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Abstract

Last decade, unit selection synthesis became a hot topic in speech synthesis research. Unit

selection gives the greatest naturalness due to the fact that it does not apply a large amount

of digital signal processing to the recorded speech, which often makes recorded speech sound

less natural. In order to find the best units in the database, unit selection is based on two cost

functions, target cost and concatenation cost.

concatenation cost refers to how well adjacent units can be joined. The problem of finding

a concatenation cost function is broken into two subproblems; into finding the proper parame-

terizations of the signal and into finding the right distance measure. Recent studies attempted

to specify which concatenation distance measures are able to predict audible discontinuities and

thus, highly correlates with human perception of discontinuity at concatenation point. However,

none of the concatenation costs used so far, can measure the similarity (or, (dis-)continuity) of

two consecutive units efficiently.

Many features such as line spectral frequencies (LSF) and Mel frequency cepstral coefficients

(MFCC) have been used for the detection of discontinuities. In this study, three new sets of

features for detecting discontinuities are introduced. The first set of features are obtained by

modeling the speech signal as a sum of harmonics with time varying complex amplitude, which

yield a nonlinear speech model. The second set of features is based on a nonlinear speech analysis

technique which tries to decompose speech signals into AM and FM components. The third

feature set exploits the nonlinear nature of the ear. Using Lyon’s auditory model, the behavior

of the cochlea is measured by evaluating neural firing rates.

To measure the difference between two vectors of such parameters, we need a distance measure.

Examples of such measures are absolute distance (l1 norm) and Euclidean distance (l2 norm).

However, these measures are naive and provide rather poor results. We further suggest using

Fisher’s linear discriminant as well as a quadratic discriminant as discrimination functions. Linear
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regression, which employs a least-squares method, was also tested as a discrimination function.

The evaluation of the objective distance measures (or concatenation costs) as well as the

training of the discriminant functions was performed on two databases. To build a database, a

psychoacoustic listening experiment is performed and listener’s opinions are obtained. The first

database was created by Klabbers and Veldhuis in Holland while, the second database was created

by Stylianou and Syrdal at AT&T Labs. Therefore, we are able to compare same approaches on

different databases and obtain more robust results.

Results obtained from the two different psychoacoustic listening tests showed that nonlinear

harmonic model using Fisher’s linear discriminant or linear regression performed very well in

both tests. It was significantly better than MFCC separated with Euclidean distance which a

common concatenation cost in modern TTS systems. Another good concatenation cost, but

less good than nonlinear harmonic model, is AM-FM decomposition again with Fisher’s linear

discriminant or linear regression. These results indicate that a concatenation cost which is

based on nonlinear features separated by a statistical discriminant function is a good

choice.
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Chapter 1

Introduction

Speech is a distinctive feature of human beings and it is used primarily for communication.

Speech not only is the oldest means of communication but also the most widely used. Artificial

speech, i.e. speech that is generated in a automated way, has been a dream of the humankind for

centuries. Speech which is so easy and natural to be produced by humans is extremely difficult to

be synthesized by machines of any kind making speech a rather complex signal. The realization

of speech machines or systems has been really practical within the last forty years [1].

1.1 First Steps in Speech Synthesis

Long before modern electronic signal processing was inverted, speech researchers tried to build

machines to create human speech [2]. In 1779, Professor Kratzenstein built models of the human

vocal tract and explained the difference between five long vowels (/a/, /e/, /i/, /o/, /u/). He

made apparatus to produce them artificially. Wolfgang von Kempelen, few years later in 1791,

described a machine which was able to produce vowels as well as consonants. He added models

for tongue and lips and produced more complicated sounds. In 1837, Wheatstone constructed a

mechanical “speaking machine” based on von Kempelen’s design.

In the 1930s researchers at Bell Labs developed the VOCODER, a keyboard-operated elec-
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tronic speech analyzer and synthesizer that was said to be “clearly” intelligible. Homer Dudley

refined this device into the VODER, which he exhibited at the 1939 New York World’s affair.

After demonstration of VODER the scientific world became more and more interested in

speech synthesis, due to the fact that it was finally shown that intelligible speech can be produced

artificially. Actually, the basic structure and idea of VODER is very similar to source/filter models

of speech. People realized that the speech signal could be decomposed as a source/filter model,

with the glottis acting as a sound source and the vocal track being a filter. This model was

used to build analog electronic devices that could mimic human speech [1]. Early electronic

speech synthesizers sounded very robotic and were often barely intelligible. However, the quality

of synthesized speech has steadily improved, and output from contemporary speech synthesis

systems is sometimes indistinguishable from natural speech [3], [4].

Using the source/filter model first formant synthesizer was introduced by Laurence in 1953.

It consisted of three electronic formant resonators connected in parallel. Fant, at about the

same time, constructed a formant synthesizer in cascade and ten years later created a formant

synthesizer with separate parts to model the transfer function of the vocal track and various

excitations [1], [5]. First articulatory synthesizer was introduced by Rosen in 1958 and it was the

first fully computer-based speech synthesis system ever created.

Figure 1.1: Evolution of Speech Synthesis Systems through the years. It is obvious that the
advent of computers made speech synthesis to blossom.

However, much of the work in synthesis in 40s and 50s was primarily concerned with con-
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structing replicas of the signal itself rather than generating the phones from an abstract form

like text. In Figure 1.1, milestones of speech synthesizers through the years is showed.

1.2 Text-to-Speech Synthesis

In 1968, the first text-to-speech (TTS) system was developed by Umeda and his companions in

Japan. It was based on an articulatory model for speech waveform production and a syntactic

analysis module with sophisticated heuristics for text analysis. In general, TTS systems consist

of two large modules (Figure 1.2). First module is natural language processing where morpho-

syntactic analysis, phonetization and prosody generation take place and second module is digital

signal processing where acoustic realization of each phoneme is yield [6], [7], [3].

Figure 1.2: Modules of a Text-to-Speech Synthesis System. In order to produce high quality
synthesized speech, experts from different fields should collaborate.

Our interest is concentrated on the second module where two different approaches for gener-

ating speech waveforms are used.

Firstly, the parametric approach where speech is modeled with a source/filter technique.

Source/filter techniques such as articulatory or formant techniques and linear predictive cod-

ing produced speech which was somewhat artificial and robotic, yet, very intelligible and they

became popular commercial products. In 1979, Klatt and colleagues demonstrated the MITalk

synthesizer, a text-to-speech system developed at MIT. Two years later Klatt created a more
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sophisticated TTS system called Klattalk. These systems in a sense defined the perception of

automatic speech synthesis. Speak’n’Spell toy of Texas Instruments in the late 70s is an example

–possibly the first– of a commercial TTS synthesis product [1].

The second approach, which displaced the parametric one, is based on the concatenation of

speech segments (or units1) [8] [4]. With this method, speech is generated from recorded speech

rather than being generated from models. As a consequence of this, output speech is sounding

more natural.

1.3 Concatenative Speech Synthesis

The rise of concatenative synthesis began in the 70s, and has become practical in late 80s as

large scale electronic storage has become cheap and robust. In concatenative synthesis, it is

necessary to create a database with the desired speech elements. Depending on the contexts of

the database, there are two main subtypes of concatenative synthesis, diphone synthesis and unit

selection synthesis.

1.3.1 Diphone Synthesis

Diphone synthesis uses a minimal speech database containing all the diphones (phoneme2 to

phoneme transition) occurring in a given language [9], [10]. At runtime, target prosody of a

sentence is superimposed on these minimal units by means of digital signal processing techniques

such as LPC, PSOLA and MBROLA [3]. Diphone synthesis has the drawback that it suffers from

sonic glitches at concatenation points and its advantage is the low storage size which nowadays

is not a problem.

