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Abstract

Speech recordings are everywhere, from social media, YouTube, and online learning to
podcasts and audiobooks. In today’s fast-paced world, it is sometimes necessary to speed
up speech recordings in order to promote faster information consumption. A population
group that benefits the most from such technologies is visually impaired individuals who
employ screen reading on their mobile phones. A series of algorithms have been developed
for the time-scale expansion or compression of speech recordings. It is well known that
fast speech, also known as time-scale compressed speech, is less intelligible due to a loss
of speech parts that are important in distinguishing syllables and words. The majority of
these parts are non-stationary in nature, such as transient sounds, plosives, and fricatives.

In this work, we investigate algorithms for non-stationary speech protection in order
to provide highly intelligible time-scale compression. We base our experiments on the so-
called Waveform Similarity Overlap-and-Add (WSOLA) method of time-scale compression.
WSOLA is capable of providing both uniform and non-uniform time-scale compression. We
propose to characterize speech waveforms according to their non-stationarity using simple
time and frequency domain criteria. Utilizing a frame-by-frame analysis, the first criterion
(C1) is based on the RMS energy of each frame. Additionally, we implement a Line Spectral
Frequency (LSF)-based criterion, named C2, and in combination with C1, we end up with
a hybrid non-stationarity detection criterion named C3. C1 and C3 are implemented on
dataset of Greek speech recordings named GrHarvard. The latter consists of 720 sentences
from both genders that form 72 phonemically balanced lists of 10 sentences each.

Intelligibility and preference experiments were performed on four of the GrHarvard
lists involving both sighted and visually impaired individuals. Subsequently, a statistical
analysis was carried out to assess the significance of the differences in the results obtained
from both experiments’ tests. In the first experiment, we conducted a comparative analysis
involving uniform WSOLA, non-uniform C1-based WSOLA, and non-uniform C3-based
WSOLA. The principal objective was to assess whether the incorporation of protective
measures had a positive or negative impact on the intelligibility of speech signals. The
findings consistently demonstrated that C1-based WSOLA outperformed the others in both
intelligibility and user preference. It was followed by C3-based WSOLA, with uniform
WSOLA ranking last. In this experiment, characterized by substantial differences, the
majority of observed variations were found to be statistically significant. In the second
experiment, our objective was to assess the same three methods under equal words per
minute (WPM) conditions. This made it challenging for users to distinguish between
different methods and resulted in more uniform outcomes. Differences primarily stemmed
from variations within the signals, related to the sizes of their stationary and non-stationary
parts. Even though the C1-based method tended to achieve the highest intelligibility
(in most cases except at 0.25), it remained challenging to definitively determine which
method was superior in both preference and intelligibility tests. Yet, despite our initial
expectations of better performance in the results of the visually impaired group compared
to the control group, such variations did not materialize, mainly due to the limited number
of visually impaired participants willing to participate in our tests. Consequently, all of
these challenges led the majority of observed results not to attain statistical significance,
even though a discernible pattern was occasionally evident among the methods.

Future work may include further parameter tuning of the stationarity detection al-
gorithm. As an example, different lengths of analysis and hop frames can be used, as
well as pitch-synchronous analysis in stationary parts of speech. Furthermore, the base



method used for time-scale compression can be replaced by other more complex models
for time-scale compression (such as the Harmonic+Noise model). Finally, further experi-
ments - including a larger sample of visually impaired people - could strengthen statistical
conclusions about the performance of each method.



Εξερεύνηση προστασίας μη στάσιμου λόγου για υψηλής

καταληπτότητας συμπίεση σε χρονική κλίμακα.

Περίληψη

Ηχογραφήσεις ομιλίας υπάρχουν παντού, από τα μέσα κοινωνικής δικτύωσης, το YouTube
και την ηλεκτρονική εκπαίδευση μέχρι τα podcast και τα ηχητικά βιβλία. Στον σημερινό κόσμο
με τους γρήγορους ρυθμούς, μερικές φορές είναι απαραίτητο να επιταχυνθούν, προκειμένου να

προωθηθεί ταχύτερη κατανάλωση πληροφοριών από τους χρήστες. Μια ομάδα πληθυσμού που

επωφελείται περισσότερο από τέτοιες τεχνολογίες είναι τα άτομα με προβλήματα όρασης που

χρησιμοποιούν την ανάγνωση οθόνης στα κινητά τους τηλέφωνα. ΄Εχει αναπτυχθεί μια σειρά

αλγορίθμων για τη χρονική επέκταση ή συμπίεση των καταγραφών ομιλίας. Είναι γνωστό

ότι η γρήγορη ομιλία, γνωστή και ως συμπιεσμένη σε χρονική κλίμακα ομιλία, είναι λιγότερο

κατανοητή λόγω της απώλειας τμημάτων ομιλίας που είναι σημαντικά για τη διάκριση συλλαβών

και λέξεων. Η πλειονότητα αυτών των τμημάτων είναι μη στάσιμα στη φύση τους, όπως οι

μεταβατικοί ήχοι, οι έκκροτοι φθόγγοι και τα τριβόμενα σύμφωνα.

