

The objective function is then increased by a function which penalizes non-zero ξi and the

optimisation becomes a trade off between a large margin and a small error penalty. If the

penalty function is linear, the equation 3.9 now transforms to:

min|w|2 + C
∑

i

ξi such that ci(w · xi − b) ≥ 1− ξi, 1 ≤ i ≤ n (3.10)

This constrain in 3.9 along with the objective of minimising |w| can be solved using

Lagrange multipliers. The key advantage of a linear penalty function is that the slack

variables vanish from the dual problem, with the constant C appearing only as an ad-

ditional constraint on the Lagrange multipliers. Non-linear penalty functions have been

used, particularly to reduce the effect of outliers on the classifier, but unless care is taken,
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the problem becomes non-convex, and thus it is considerably more difficult to find a global

solution.

3.4.3 Kernel functions

We are able to use the same trick as in fisher’s linear discriminant to create non-linear

classifiers as proposed by Bernhard Boser, Isabelle Guyon and Vapnic in [36]. The resulting

algorithm is formally similar, except that every dot product is replaced by a non-linear

kernel function. This allows the algorithm to fit the maximum-margin hyperplane in the

transformed feature space. The transformation may be non-linear and the transformed

space high dimensional; thus though the classifier is a hyperplane in the high-dimensional

feature space it may be non-linear in the original input space.

If the kernel used is a Gaussian radial basis function, the corresponding feature space

is a Hilbert space of infinite dimension. Maximum margin classifiers are well regularized,

so the infinite dimension does not spoil the results. Some common kernels include,

• Polynomial (homogenous): k(x, x′) = (x · x′)d

• Polynomial (inhomogenous): k(x, x′) = (x · x′ + 1)d

• Radial Basis Function: k(x, x′) = exp(−γ|x− x′|2), for γ > 0

• Gaussian Radial Basis Function: k(x, x′) = exp
(
− |x−x′|2

2σ2

)

• Sigmoid: k(x, x′) = tanh(κx · x′ + c), for some (not every) κ > 0 and c > 0
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Results

We are interested in identifying intrusions from network traffic using only headers of packet

flows. We solved this problem with the algorithms presented in the former chapter (GMM,

Fisher’s Linear Discriminant, SVM). The GMM helped us to create a model for users’

normal behaviour in the network, while the Fisher’s linear discriminant and the SVM uses

the statistics of the 2 classes to separate them.

For our experiments we used 4 personal computers with an Intel 3.0 GHz processor

and 1 GB memory (Linux and Windows operating system). We tested our results in the

DARPA data-set created by MIT Lincoln Labs which is described in details below.

4.1 DARPA Data-set [47]

The 1998 DARPA intrusion detection evaluation contains over 300 attacks in 9 weeks of

data traces (7 weeks for training and 2 for testing). These attacks come from 32 different

attack types. All data in the 1998 DARPA Intrusion Detection System evaluation was

synthesised and recorded on a network which simulated an operational network connected

to the Internet. The hardware for this simulated network consists of eleven machines

and one router while the software allows to model interaction of thousands of clients and

servers. In table 4.1 a description of all the attacks in the 1998 DARPA intrusion detection

evaluation are displayed.
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Name