1In this thesis, words segment and unit are used interchangeably
2phoneme = the smallest unit of speech that differentiates one word from another
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1.3.2 Unit Selection Synthesis

Unit selection synthesis was first demonstrated in middle 90s and quickly became a hot topic

in speech synthesis research [11], [8]. It uses large speech databases with more than an hour of

recorded speech. The primary motivation for the use of large databases is that with a large number

of units with varied prosodic and spectral characteristics it should be possible to synthesize more

natural-sounding speech than can be produced with a small set of controlled units. During

database creation, each recorded utterance is segmented into single phones, diphones, triphones

or even bigger units (such as words).

Typically, the division into segments is done using a specially modified speech recognizer set

to a “forced alignment” mode with some hand correction afterward, using visual representations

such as the waveform and spectrogram [10]. An index of the units in the speech database is

then created based on the segmentation and acoustic parameters like the fundamental frequency

(pitch), duration, position in the syllable, and neighboring phones. At runtime, the desired target

utterance is created by determining the best chain of candidate units from the database (unit

selection). The subject of this thesis, as it is explained below, is to find the best chain of units

using objective evaluation criteria.

Unit selection gives the greatest naturalness due to the fact that it does not apply a large

amount of digital signal processing to the recorded speech, which often makes recorded speech

sound less natural, although some systems may use a small amount of signal processing at the

point of concatenation to smooth the waveform [12], [13], [14]. In fact, output from the best unit-

selection systems is often indistinguishable from real human voices. However, despite examples

of it working excellently, generalized unit selection is known to producing bad quality synthesis

from time to time. Our goal is to predict and eliminate such undesired cases.

More analytically, unit selection synthesis systems consists of five modules:
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— a text processing module,

— an acoustic- and prosodic-feature prediction module,

— a prerecorded speech database (corpus)

— a segment (unit) selection module and

— a waveform concatenation module.
Figure 1.3 shows the flow diagram of a unit-selection synthesizer.

Figure 1.3: Modules of a Unit Selection Synthesis System.

1.4 Unit Selection Module

Prosody generation module returns the target specifications (or, simply target) for an utterance.

The target defines the string of phonemes required to synthesize the text, and is annotated with

prosodic features (i.e. duration, power and pitch) which specify the desired speech output in more

detail [15]. Unit selection module has to search for the best units in the database (or corpus)

given the target specifications.

Usually, unit selection is based on two cost functions shown in Figure 1.4. The target cost,

Ct(ti, ui), is an estimate of the difference between a database unit, ui, and the target, ti, which

is supposed to represent. To put it in another way, target cost expresses the closeness between

the context of the target and the candidate unit, therefore, it is calculated as a weighted sum of
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the differences between prosodic and phonetic parameters.

The concatenation3 cost, Cc(ui−1, ui), is an estimate of the quality of a join between consec-

utive units. In other words, concatenation cost refers to how well adjacent units can be joined.

It is calculated as a weighted sum of the differences between fundamental frequency, spectral

mismatches, energy, etc.

Figure 1.4: Target cost and concatenation cost. Target cost measures the closeness between
target, ti, and unit, ui. Concatenation cost measures the continuity between previous unit, ui−1

, and current unit, ui.

Indeed, given the target specification, the sequence tn = (t1, t2, ..., tn), we have to select

the set of units, un = (u1, u2, ..., un), which are closest to the target [15]. For each target ti

there are more than one unit in the database. The different instances of each speech unit have

various prosodic and spectral characteristics. For each unit, target cost and concatenation cost

are computed and a network is constructed (Figure 1.5). Optimum unit selection is achieved by

a Viterbi search for the lowest total cost path through the lattice of candidate units.

Among the two costs, the concatenation cost is more important for the selection of two

successive acoustic units. In this thesis, we studied and experimented on the calculation

of the concatenation cost.

Hunt and Black in their pioneering work [8] stated “An objective distance measure should

3Concatenation cost is also known as join cost
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Figure 1.5: Candidate units constitute a k-partite graph. Each vertex has a weight which is the
sum of target cost and concatenation cost. The shortest path is specified through Viterbi search
algorithm. Here, best sequence of word golden, which is segmented into diphones, is found.

reflect as much as possible the perceptual similarity of the utterances.” Thus, the ideal concate-

nation cost is one that, although based solely on measurable properties of the candidate units

—such as spectral parameters, amplitude, and F0— correlates highly with human listeners per-

ceptions of discontinuity at concatenation points. In other words, the join cost should predict

the degree of perceived discontinuity. Recent studies attempted to specify which concatenation

distance measures are able to predict audible discontinuities and thus, highly correlates with

human perception of discontinuity at concatenation point [16], [17], [18], [19], [20], [21], [22].

Having a “good” distance measure, high concatenation cost will be assigned to speech units that

are identified to produce audible discontinuities. However, none of the concatenation costs used

so far, can measure the similarity (or, (dis-)continuity) of two consecutive units efficiently.

Most of the previous studies computed concatenation cost by using a distance measure on

some parameterizations of the speech signal (Figure 1.6). We used the same framework for two

reasons. Firstly, using this approach the problem of finding a concatenation cost function is

broken into two problems; into finding the proper parameterizations and into finding the right

distance measure, and secondly, parameterizations of signals as well as distance measures have
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Figure 1.6: Flow diagram for measuring the discontinuity of two successive speech units.

meaningful physical interpretations.

Indeed, the concatenation cost contains a module that extracts the spectral properties of the

speech from both candidate units. Many features such as line spectral frequencies (LSF) and

Mel frequency cepstral coefficients (MFCC) have been used for the detection of discontinuities.

In this study, three new sets of features for detecting discontinuities are introduced. Our goal is

to increase the detection rate of perceived discontinuities, so, we suggest using features obtained

from nonlinear approaches.

The first set of features are obtained by modeling the speech signal as a sum of harmonics

with time varying complex amplitude [23], which yield a nonlinear speech model. The second

set of features is based on a nonlinear speech analysis technique which tries to decompose speech

signals into AM and FM components [24]. Speech signals pass through a filterbank which covers

the most important frequencies of the speech spectrum, and then an algorithm referred to as

DESA is applied for the separation of the AM and FM component. The third feature set exploits

the nonlinear nature of the ear. Using Lyon’s auditory model, the behavior of the cochlea is

measured by evaluating neural firing rates. This model gives a two-dimensional representation

of the signal which is similar to spectrogram, but it takes advantage of the nonlinear nature of

the cochlea.

To measure the difference between two vectors of such parameters, we need a distance measure.
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This may be a metric, provided that it has the required properties, but this is not necessary.

Examples of such measures are absolute distance (l1 norm) and Euclidean distance (l2 norm).

However, these measures are naive and provide rather poor results. We further suggest using

Fisher’s linear discriminant as well as a quadratic discriminant [25] as discrimination functions.

Linear regression, which employs a least-squares method, was also tested as a discrimination

function. Since these methods are statistical, the weights are learned from the data obtained

from perceptual tests.

The evaluation of the objective distance measures as well as the training of the discriminant

functions was performed on two databases. To build a database, a psychoacoustic listening

experiment is performed and listener’s opinions are obtained. The first database was created

by Klabbers and Veldhuis [17] in Holland while, the second database was created by Stylianou

and Syrdal [19] at AT&T Labs. Therefore, we are able to compare same approaches on different

databases and obtain more robust results.

The results of this thesis were firstly presented in a summer school “Nonlinear Speech Modeling

and Applications” in Italy [26]. Nonlinear harmonic model, AM-FM decomposition and Fisher’s

linear discriminant were introduced and evaluation was performed on AT&T’s database. The

results obtained from Klabbers’s database were presented in Interspeech 2005 on the same feature

sets and discriminant functions [27]. Finally, a review on the problem of finding an objective

distance measure for detecting audible discontinuities [28] was done for the same summer school

“Nonlinear Speech Modeling and Applications” one year later in Heraklion.