Στην παρούσα εργασία, διερευνούμε αλγορίθμους για την προστασία της μη στάσιμης ο-

μιλίας, προκειμένου να παρέχουμε συμπίεση με υψηλή καταληπτότητα σε χρονική κλίμακα.

Βασίζουμε τα πειράματά μας στη λεγόμενη μέθοδο συμπίεσης χρονικής κλίμακας Waveform
Similarity Overlap-and-Add (WSOLA). Η WSOLA είναι ικανή να παρέχει τόσο ομοιόμορ-
φη όσο και ανομοιόμορφη συμπίεση χρονικής κλίμακας. Προτείνουμε να χαρακτηρίσουμε τις

κυματομορφές ομιλίας ανάλογα με τη μη-στασιμότητά τους χρησιμοποιώντας απλά κριτήρια

στο πεδίο του χρόνου και της συχνότητας. Χρησιμοποιώντας μια ανάλυση καρέ-προς-καρέ, το

πρώτο κριτήριο (C1) βασίζεται στην ενέργεια RMS κάθε καρέ. Επιπλέον, εφαρμόζουμε ένα
κριτήριο που βασίζεται στη φασματική συχνότητα γραμμής (LSF), το οποίο ονομάζεται C2, και
σε συνδυασμό με το C1 καταλήγουμε σε ένα υβριδικό κριτήριο ανίχνευσης μη στασιμότητας
που ονομάζεται C3. Το C1 και το C3 εφαρμόζονται σε σύνολο δεδομένων από ηχογραφήσεις
ελληνικής ομιλίας με την ονομασία GrHarvard. Η τελευταία αποτελείται από 720 προτάσεις
και από τα δύο φύλα που σχηματίζουν 72 φωνητικά ισορροπημένες λίστες των 10 προτάσεων

η καθεμία.

Πραγματοποιήθηκαν πειράματα καταληπτότητας και προτίμησης σε τέσσερις από τις λίστες

του GrHarvard, στα οποία συμμετείχαν και άτομα με υγιή όραση και κάποια άτομα με προ-
βλήματα όρασης. Στη συνέχεια, διενεργήθηκε στατιστική ανάλυση για να εκτιμηθεί η σημασία

των διαφορών στα αποτελέσματα που προέκυψαν από τα δύο πειράματα. Στο πρώτο πείραμα,

πραγματοποιήσαμε μια συγκριτική ανάλυση που αφορούσε την ομοιόμορφη WSOLA, τη μη
ομοιόμορφηWSOLA με βάση το C1 και τη μη ομοιόμορφηWSOLA με βάση το C3. Ο κύριος
στόχος ήταν να εκτιμηθεί κατά πόσον η ενσωμάτωση προστατευτικών μέτρων είχε θετικό ή

αρνητικό αντίκτυπο στην καταληπτότητα των σημάτων ομιλίας. Τα ευρήματα έδειξαν σταθερά

ότι η WSOLA με βάση το C1 υπερείχε των άλλων τόσο στην καταληπτότητα όσο και στην
προτίμηση των χρηστών. Μετά, ακολουθούσε η WSOLA με βάση το C3, με την ομοιόμορφη
WSOLA να κατατάσσεται τελευταία. Σε αυτό το πείραμα, η πλειονότητα των παρατηρούμενων
διακυμάνσεων βρέθηκε να είναι στατιστικά σημαντική.

Στο δεύτερο πείραμα, ο στόχος μας ήταν να αξιολογήσουμε τις ίδιες τρεις μεθόδους υπό

ίσες συνθήκες λέξεων ανά λεπτό (WPM). Αυτό έκανε δύσκολο για τους χρήστες να διακρίνουν
μεταξύ των διαφορετικών μεθόδων και οδήγησε σε πιο ομοιόμορφα αποτελέσματα. Οι διαφο-

ρές προέκυπταν κυρίως από τις διαφοροποιήσεις εντός των σημάτων, που σχετίζονταν με τα