Attacks
Performed
in the Clear

Stealthy Attacks All Attacks

Training Testing Total Training Testing Total Total
User to Root 67 24 91 18 5 23 144
Eject 29 7 36 8 2 10 46
Fdformat 12 7 19 4 3 7 26
Ffbconfig 11 2 13 6 0 6 19
Perl 15 1 16 0 0 0 16
Ps 0 4 4 0 0 0 4
Xterm 0 3 3 0 0 0 3
Remote to Local User 19 15 34 0 0 0 34
Dictionary 3 2 5 0 0 0 5
Ftp-write 2 1 3 0 0 0 3
Guest 4 0 4 0 0 0 4
Imap 4 1 5 0 0 0 5
Named 0 3 3 0 0 0 3
Phf 6 1 7 0 0 0 7
Sendmail 0 3 3 0 0 0 3
Xlock 0 2 2 0 0 0 2
Xsnoop 0 2 2 0 0 0 2
Denial Of Service 65 34 99 0 0 0 99
Apache2 0 3 3 0 0 0 3
Back 4 2 6 0 0 0 6
Land 7 2 9 0 0 0 9
Mailbomb 0 1 1 0 0 0 1
Neptune 13 7 20 0 0 0 20
Process Table 0 3 3 0 0 0 3
Smurf 19 8 27 0 0 0 27
Syslog 4 2 6 0 0 0 6
Teardrop 18 4 22 0 0 0 22
UDPStorm 0 2 2 0 0 0 2
Probe/Surveillance 50 14 64 0 0 0 64
IPSweep 22 3 25 0 0 0 25
Mscan 0 1 1 0 0 0 1
Nmap 12 6 18 0 0 0 18
Saint 0 2 2 0 0 0 2
Satan 16 2 18 0 0 0 18
Total for All Attacks 201 87 288 18 5 23 311

Table 4.1: All the attacks (311 in total) from the 1998 DARPA intrusion detection evalu-
ation
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4.2 Data preparation

The DARPA data-set required some processing (data is stored in Tcpdump format). So an

appropriate programme that implements lib-pcap (library packet capturing) was used, the

Tcpick (Transfer control protocol connections picking). Tcpick is a programme for parsing

tcp-connections and providing information the status change of each connection. Some

modifications due to certain bugs and additional needs for the experiments, were made in

the source code of the Tcpick. Firstly the time of the capture packet was not displayed

correctly. Tcpick, showed the execution time in any case (real time packet capture or off-

line packet capture). To tackle this problem a few files had to be changed (conn.h, verify.c,

display.c, etc). In addition we required some extra statistics about the connections that we

would apply in our models. Tcpick provided a time stamp, date, destination and source

ip, destination and source port. We were interested also in connection duration, packets

number and bytes transferred in a connection. Apart from that, every connections that

reaches the closed status is removed from the data-base. Taking into consideration that

fact and that Tcpick code is not so expandable, we stored the whole output that it provided

in a file (it would require rebuilding the software from scratch if chosen otherwise). To

achieve that goal we changed the display.c a little and the tracker.c file of the Tcpick

source code. Finally, the Tcpick programme was designed to find Tcp (Transfer control

protocol) connections in a Tcpdump file or to detect Tcp connections real-time. The

DARPA data set however, contained attacks not only in Tcp packets but in UDP (User

Datagram Protocol) and ICMP (Internet Control Message Protocol) packets as well. To

conclude with the Tcpick, the following features were extracted:

Counter.

Timestamp.

Date.

Number of packets.

Number of bytes.
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Duration.

Status of the connection.

Destination IP.

Destination Port.

Source IP.

Source Port.

Attacks.

In figure 4.1 the output of Tcpick before the source hacking is displayed and in figure 4.2

after the hacking. The last problem we encountered from the tcpick was that it did not

simulate accurately the expired connections (This problem’s source is the timing again.

Tcpick considers expired a connection that does not change its status for 300 seconds.

These 300 seconds however are counted real time, not according to the packets timestamp.

So for a connection to characterised expired, 6 minutes of processing must pass which is

not the typical case). Under this constrain, we stored as output all the instances of all the

connections’ status change.

Clearly, we wanted to keep the last status for each connections. So the output file

from the Tcpick was parsed with a perl programme that removed all instances of the same

connection and kept the last one. Another perl programme was used to find which of

the connections were normal and which where attack connections (The information about

which connection is intrusive was provide by a file in the DARPA data-set). At this point

the data is properly formed, which enables us to proceed with the feature extraction.