1.5 Thesis Organization

In Chapter 2, literature is briefly reviewed and discussed, while in Chapter 3, we describe five

different feature sets that were used in this study. Two of them have been already used for the

detection of discontinuities while the other three are novel feature sets. Chapter 4 presents metrics
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and statistical approaches for discriminating the signals with audible discontinuities from the non-

audible ones. In Chapter 5, the databases where the evaluations of features and discrimination

functions were performed, while in Chapter 6, results are shown. Finally, Chapter 7 concludes

the methods and major results presented in this thesis.
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Chapter 2

Literature Review

Clearly, unit selection has become a hot topic since Hunt and Black [8] introduced it. As a

result of this, new challenges such as robust prosody generation, efficient construction of the

speech database and detection of discontinuities showed up. For the problem we are interested,

many researchers tried to solve it (i.e. to find an objective distance measure that is able to detect

audible discontinuities). In order to obtain a global view, in this chapter, studies on the detection

of discontinuities are briefly reviewed.

Wouters and Macon [16] in their study reported that a Euclidean distance on Mel-scale LPC-

based cepstral parameters are o good predictor of perceived discontinuity. They evaluated several

distance measures using perceptual data obtained from listening tests. In these tests, pairs of

synthetic monosyllabic English words that were made from identical unit sequences, except for

one half-phone, were presented to listeners. Then, their task was to rate the difference between

the word pairs on a five-point scale. The substituted half-phones were limited to three specific

vowels. They computed the correlation between objective distance measures and mean listener

responses. Their results indicated that the parameterizations that use a nonlinear frequency

scale, such as Mel or Bark scales, performed better than those that do not. They also found that

weighting individual parameters of cepstra, LSF or delta coefficients could improve correlations.
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As a continuation of their work, they presented an approach to reduce concatenation mis-

matches in concatenative speech synthesis [29]. They combined spectral information, represented

by LSFs, from two sequences of speech units selected in parallel. The first sequence defined

the initial spectral trajectories for a target utterance. Then, this sequence was modified by the

second sequence which defined the desired transitions between concatenation units. Perceptual

experiments showed that considerable amount of concatenation artifacts were removed.

Klabbers and Veldhuis [17] tested various spectral distance measures for joints in five Dutch

vowels to find which measure best predicts the concatenation discontinuity. These various mea-

sures were correlated with the results of a listening experiment in which listeners have to make

a choice between 0 or 1 based on whether the concatenation was perceived as smooth (0) or

discontinuous (1). They found that Kullback-Leibler measure on LPC power-normalized spectra

is the best predictor among their six spectral distance measures: Euclidean distances between

first two formants, MFCC, the likelihood ratio, the mean squared log-spectral distance, loudness

difference, and expectation differences.

They also studied the feasibility of extending a diphone inventory with context-sensitive di-

phones to reduce the occurrence of audible discontinuities [13]. In order to reduce the number

of additional diphones, they used their best joint (concatenation) cost function to cluster the

consonantal contexts that had the same spectral effects on neighboring vowels. To evaluate the

improvements gained with this extended inventory, they conducted further perceptual experi-

ments and observed that these additional diphones significantly reduced the number of audible

discontinuities.

In order to identify the amount of perceptually noticeable spectral distortion between two

speech segments, Hansen and Chappel introduced an auditory-based distance measure [30]. Their

distortion measure uses Carney’s computer model of the mammalian auditory system which pro-

duces realistic temporal response properties and average discharge rates of auditory nerves. They

concluded that in combination with direct processing of time- and frequency-domain characteris-
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tics, a small segment database using their distance measure achieves results close to concatenative

systems with large databases. It is worth to note that their work was never used or commented

by other researchers. We extend their work by using another auditory model —Lyon’s auditory

model— and make extensive evaluations.

A variety of acoustic transforms (LPC, linear prediction cepstral coefficients, LSF, MFCC,

residual MFCC, bispectrum, modified Mellin transform of the log spectrum, segmental modi-

fied Mellin transform of the log spectrum, and Wigner-Ville distribution-based cepstrum) were

compared by Chen and Campbell [18] for use in assessment and evaluation of synthetic speech.

The speech material was synthesized using the CHATR speech synthesis system [31]. They first

segmented the original speech signal and the synthetic speech signal into frames, each frame

represented by several feature coefficients. Then, they used dynamic time warping (DTW) for

aligning synthetic and natural segments. The overall distortion obtained from the DTW was

used as a distance between the synthetic speech and natural speech. Finally, they correlated the

distances computed from various acoustic transforms with listener ratings obtained from a mean

opinion score (MOS) evaluation. Their results showed that the distances computed using the

bispectrum had the highest degree of correlation with the MOS scores.

Stylianou and Syrdal conducted a psychoacoustic experiment on listeners detectability of

signal discontinuities in concatenative speech synthesis. They used an experimental version of the

AT&T next-generation system [19] to synthesize the test stimuli. In this study, the concatenative

costs derived from various objective distance measures were compared with listeners detection

scores. These distances were evaluated based on the detection rate, the Bhattacharya measure

of separability of two distributions, and receiver operating characteristics (ROC) curves. Their

results showed that a symmetrical Kullback-Leibler (KL) distance between FFT-based power

spectra and the Euclidean distance between MFCC had the highest prediction rates. In contrast

to [17], this study found that KL distance based on LPC spectra was the one of the worst

performers.



16 Detection of Audible Discontinuities

Donovan [20] proposed a new join cost that can be described as a decision tree- based, context-

dependent Mahalanobis distance on perceptual cepstral coefficients. He conducted listening tests

to compare the performance of this new method with other joint costs derived from Itakura and

KL distances on Mel-binned power spectral, Euclidean, and Mahalanobis distances on cepstra,

perceptually modified MFCC (P-Cep), log energy, and the first and second time differentials of

cepstra and P-Cep. The test stimuli were synthesized in a male voice using a modified form of

the IBM trainable speech synthesis system [32]. The correlation results showed that this new

measure outperforms other measures. Also, further listening tests have justified the use of this

measure in the IBM synthesis system.

Vepa, King and Taylor [21] reported a perceptual experiment conducted to measure the

correlation between subjective human perception and various objective spectral measures. They

tested features such as LSF, MFCC and multiple centroid analysis (MCA) and metrics such as

Euclidean distance, Mahalanobis distance and Kullback-Leibler divergence. They extended the

test stimuli to cases of polysyllabic words in natural sentences which were synthesized by a state-

of-the art unit selection TTS system: rVoice from Rhetorical Systems Ltd. They showed that

none of the measures performed well in all cases and further research is needed to develop new

distance measures so as to reliably predict audible discontinuities.

In an other study of Vepa and King [33], [34], linear dynamical model (Kalman filter) on LSF

trajectories has been used for the computation of joint cost in unit selection speech synthesis.

The model, after training, could be used to measure how well concatenated speech segments join

together. The objective joint cost is based on the error between model prediction and actual

observations. Linear dynamical model was used also for smoothing the LSF coefficients reducing

the audible discontinuities. An advantage of this method is that the degree and extent of the

smoothing is controlled by the model parameters which are learned from natural speech.

A novel discontinuity measure which accounts for both interframe incoherence and discrepan-

cies in formant frequences/bandwidths was introduced by Bellegarda [22]. His metric is derived
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through a pitch synchronous singular value decomposition (SVD) of the signal. He constructs

a matrix with frames of speech in the vicinity of the concatenation point and with the use of

SVD projects new frames to the space obtained from SVD. This alternative transform framework

preserves those properties of the waveform which are globally relevant in the region of the con-

catenation. He compared his metric with Euclidean distance on MFCCs and found that listeners

preferred the sentences synthesized with the new measure than the sentences synthesized with

MFCCs.

Blouin and colleagues presented a joint cost function based on phonetic and prosodic features

[35], [36]. This function is defined as a weighted sum of subcosts, each of which is a function

of various symbolic and prosodic parameters. Weights were optimized using a multiple linear

regression as a function of an acoustic measure of concatenation quality. This acoustic measure

is calculated as a KL divergence on normalized LPC power spectra. Perceptual evaluation results

indicated that the concatenation subcost weights determined automatically were better than

hand-tuned weights, with or without applying F0 and energy smoothing after unit concatenation.

Kawai and Tsuzaki [37] compared acoustic measures and phonetic features in their ability

to predict audible discontinuities. The acoustic measures were derived from MFCCs, mainly

Euclidean distances between MFCCs of certain frames. A perceptual experiment was used to

measure the degradation in naturalness due to signal discontinuities. Then, models were built to

predict the degradation scores from the acoustic measures and phonetic features. The models used

were multiple regression model; decision tree; neural network. The multiple regression coefficients

were calculated under open and closed conditions of modeling and for acoustic measures and/or

phonetic features. Phonetic features were found to be more efficient than acoustic measures in

predicting audible discontinuities.

Syrdal and Conkie [38], [39] conducted studies to detect mid-vowel and mid-consonant con-

catenation discontinuities. They trained and tested several models, such as linear regression and

classification and regression trees (CART), for predicting audible discontinuities. They used not
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only acoustic features but also phonetic ones. Their results indicate that Euclidean cepstral dis-

tances were superior as acoustic features. Moreover, using phonetic features in CART models,

the accuracy of prediction of concatenation discontinuities can significantly be improved.

To sum up, if there is a single conclusion that can be drawn from the above results, it is

that no single concatenation cost function was found to be best in all studies! It is not clear

whether this is because the experimental materials vary (small sets of vowels in isolated words,

for example) or features that were used did not capture the phenomenon of audible discontinuity.

Moreover, it is reasonable to say that the use of a perceptually motivated, nonlinear frequency

scale is a good idea. Finally, phonetic features performed quite well, even so, the concatenation

cost cannot be based solely on phonetic features.



Chapter 3

Feature Sets

In order to compute concatenation cost function, robust feature representation of speech signal

has to be extracted. In this Chapter, five different feature representations are discussed in detail.

Two of them have been used for the detection of discontinuities before, while the other three

feature representations have been introduced by us.

3.1 LSF

A feature representation of a speech magnitude spectrum is that of Line Spectral Frequencies

(LSF) [40]. LSF parameters have both well-behaved dynamic range and filter stability preserva-

tion property, therefore, they are very efficient in coding the LPC parameters. The computation

of LSF parameters is based on LPC analysis.

For a given order M , LPC analysis results in a inverse filter

AM (z) = 1 + a1z
−1 + a2z

−2 + ... + aMz−M (3.1)

which minimizes the residual energy [41].

We can extend the order of AM (z) to (M + 1) without introducing any new information by
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letting the (M +1)th reflection coefficient, kM+1, be equal to 1 or −1. This is equivalent to setting

the corresponding acoustic tube model completely closed or completely open at the (M + 1)th

stage. Thus, we have

P (z) = AM (z) + z−(M+1)AM (z−1) (3.2)

when kM+1 = 1 (or, (M + 1)th tube is completely closed), and

Q(z) = AM (z) − z−(M+1)AM (z−1) (3.3)

when kM+1 = −1 (or, (M + 1)th tube is completely open).

Zeros of P (z) and Q(z) constitute the LSF parameters. The LSF representation is rather

artificial, however, it has very useful properties. The important properties of P (z) and Q(z) are:

• All zeros of P (z) and Q(z) are on the unit circle (Figure 3.1), so, only angle —which

represents the frequency— of the zero is necessary;

• Zeros of P (z) and Q(z) are interlaced with each other; and

• Minimum phase property of AM (z) is easily preserved after quantization of the zeros of

P (z) and Q(z), which is useful for speech coding.

The number of LSF is equal to M which is the order of inverse filter. This number usually

depends on the sampling frequency of the signal.

3.2 MFCC

The mel-cepstrum, introduced by Davis and Mermelstein [42], exploits auditory principles, as well

as the decorrelating property of the cepstrum. In addition, the mel-cepstrum has proven to be

one most successful feature representations in speech-related recognition tasks. Their dominance
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Figure 3.1: Zeros of P (z) and Q(z) are illustrated. All zeros are on the unit circle and each zero
has its conjugate.

in speech recognition as well as in speaker identification/verification systems stems from their

ability to represent the amplitude spectrum in a compact form. Apart from this, MFCC have

been extensively used for the detection of audible discontinuities [17], [19], [21]. The mel-cepstum

is computed as illustrated in Figure 3.2.

Figure 3.2: Frow diagram for the computation of MFCC.

Firstly, the evaluation of the magnitude spectrum, |X(ω)|, through Short Time Fourier Trans-

form is performed. Hamming window of 20 ms was used in short time Fourier analysis. Secondly,

|X(ω)| is weighted by a series of filter frequency responses whose centers frequencies and band-

widths roughly match those of the auditory critical band filters. These filters follows a linear

scale for the low frequencies (up to 1kHz), and logarithmically increase for the high frequencies.

In Figure 3.3, mel-scaled filter bank is illustrated. Then, the logarithm of the output of the filter

is evaluated, and finally, inverse discrete Fourier transform (or, inverse discrete cosine transform)
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is applied. The result of this procedure is the Mel-scaled frequency cepstral coefficients (MFCC).

Similar to LSF the number of MFCC depends on the sampling frequency of the analyzed signal

Figure 3.3: Filters of the filterbank. They are defined from the mel-scaled frequencies.

3.3 Nonlinear Harmonic Model

The first technique for analyzing speech signals is through a nonlinear harmonic model [23]. The

model assumes the speech signal to be composed as a periodic signal, h[n], which is designated

as sums of harmonically related sinusoids

h[n] =
L(ni)∑

k=−L(ni)

Ak[n]ej2πkf0(ni)(n−ni) (3.4)

where L(ni) denotes the number of harmonics at n = ni, f0(ni) denotes the fundamental fre-

quency at n = ni, while Ak[n] is the time-varying complex amplitude,

Ak[n] = ak(ni) + (n − ni)bk(ni) (3.5)

where ak(ni) and bk(ni) are assumed to be complex numbers which denote the amplitude of the

kth harmonic and the first derivative(slope) respectively.

The unknown complex amplitudes (eq. (3.5)) are estimated by minimizing a weighted time-
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domain least-squares criterion with respect to ak(ni) and bk(ni),

ε =
n=ni+T0∑
n=ni−T0

w2[n](s[n] − h[n])2 (3.6)

where s[n] denotes the original speech signal, h[n] denotes the harmonic signal to estimate, w[n]

denotes the weighted window (which is typically a Hanning window) and T0 denotes the local

fundamental period (fs/f0(ni)), in samples. As eq. 3.6 indicates, the size of analysis window is

two pitch periods

The estimation of the parameters is done by the steps presented below. Firstly, the local

fundamental frequency, f0(ni), is evaluated from the autocorrelation function of the speech signal

around the analysis point. After this, in order to consider the whole spectrum, the number of

harmonics, L(ni), is computed by L(ni) = � fs

2f0(ni)
� where fs denotes the sampling frequency and

�� denotes the floor operator. It is valid to consider the whole spectrum since the phonemes we

tested are vowels, so, the noise part may be considered to be absent.

Solving the least-squares problem [23], we obtain a solution in closed form which is given by:

[a1a2...aLa∗1a
∗
2...a

∗
Lb1b2...bLb∗1b

∗
2...b

∗
L] = (BhWhWB)−1BhWhWs (3.7)

where “h” means Hermitian matrix operator, W is a (2T0 + 1)× (2T0 + 1) diagonal matrix with

diagonal elements the values of the Hamming window while L is abbreviation of L(ni). B is the

concatenation of four matrices (i. e. B = [B1|B2|B3|B4]) with elements

(B1)ml = E(m−T0)(l+1)

(B2)ml = E−(m−T0/2)(l+1)

(B3)ml = (m − T0/2)(B1)ml

(B4)ml = (m − T0)(B2)ml

(3.8)
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where E = exp(2πjf0(ni)), m ranges from 0 to 2T0 and l ranges from 0 to L − 1. Consequently,

B is a (2T0 + 1) × (4L) matrix.

It is noteworthy that synthetic speech produced by this nonlinear harmonic model is indis-

tinguishable from the original speech (modeling error is about -25dB). In addition, this model is

not sensitive to small errors in pitch estimation.