4.3 Experiment Preparation

The basis of our statistical analysis is a t second non-overlapping window. The duration

of the window that we used on our experiments is 10 seconds. Each timestamp of the day

was mapped to seconds past from the first timestamp of the day. Afterwards, we converted

the date and time into seconds and we monitored certain characteristics of the network’s
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Figure 4.1: Sample of tcpick parsing file sample data01.tcpdump from DARPA data set.
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Figure 4.2: Sample of modified tcpick parsing a random file from the DARPA data set.

traffic. For example, how many connections exist in the specific time window. Each of the

35 days is treated the same. Therefore, we created a feature vector for each 10 seconds in

35 days. If a vector has only zero values (in other words, if the was no traffic activity in a

certain 10 second instance) this vector is ignored. The final step was to train the 2 models

and test them. We see below the corresponding features we used for our experiments.

Total number of connections. The total number of connections that take place in an

attack and the number of connections of normal traffic.

Maximum number of a host’s connections. The maximum number of connections a

host creates at the 10 second window.

Total number of bytes. The total number of bytes transferred through the network

during the window.
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Maximum number of a host’s bytes. The maximum number of bytes a host transfers

in the network in the 10 second window.

Total number of packets. The total number of packets transferred through the network

during the window.

Maximum number of a host’s packets. The maximum number of bytes a host trans-

fers in the network in the 10 second window.

Number of services used. The number of different services that were used for each

connection in during the 10 second window.

Total number of connection differential. The differential of the total connections’

number.

Maximum number of host’s connection differential. The differential of a host’s max-

imum connections.

In conclusion, we performed the tasks below:

1. We sniffed the packets from each of the tcpdump files of the data set. The packets

were sniffed using a modified version of a programme named “Tcpick”.

2. Next, the output file was parsed from two perl scripts so that the file would be

transformed in a proper format for our experiments

3. Subsequently, we calculated through a non-overlapping time window certain proper-

ties of the network’s traffic and extracted efficient separable features (as far as the 2

classes are concerned).

4. Finally, these features were used in our models for evaluation. The evaluation checked

two properties. How good the models are in relation to the features and how good

the features were in regard to the models.
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Figure 4.3: Roc curve for attribute “Number of bytes”.

4.4 Experimental work

In this section we will present our results and discuss some conclusions we made about

the features. Firstly we are illustrating what detection rate we can achieve using only one

attribute (see figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 ). From the figures we can see

that the differential of connections’ number does not contribute in classification by itself.

It can also be observed that the maximum packets per destination is the best feature

for the discrimination of the two classes.

The fact that with only 2 features we can achieve very satisfying, was unexpected.

Indeed we notice from figures 4.11 and 4.12 we achieve 80% detection rate with below

20% false alarm rate (For attributes connections, connections per ip).

For three and above characteristics the results are sufficient for detection (see fig-

ures 4.13, 4.14, 4.15, 4.16). The most significant features appear to be the Number of

connections in total, the number of different services within the window, the numbers of

connections, bytes and packets to a specific destination. The examination of services is

performed during a probing attack, that is the reason why the service feature is impor-

tant. In figure 4.7 we see the how good can one discriminate between classes using only

the service attribute. The service attribute has many steps and that’s because usually

many services are scanned when a probing attack takes place. In other words the models
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Figure 4.4: Roc curve for attribute “Number of packets”.
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Figure 4.5: Roc curve for attribute “Number of connections”.
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Figure 4.6: Roc curve for attribute “Difference in connections in 2 sequential time win-
dows”.
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Figure 4.7: Roc curve for attribute “Number of different services used within a time
window”.
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Figure 4.8: Roc curve for attribute “Maximum number of bytes to one destination”.
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Figure 4.9: Roc curve for attribute “Maximum number of packets to one destination”.
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Figure 4.10: Roc curve for attribute “Maximum number of connections to one destination”.

consider normal traffic when they check a DoS attack and attack traffic when they check

a probing attack. The connection feature applies well for half of the connections since in

some instances (when there is not that much traffic involved they are really distinguishable

from both the DoS and the Probing attacks). The last three attributes (Packets, bytes

and connections per destination) are really sufficient because all the attacks are performed

against one destination.