3.4 AM & FM Decomposition

Teager [43], [44], in his work on nonlinear modeling of speech production, used the nonlinear

operator

Ψ{x[n]} = x2[n] − x[n − 1]x[n + 1] (3.9)

on speech signals x[n]. This operator, also known as Teager-Kaiser energy operator, was used for

the evaluation of the “energy” of a single-component signal [45], [46]. With energy we mean the

generation energy which is analogous not only with the amplitude but also with the frequency. In

Figure 3.4, the energy of an exponentially decaying signal with sinusoidal instantaneous frequency

is shown.

Figure 3.4: Energy of an AM&FM modulation signal. We consider as instant energy the product
of instant amplitude and instant frequency. Observe the peaks of energy when signal oscillates
faster and the valleys when signal oscillates slowly.
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Teager energy operator was used by Maragos et al. [24] for the separation of amplitude

from frequency modulations of an AM-FM signal. The separation of AM component from FM

component is done through the Discrete Energy Separation Algorithm(DESA). The core of DESA

are the following equations:

G[n] = 1 − Ψ{y[n]} + Ψ{y[n + 1]}
4Ψ{x[n]} (3.10)

Ω[n] ≈ arccos(G[n]) (3.11)

|a[n]| ≈
√

Ψ{x[n]}
1 − G2[n]

(3.12)

where y[n] = x[n] − x[n − 1], Ω[n] is the instantaneous frequency and a[n] is the instantaneous

amplitude.

Examples of an AM, an FM and an AM&FM signal and there components after applying

DESA are shown in Figures 3.5, 3.6 and 3.7.

Figure 3.5: Separation into its components for an AM signal x(t) = Ae−atcos(2πfrt)

One application of DESA in speech analysis is the separation of a signal around a resonance

in an amplitude and a frequency component [47]. The extraction of a single resonance is done by
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Figure 3.6: Separation into its components for an FM signal x(t) = cos(2πfrt + βsin(2πfmt))

Figure 3.7: Separation into its components for an AM&FM signal x(t) = Ae−atcos(2πfrt +
βsin(2πfmt))

bandpass filtering the speech signal with a Gabor filter with impulse response defined by

hG[n] = exp(−a2n2) cos(Ωcn) (3.13)

where a controls the bandwidth of the filter and Ωc is the central frequency of the resonance.

In our case, we decided to construct a filterbank of twenty Gabor filters. In our filter design

the value of a was selected to be 250, hence the bandwidth of each filter was approximately

425Hz. The central frequencies of the filterbank are equal spaced from 250Hz up to 5000Hz. The
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filters of the filterbank are shown in Figure 3.8. The size of analysis window was 300 samples

(approximately 20msec). Hence, twenty AM and FM components are extracted for each analyzed

signal.

Figure 3.8: Filterbank of Gabor filters. These filters are equally spaced in frequency and they
are slightly overlapping.

3.5 Auditory Models

The auditory system of humans consists of various parts that interact converting the sound

pressure waves entering the outer ear into neural stimulus. Nowadays, it is possible to describe

how signals are elaborated by the auditory system [48], but it is also possible to analyze signals

using mathematical models that reproduce the auditory features [49], [50]. In this way, we have

the possibility to understand which kind of representations —our higher levels— in the brain are

used to isolate signals from noise, or to separate signals which have different pitches.

If we want to reproduce the same operations, we have to be able to work on representations

similar to those used by our brain. In practice, this can be done using a mathematical auditory

model, by which we analyze signals and then, depending on the application, extract useful infor-

mation. In this thesis, Lyon’s cochlea model is used for the detection of audible discontinuities.

Regarding the software implementation of Lyon’s auditory model, whose this section refers to, it
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is that resulting from M. Slaney’s work [51].

Lyon’s auditory model [49], schematically illustrated in Figure 3.9, describes with particular

attention the behavior of the cochlea, the most important part of the inner ear, that act sub-

stantially as a non-linear filter bank. Due to the variability of its stiffness, different places along

the cochlea are sensible to sounds with different spectral content. In particular, at the base the

cochlea is stiff, while going on, it becomes less rigid and more sensible to low frequency signals.

This behavior is simulated in the model, by a cascade filter bank. The bigger the number of these

filter the more accurate is the model. In front of these stages there is another stage that simulate

the effects of the outer and middle ear (pre-emphasis). The number of the filters mainly depends

on the sampling rate of the signals.

Figure 3.9: Lyon’s auditory model for the inner ear (cochlea).

The next part of the model consists of an ideal half wave rectification (HWR), composed of

a bank of HWRs which have the function to drop the negative portions of the waveform. They

model the directional behavior of the inner hair cells, thus, they reduce the energy of the signal.

The final part of the model describes the adaptive features which work in our auditory system.

This part consists of four automatic gain control (AGC) stages that are cascaded. The signals of

each channel coming out of the HWR stages, pass through these four AGC stages. The value of

the gain of each stage depends on a time constant, on the value of the preceding output sample

and on the values of the preceding output samples of the adjacent channels. In this way it is

possible to reproduce the masking effects. The different time constants simulate the different
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adaptive times of our auditory system: the first AGC stage has the biggest time constant so

that it reacts to the input signal more slowly, while the following stages have decreasing time

constants. The outputs of these stages approximately represent the neural firing rates produced

by the solicitation of various parts of the cochlea due to the sound pressure waves entering the

outer ear.

The output of this stage is the cochleagram which is shown for a test signal in Figure 3.10.

Cochleagrams look alike spectrograms in the sense that both are a two dimensional representation

of a sound. In both representations X-axis represents time. However, Y-axis of cochleagram refers

to neuron number of the ear and not frequency as in spectrogram. Moreover, the value of the

cochleagram at each point refers to neural firing rate instead of energy.

200 400 600 800 1000 1200 1400

5

10

15

20

25

30

35

40

Figure 3.10: Cochleagram from a synthesized speech segment. In the middle of the segment, the
concatenation point is evident.
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Chapter 4

Discrimination of Features

To measure the difference between two feature vectors, a distance measure is needed. In this

chapter, two metrics and three statistical approaches are presented. Usually, a distance measure

satisfies the properties of symmetry, positive definiteness and efficient evaluation. However, this

is not obligatory because we are interested in finding a cost which predicts audible discontinuities

without any constraints.

4.1 Norms

The simplest distance measures are the lp norms. They satisfy the properties of symmetry,

positive definiteness as well as triangular inequality. Assuming that x and y are vectors with

x = [x1, x2, ..., xd]T and y = [y1, y2, ..., yd]T , we have the following norms.

4.1.1 l1 or Absolute Norm

l1 or absolute distance is computed as the sum of the absolute difference of the parameters of

two feature vectors.

Dabs(x,y) =
d∑

i=1

|xi − yi| (4.1)
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4.1.2 l2 or Euclidean Norm

l2 also called Euclidean distance is the square root of the sum of the squares of the difference of

the parameters of two feature vectors, or more easily,

DEu(x,y) =

√√√√ d∑
i=1

(xi − yi)2 (4.2)

4.2 Fisher Linear Discriminant

Suppose that we have a set of N d-dimensional samples x1,...,xN, N0 samples be in the subset

D0 and N1 samples be in the subset D1. If we form a linear combination of the elements of x,

we obtain the scalar dot product

y = wTx (4.3)

and a corresponding set of N samples y1,...,yN that is divided into the subsets Y0 and Y1. This

is equivalent to form a hyperplane in d-space which is orthogonal to w (Figure 4.1).

Figure 4.1: Example of Fisher’s linear discriminant between two classes.

The direction of w is important for adequate separation [25] and is given by

w = S−1
W (µ0 − µ1) (4.4)
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where

SW =
1∑

i=0

∑
x∈Di

(x − µi)(x − µi)T (4.5)

is the scatter matrix, and

µi =
1
Ni

∑
x∈Di

x , i = 0, 1. (4.6)

are the mean values of the two distributions.

Since Fisher’s linear discriminant (FLD) projects feature vectors to a line it can also be viewed

as an operator which is defined by

FLD{x} =
d∑

i=1

wixi (4.7)

where wi are the elements of w. If xi are real positive numbers, this is a kind of weighted version

of l1 norm (yet, in this case weights can take negative values).

4.3 Linear Regression

In statistics, linear regression (LR) is a method that attempts to model the relation between two

variables by fitting a linear equation to observed data (Figure 4.2). One variable is considered

to be an explanatory or input variable, and the other is considered to be a dependent or output

variable.

Figure 4.2: Example of linear regression fit.
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A linear regression model is typically stated in the form [52], [53]

yi = αtxi + β + ε (4.8)

where xi is the input value which has d dimensions, yi is the observed value, α and β are the

parameters of the model and finally, ε is the unpredicted or unexpected variation in the response,

conventionally referred to as error.

For the estimation of parameters α and β, least-squares method is used. In other words, min-

imization of the square of all residual errors is performed. Assume that we have N input/output

pairs (xi, yi). Then, in matrix form we obtain

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

...

yN

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
t 1

...
...

xN
t 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣ α

β

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1

...

εN

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.9)

or, in compact form

Y = X

⎡
⎢⎢⎣ α

β

⎤
⎥⎥⎦ + ε (4.10)

The optimum solution in least-squares sense is given by:

⎡
⎢⎢⎣ α

β

⎤
⎥⎥⎦ = (XtX)−1XtY (4.11)

Actually, β is not important, because we are interested only in the direction (or slope) of the

model which is given by α.

Finally, linear regression is similar to Fisher’s linear discriminant since both methods are linear

and optimal for normal distributions. However, their parameters are estimated by different ways.

Linear regression through least-squares method while Fisher’s linear discriminant through Bayes
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classification.

4.4 Quadratic Discriminant (QD)

Fisher’s linear discriminant is the best solution in Bayesian sense, when samples of the two classes

follow normal distribution with equal covariance matrices. However, if covariance matrices are

different, the best solution is that of quadratic form [25], assuming again a normal distribution.

Thus, following as much as possible the symbolism of Section 4.2 we have:

xi ∈ D0 ∼ N(µ0,Σ0) (4.12)

and

xi ∈ D1 ∼ N(µ1,Σ1) (4.13)

with Σ0 �= Σ1.

Then, Bayes classifier (or discriminant) take the form:

— choose class 0 when g0(x) > g1(x) and

— choose class 1 when g0(x) < g1(x)
where

gi(x) = xtWix + wi
tx + w0,i i = 0 or 1. (4.14)

and

Wi = −1
2
Σi

−1 and wi = Σi
−1µi (4.15)

The constant w0,i is not necessary to be computed since we adjust it through false alarm as

we will see in next the chapter. Finally, Σi and µi are evaluated from the samples as,

µi =
1
Ni

∑
x∈Di

x , i = 0, 1. (4.16)
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and

Σi =
1
Ni

∑
x∈Di

(x − µi)(x − µi)t , i = 0, 1. (4.17)
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Databases

One approach to comparing alternative concatenation cost functions is to implement each function

in a synthesizer and compare the synthesized speech of the two systems. This is time consuming

and requires repeated perceptual listening tests each time the concatenation cost function is

altered. We use a methodology that requires only a single set of listening tests but still allows

objective comparisons to be made between alternative join cost formulations. In this method,

synthetic speech stimuli are generated in which there are a range of joint qualities. The stimuli

are then rated by listeners. Comparison of join cost functions is then achieved by computing

the correlations and detection rates between concatenation costs and listener ratings. Good join

costs correlate strongly with listener ratings of perceptual join discontinuity.

Two distinct databases were used for the comparison of the features and methods described

in previous chapters. First database was constructed by Klabbers and Veldhuis [13] at Holland,

while the second was constructed by Stylianou and Syrdal [19] at AT&T Labs. Similarities and

differences of the two databases are also discussed.
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5.1 Database No.1

For the construction of the database, a speech synthesizer is needed. IPOs speech-synthesis

system Calipso which employs diphones as concatenative units from a professional female speaker

was used. Diphones have been excised from nonsense words. For instance, consonant–vowel (CV)

and vowel–consonant (VC) diphones are excised from nonsense words of the form C@CV C@. In

order to reduce the data set to manageable proportions, this study was restricted to three Dutch

vowels in this database, i.e., the vowels /a:/, /i/, /u/ (in SAMPA notation). These vowels were

chosen because they cover the extremes in the vowel space.

The stimuli consisted of concatenated left CV and right VC diphones, which were excised

from the nonsense words Cl@ClV Cl@ and Cr@CrV Cr@. The stimuli consisted of three vowel

conditions in the context of all consonant pairs that can occur in C and C position. Therefore,

the total number of stimuli is 23×3×21 = 1449 CVC triples. So, for instance, the diphones /du/

and /uk/ that form the stimulus /duk/ were extracted from the nonsense words d@dud@ and

k@kuk@. The diphones were created using a variation of sinusoidal analysis/synthesis technique.

No spectral smoothing was applied at the boundary. In the stimuli, the consonant portions were

cut off to prevent them from influencing the perception of the diphone transition in the middle

of the vowel. Moreover, fading was used to smooth the transition from silence to vowel and

vice versa. Because all stimuli were presented in isolation, the stimulus duration had to be long

enough to be able to perceive the transition at the diphone boundary. The duration of the vowels

was fixed to 130 ms with the diphone boundary located exactly in the middle of the vowel. The

signal power of the second diphone was scaled to match that of the first diphone.

Five participants with a background in psycho-acoustics or phonetics participated in the

perceptual experiment. It was a within-subjects design meaning that each subject received all

stimuli in random order. For each stimulus, the participants had to judge the transition at the

diphone boundary as either smooth (0) or discontinuous (1). The experiment was divided into
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three hourly sessions which were held on different days, with a short break halfway through

each session. The session order was different for all participants. The experiment started with

a familiarization phase in which two stimuli were presented for each vowel, one being clearly

smooth and the other being clearly discontinuous. The setup of this experiment results in very

critical observations because

(a) the vowels have been placed out of context and

(b) subjects are forced to make a binary decision. This provides a more critical test than when

using real speech.

The participants found the task difficult, but felt they had been able to make consistent de-

cisions after the familiarization phase. As a consistency check, they presented two stimuli, one

clearly smooth, the other clearly discontinuous, ten times at random positions in the total stim-

ulus list. All participants were 100% consistent in their scoring of these two stimuli. Between

participants there was more variability, as some participants applied a stricter threshold than

others. In order to reduce the variability between participants, a majority score was calculated,

i.e., a stimulus was marked as discontinuous when three out of five listeners perceived it as such.

Summing the majority scores obtained in the experiment for each of the vowels, we get the per-

centage of perceived discontinuities. The results show that the number of audible discontinuities

is particularly high for /u/ and comparatively low for /a/. This is due to the fact /u/ has the

greatest amount of coarticulation and the /i/ has the smallest amount, closely followed by /a/.

5.2 Database No.2

Second database used for our research was constructed at AT&T Labs. It is consisted of 2016

monosyllabic words which were generated by concatenative synthesis using an acoustic inventory

of recordings from a native American female speaker. The sampling frequency of these recording

was 16kHz. The context of the inventory contained 336 monosyllabic test words that constitute



40 Detection of Audible Discontinuities

the Modified Rhyme Test [54]. Synthetic words were obtained by simple concatenation of raw

waveforms using each time two halves of original words. The concatenation point was approxi-

mately obtained in the middle of the vowel. In order to avoid linear phase mismatches between

the concatenated parts, a cross correlation function was used. From listening tests we may say

that, in general, pitch continuation was preserved. The 336 spoken words were separated into 56

groups of 6 words. Each group had words with same vowel nucleus but different initial or final

consonant(s). Therefore, for each group 36 synthetic words (test stimuli) were constructed (all

possible combinations of the 6 recorded words). These 36 synthetic words constitute a subtest.

Every subtest contained 6 “synthesized” words which actually were human spoken words and we

used them for validation purposes.