The best ROC curve is shown in figure 4.14. The ROC curve of figure 4.13 is similar

to the best one. Maximum number of bytes to a destination and maximum number of

packets to destination are correlated attributes that is why the results of the two figure

above are so close.

To conclude with the results in table 4.2 below, the best results from the 3 models are

displayed:
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Figure 4.11: Roc curve for attributes “Number of connections, maximum number of con-
nections to a destination”.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

D
et

ec
tio

n 
ra

te

For the attributes "ip_bytes, ip_packets"

 

 
Fisher
GMM

Figure 4.12: Roc curve for attributes “Maximum number of bytes, packets to a destina-
tion”.
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Figure 4.13: Roc curve for attributes “Connections, number of different services, maximum
number of packets and connections to a destination”.
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Figure 4.14: Roc curve for attributes “Connections, number of different services, maximum
number of bytes and connection to a destination”.
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Figure 4.15: Roc curve for attributes “Packets, connections, number of different services,
maximum number of packets, connection to a destination”.
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Figure 4.16: Roc curve for attributes “Packets, connections, maximum number of bytes,
packets and connections to a destination”.
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Model Detection Rate False Alarm
Fisher 70% 0%
Fisher 80% 2%
Fisher 90% 5.3%
Fisher 91% 6%
Fisher 93% 7%
Fisher 94% 9%
GMM 70% 0.4%
GMM 80% 7%
GMM 84% 8%
GMM 86% 10%
SVM 50% 2%
SVM 60% 4%
SVM 62% 6%
SVM 65% 7%
SVM 69% 8%
SVM 72% 10%

Table 4.2: The best results from each of the three statistical models (Fisher’s Linear
Discriminant, Gaussian Mixture Model, Support Vector Machines) are shown
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Conclusion/Future Work

In this thesis we studied Intrusion Detections Systems and the problem of security in a

network. We proposed an Intrusion Detection system that depends on as few as possible

parameters (for example window length) and examined its behaviour and the detection

that it can achieve. Using the correct features of the network’s traffic one can detect

many types of attacks, with low false alarm rate. Even though it looks like the field is

almost fully defined, new attacks arise daily, with different characteristics, which require

to be alternatively encountered. Our results are very promising and they show that it is a

proper system for at least additional measures against compromisations.

The most effective IDSs presently are the ones that are based on misuse (for commercial

use). These IDSs however cannot prevent a new attack from compromising a host. It would

be valuable if we could build a reliable anomaly detection IDS. Our IDS has the capability

of becoming such an IDS.

For the future we could use new features and apply our models on other more resent

test sets for the detection. The new characteristics may help us separate more accurately

the two classes (normal and abnormal traffic), while the new models might provide better

boundaries. Apart from DDoS (Distributed DoS) and probing attacks we would like to

observe internet worms’ behaviour and compromisation. Internet worms constitute a seri-

ous threat to modern network. Among other things, they can easily perform a distributed

denial of Service.

Intrusion detection does not stop in wired networks on the other hand. Wireless net-
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works are the future of network industry and a field of significant needs in research. Clearly

intrusion detection in wireless networks is still in elementary level and it would be manda-

tory to extend it to more sophisticated detection systems.

Our study showed that the most important aspect of statistical intrusion detection is

feature selection. Choosing the right two features for example we achieve using a very sim-

ple statistical tool (Fisher’s Linear Discriminant) 80% detection rate with 15% false alarm

rate. In addition modeling both normal traffic and intrusive traffic yields worst results

(The Gaussian Mixture Model performed worse than Fisher’s Linear Discriminant). The

best features that arise from our experiments are the following 4: Connections, services,

packets per destination and connections per destination. We found that the best model in

our evaluation was the Fisher’s Linear Discriminant and yielded 90% with 5% false alarm.

In conclusion, we showed that a statistical intrusion detection system may provide

satisfactory results if the right feature/attributes are selected.
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