The listening task was conducted in a quiet office room using headphones. Listeners were

presented with a test stimulus along with a decision in order to familiarize themselves with

the listening test. After this training period, listeners started to hear the test words followed

by a single interval of forced choice (Yes/No) depending on whether or not they had heard a

concatenation discontinuity. The number of subtests listened by the participants was 386.

Twelve listeners participated in the perceptual test. Most of the participants had experience

in listening to synthetic speech. As a validation check, we tested how many of the continuous

words were considered as discontinuous. A subtest was rejected if more than one continuous word

was considered as discontinuous. This way, 62 subtests were rejected from the database while

324 subtests remained.

Finally, two numbers were assigned to each test stimulus. First number counted how many

listeners perceived test stimulus discontinuous while second number counted how many listeners

perceived test stimulus continuous. A synthetic speech signal was considered discontinuous(or

continuous) if the first number was greater(or less) to the second number. Rarely, when a tie

occurred synthetic signal was considered as discontinuous.
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5.3 Similarities and Differences

Due to the fact that both databases constructed for the same purpose it is reasonable to have

many similarities. On the other hand these databases were constructed from different researchers,

therefore there are also differences.

Firstly, in both databases special treatment were done for the elimination of phase mismatches.

Phase mismatch is another cause of audible discontinuities, however, we are not interesting on

such cases since it is easy to eliminate them. Furthermore, energy of the right unit was normalized

with respect to the left unit in order to avoid energy jumps. In addition, both databases synthesize

vowels and not consonants. Database from AT&T uses more vowels (possibly all the English

vowels) than the database from Holland which uses only three vowels. Lastly, listeners in both

cases had to make a binary and forced decision (continuous or not).

On the other hand, stimuli duration in the databases varies. In Klabber’s database stimuli

presented to the listeners have duration 130 ms only while in Stylianou’s database stimuli were

the whole synthesized word. What is more, using signal processing techniques Klabbers normalize

the fundamental frequency in both units to 200Hz. Stylianou et al. have left the fundamental

frequency untouched without any signal processing alternations. We are not sure which approach

is better since both have advantages and disadvantages. Needless to say, the systems that were

used for synthesizing the stimuli were different.

Finally, an issue which is important for valid results is the point were the evaluation of the

features is done. In the database of AT&T analysis has been done at the concatenation point

(Figure 5.2). In the database of Klabbers et al. analysis has been done at the edge of the

concatenation point (Figure 5.1). It is important to make the analysis as close as possible to the

concatenation point because we are trying to take advantage of dynamic information which may

change rapidly within few pitch periods.
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Figure 5.1: Where the analysis is done for the database of Klabbers et al.

Figure 5.2: Where the analysis is done for the database of AT&T. First subplot shows the
synthetic speech signal, while, the other two show the left and right speech segments.
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Results

6.1 ROC Curves

One way to evaluate the performance of the various distance measures is based on the detection

rate, PD, versus false alarm rate, PFA (Figure 6.1). This is done through receiver operator

characteristic (ROC) curves [55], coming from signal detection theory. The procedure works as

follows.

Figure 6.1: In a binary hypothesis test we must choose between two hypotheses. Depending on
the choice there are four cases.

For each measure, y, two probability density functions, p(y|0) and p(y|1) were computed

depending on the results from the perceptual test; if the synthetic word was perceived as contin-

uous (0), and (1) if it was perceived as discontinuous by the listeners. In Figure 6.2, probability
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functions for both continuous and discontinuous stimuli are shown. Then, the detection rate and

false alarm for that measure, y, is computed as:

PD(γ) =
∫ ∞

γ
p(y|1) dy (6.1)

and

PFA(γ) =
∫ ∞

γ
p(y|0) dy (6.2)

where γ defines the threshold (Figure 6.2).

Figure 6.2: Probability density functions for continuous and discontinuous test stimuli.

A plot of pairs (PD(γ), PFA(γ)) for all values of γ constitutes a receiver operating characteristic

(ROC) curve. See Figure 6.3 for a schematic representation of ROC curves. The straight line

represents the chance level meaning that a measure gives no information. The further the curve

extends to the upper left corner, the better the measure serves as a predictor. This indicates that

the two probability density functions and are moving away from each other, thus increasing the

hit rate and decreasing the false alarm rate.

6.2 Correlation Coefficient

In probability theory and statistics, correlation coefficient measures the degree of correlation,

adapted to the nature of data. To put it in another way, correlation coefficient indicates the
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Figure 6.3: Receiver operator characteristic curve. PD and PFA are computed for various values
of the threshold, γ.

strength and direction of a linear relationship between two random variables. In Figure 6.4,

square of correlation coefficient is shown for various degrees of correlation between two random

variables.

The correlation ρX,Y between two random variables X and Y with expected values µX and

µX , also known as Pearson’s product-moment, is defined as:

ρX,Y =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]√
E[(X − µX)2]E[(Y − µY )2]

(6.3)
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Figure 6.4: Correlation coefficient for various values of correlation.

Correlation coefficient takes values between [−1, 1]. Value 1 means that the correlation be-

tween the variables is strong while value 0 means that the variables are uncorrelated.

When we have N measurements of X, Y pairs, written as (x1, y1), ..., (xN , yN ), correlation

coefficient is computed by:

rxy =
N

∑
xiyi −

∑
xi

∑
yi√

N
∑

x2
i − (

∑
xi)2

√
N

∑
y2

i − (
∑

yi)2
(6.4)

6.3 Results

In this section, ROC curves and tables with correlation coefficients are presented in detail. For the

statistical methods such as Fisher linear discriminant and linear regression, the training was done

on the 80% of the database, while the testing was done on the remaining 20% of the database.

Furthermore, when a detection rate is given without referring false alarm, it is assumed that false

alarm is 5%.

The number of LSF, as we have already said, primarily depends on the sampling frequency.

Sampling frequency is 16 kHz in both databases, therefore the number of LSF parameters is

18. LSF with FLD, LR or QD performed better than l1 or l2 in both database (Figure 6.5). In

addition, LSF performed quite satisfactory in database of Klabbers et al. (detection rate 37%),
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Figure 6.5: ROC curves for LSF and various discriminant functions are shown.

while in AT&T’s database detection rate was 25%.

MFCC performed the same with all discriminant methods in database No.1 (Figure 6.6). In

less extend, the same can be said for database No.2. This may result from the decorrelation

property of MFCC parameters which results in equivalence of the coefficients. What is more,
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Figure 6.6: ROC curves for MFCC and various discriminant functions are shown.

MFCC performed better in database No.1 having detection rate of 40%, while in database No.2

detection rate was 24%. MFCC parameters are slightly better than LSF parameters.

Discrimination methods use vectors with real valued parameters (i.e. x ∈ R
d). However,

our feature parameters except for LSF and MFCC are either complex numbers of functions
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Figure 6.7: ROC curves for amplitude of nonlinear harmonic model, ak, and various discriminant
functions are shown.

of time. Consequently, there is a need for converting them in real numbers. For the complex

parameters of nonlinear harmonic model, there are two options; either take the absolute difference

of the absolute value of the number, ||xL| − |xR||, or take the absolute difference of the numbers,

|xL−xR|. We used the latter, since, it incorporates not only amplitude but also phase information.
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Figure 6.8: ROC curves for slope of nonlinear harmonic model, bk, and various discriminant
functions are shown.

Moreover, in order to keep the size of the measured vectors small while preserving the important

information from a speech frame, we have decided to prune the size vector of complex amplitudes

to the twenty first harmonics.

The amplitude of the nonlinear harmonic model, ak, did not perform well for l1 in both



Chapter 6. Results 51

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false alarm

de
te

ct
io

n 
ra

te

FLD
LR
QD

(a) Database No.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false alarm

de
te

ct
io

n 
ra

te

FLD
LR
QD

(b) Database No.2

Figure 6.9: ROC curves for both amplitude ak, and slope bk, of nonlinear harmonic model, and
various discriminant functions are shown.

databases(Figure 6.7). Nevertheless, statistical methods provided much higher scores. Database

No.1 gave detection rate 40% while database No.2 gave detection rate 45%. The slope of the

nonlinear harmonic model, bk, performed poor for AT&T’s database for all the discriminant

functions (Figure 6.8). However, in database of Klabbers’ et al., it performed well giving detection
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Figure 6.10: ROC curves for AM components, and various discriminant functions are shown.

rate of 35% when FLD or LR is used. Only statistical methods can be used when ak and bk are

combined by concatenation. Detection rates are high for all the discrimination methods in both

databases (Figure 6.9). In database of Klabbers et al., detection rate was 41%, while in AT&T’s

database was detection rate 53%. This was by far the highest detection rate for AT&T’s database.
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Figure 6.11: ROC curves for FM components, and various discriminant functions are shown.

In the case of AM–FM decomposition, our features are signals. We decide to take the sum

of the absolute difference between the left and the right signal as scalar features. Under this

condition, it is necessary left and right (AM or FM) signals to be aligned, however, only in

AT&T’s database it was achievable. In database No.1, AM component performed well with
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Figure 6.12: ROC curves for both AM and FM components, and various discriminant functions
are shown.

statistical disctiminant functions, but very poor with l1 and l2 where the scores were less than

chance threshold (Figure 6.10). In database No.2 the detection rates where more robust, but not

very high. Even though, l1 and l2 performed worse than FLD, LR ar QD. Similar results to AM

component are obtained for the FM component (Figure 6.11). When the combination of AM
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Figure 6.13: ROC curves for auditory model parameters, and various discriminant functions are
shown.

and FM components was taken the detection rate for database No.1 was 43% for FLD and QD

(Figure 6.12) which is the second highest detection rate for this database. For database No.2

detection rate was only 27% which is almost the half detection rate obtained from ak and bk.

For the auditory case, the filterbank was chosen to have forty filters (or neurons). For each
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Figure 6.14: ROC curves for Euclidean distance, and various features are shown.

neuron, mean neuron firing rate is taken from the cochleagrams as feature vector. Features from

auditory model performed very well in database of Klabbers et al.. Actually, it gave detection

rate of 50% (Figure 6.13), which was the highest detection rate for this database. In database

of Stylianou et al., detection rate was much lower (only 20%), although, for false alarm 75%
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Figure 6.15: ROC curves for Fisher’s linear discriminant, and various features are shown.

detection rate was 100% which means that there are not many cases where a discontinuous

stimulus gave low cost.

Next, features are compared given a discriminant function. For l2 norm we had “LSF <

Auditory < MFCC” in database of Klabbers et al., while in database of Stylianou et al. we had
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Figure 6.16: ROC curves for linear regression, and various features are shown.

“LSF = Auditory < MFCC” (Figure 6.14). Detection rates were rather low in both databases

which means that a more sophisticated discrimination method is needed.

Using as discriminant method Fisher’s linear discriminant detection rates are higher than l2.

For database No.2 nonlinear harmonic model performed extremely well compared to the other
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Figure 6.17: ROC curves for quadratic discriminant, and various features are shown.

features (Figure 6.15). What is more, ak and bk provide high detection rates for database No.1

(detection rate was about 40% when false alarm was set to 5% and better to the other features

for bigger false alarms). Exactly similar results can be obtained using linear regression method

instead of Fisher’s linear discriminant (Figure 6.16). This is expected since they have similar
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properties.

Quadratic discriminant can be seen as a generalization of FLD. Therefore, it is natural to

believe that it will give better results (Figure 6.17). However, this is not true because the need

of estimating much more parameters makes our training samples being insufficient.

Tables that are following present the correlation coefficients in both databases for the various

features and discrimination methods. In bold are the correlations that exceeds 0.5. Correlation

coefficient values are in accordance with ROC curves as it is expected. The only exception is

using QD. The basic reasons for this are that QD is not linear and not adequately trained.

Distance Database No.1 Database No.2
l1 on LSF 0.304 0.228
l2 on LSF 0.295 0.180

FLD on LSF 0.535 0.318
LR on LSF 0.544 0.324
QD on LSF 0.365 0.234
l1 on MFCC 0.506 0.297
l2 on MFCC 0.495 0.315

FLD on MFCC 0.510 0.350
LR on MFCC 0.516 0.350
QD on MFCC 0.423 0.271

Table 6.1: Correlation coefficients for the LSF and the MFCC.

ak&bk parameters using linear regression had the highest correlation coefficient in both data-

bases. Then, ak&bk parameters using FLD, auditory parameters using LR, AM–FM components

using FLD or LR and LR on LSF follow for database No.1. In database No.2, there are not any

high correlation coefficient except for ak of the nonlinear harmonic model.
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Distance Database No.1 Database No.2
l1 on ak 0.110 0.321
l2 on ak -0.272 0.556

FLD on ak 0.542 0.600
LR on ak 0.549 0.601
QD on ak 0.378 0.409
l1 on bk -0.020 -0.034
l2 on bk -0.018 -0.120

FLD on bk 0.434 0.229
LR on bk 0.431 0.224
QD on bk 0.302 0.184

FLD on ak&bk 0.567 0.645
LR on ak&bk 0.574 0.654
QD on ak&bk 0.399 0.452

Table 6.2: Correlation coefficients for the nonlinear harmonic model.

Distance Database No.1 Database No.2
l1 on AM -0.026 0.252
l2 on AM 0.121 0.252

FLD on AM 0.481 0.377
LR on AM 0.484 0.385
QD on AM 0.394 0.276
l1 on FM -0.075 0.308
l2 on FM -0.191 0.299

FLD on FM 0.405 0.364
LR on FM 0.415 0.371
QD on FM 0.426 0.328

FLD on AM&FM 0.522 0.450
LR on AM&FM 0.562 0.455
QD on AM&FM 0.515 0.395

Table 6.3: Correlation coefficients for the AM–FM components.

Distance Database No.1 Database No.2
l1 on AuPa 0.431 0.191
l2 on AuPa 0.441 0.129

FLD on AuPa 0.549 0.304
LR on AuPa 0.562 0.307
QD on AuPa 0.515 0.394

Table 6.4: Correlation coefficients for the Lyon’s auditory model. (AuPa = Auditory Parameters)
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Chapter 7

Conclusions & Future Work

In the present work, we described several concatenation costs for the prediction/detection of

discontinuities in concatenative speech synthesis systems. The evaluation of discontinuities was

broken into two steps: feature extraction and discrimination function. This problem is really

difficult because we do not know which acoustic cues the brain uses for the detection of a change

in a speech signal.

Our feature sets come from speech analysis/synthesis, speech coding and speech recognition.

Except for well known features such as LSF and MFCC, we presented nonlinear features from

a harmonic model with time varying amplitudes, AM-FM decomposition using DESA and Lyon’s

cochlea model. In chapter 3, these five feature sets are analytically explained. The use of nonlinear

features is supported from the nature of our ear system as well as the nature of the problem since

concatenation of two signals is a nonlinear operation.

Distance measures or discrimination function are used for the comparison of two feature vec-

tors and they are presented in Chapter 4. Metrics and statistical methods such as Fisher’s linear

discriminant and linear regression were used as discrimination functions. Statistical methods gave

better results, however the small amount of data made training set small and for methods such

as quadratic discriminant, which is a generalization of Fisher’s linear discriminant, the output
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results were not robust.

In Chapter 6, results obtained from two different psychoacoustic listening tests showed that

nonlinear harmonic model using Fisher’s linear discriminant or linear regression performed very

well in both tests. It was significantly better than MFCC separated with Euclidean distance

which a common concatenation cost in modern TTS systems. Another good concatenation cost,

but less good than nonlinear harmonic model, is AM-FM decomposition again with Fisher’s linear

discriminant or linear regression. These results indicate that a concatenation cost which is based

on nonlinear features separated by a statistical discriminant function is a good choice.

In the future, a collaboration with France Telecom is established and our methods will be

tested to their concatenative speech synthesis system. Depending on the results, we will extend

their system with our best concatenation costs.
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