μεγέθη των σταθερών και μη σταθερών τμημάτων τους. Παρόλο που η μέθοδος με βάση το C1
έτεινε να επιτυγχάνει την υψηλότερη καταληπτότητα (στις περισσότερες περιπτώσεις εκτός από

την περίπτωση των 0, 25), παρέμεινε δύσκολο να προσδιοριστεί οριστικά ποια μέθοδος ήταν α-
νώτερη ως προς την καταληπτότητα των δειγμάτων και την προτίμησης των χρηστών. Επίσης,

παρά τις αρχικές μας προσδοκίες για καλύτερες επιδόσεις στα αποτελέσματα της ομάδας με



προβλήματα όρασης σε σύγκριση με την ομάδα των ατόμων με υγιή όραση, τέτοιες διαφορο-

ποιήσεις δεν υπήρξαν, κυρίως λόγω του περιορισμένου αριθμού συμμετεχόντων με προβλήματα

όρασης που ήταν πρόθυμοι να συμμετάσχουν στις δοκιμές μας. Κατά συνέπεια, όλες αυτές οι

προκλήσεις οδήγησαν την πλειονότητα των παρατηρούμενων αποτελεσμάτων να μην επιτύχουν

στατιστική σημαντικότητα, παρόλο που περιστασιακά ήταν εμφανές ένα διακριτό μοτίβο μεταξύ

των μεθόδων.

Σαν μελλοντική εργασία, μπορεί να συμπεριληφθεί περαιτέρω ρύθμιση των παραμέτρων του

αλγορίθμου ανίχνευσης στασιμότητας. Για παράδειγμα, μπορούν να χρησιμοποιηθούν διαφορε-

τικά μήκη πλαισίων ανάλυσης και άλματος, καθώς και συγχρονική ανάλυση του τονικού ύψους

σε στάσιμα μέρη του λόγου. Επιπλέον, η βασική μέθοδος που χρησιμοποιείται για τη συμπίεση

χρονικής κλίμακας μπορεί να αντικατασταθεί από άλλα πιο σύνθετα μοντέλα για τη συμπίεση

χρονικής κλίμακας (όπως το μοντέλο Harmonic+Noise). Τέλος, περαιτέρω πειράματα - συμπε-
ριλαμβανομένου ενός μεγαλύτερου δείγματος ατόμων με προβλήματα όρασης - θα μπορούσαν

να ενισχύσουν τα στατιστικά συμπεράσματα σχετικά με την απόδοση κάθε μεθόδου.
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Chapter 1

Introduction

1.1 Speech Processing

The primary objective of speech is to simplify communication, which involves sharing
messages. According to Shannon’s information theory [5], a message, represented as a
sequence of discrete symbols, can be quantified in terms of its information content in bits.
The rate at which information is transmitted is measured in bits per second (bps). In the
domain of speech production, as well as in many human-designed electronic communication
systems, the information to be communicated is encoded in the form of a continuously
changing (analog) waveform. This waveform can be transmitted, recorded, modified, and
ultimately decoded by a human listener.

In the case of speech, the fundamental analog representation of the message is an
acoustic waveform, referred to as the speech signal. Speech signals can be transformed into
an electrical waveform using a microphone. They can then be further processed through a
combination of analog and digital signal processing techniques. Subsequently, the processed
signal can be converted back into an acoustic form using a loudspeaker, a telephone handset,
or headphones, as desired.

1.2 The Speech Chain

Figure 1.1 shows the comprehensive sequence of generating and comprehending speech,
starting with the formation of a message within the speaker’s brain, then the creation of
the speech signal, and concluding with the interpretation of the message by a listener. In
their introduction to the study of speech, Denes and Pinson fittingly coined this progression
as the ”speech chain” [6]. The procedure initiates in the upper left corner with a message
somehow represented in the speaker’s brain. Throughout the process of speech production
(as indicated in the upper path in Figure 1.1), the message information can be conceived
as undergoing various representations.

The complete speech chain contains both a speech production/generation model, as
discussed earlier, and a speech perception/recognition model, as depicted in the lower part
of Figure 1.1. The speech perception model illustrates a series of stages from capturing
speech at the ear to comprehending the message encoded in the speech signal. The initial
step involves effectively converting the acoustic waveform into a spectral representation.
This transformation occurs within the inner ear, primarily through the basilar membrane,
which functions as a non-uniform spectrum analyzer. It spatially separates the spectral
components of the incoming speech signal and, in the process, analyzes them by means
of a non-uniform filter bank. Subsequently, the speech perception process entails a neural
transduction of these spectral features into a set of sound features (often referred to as

1
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Figure 1.1: The Speech Chain (from [2]).

distinctive features in linguistics) that can be decoded and processed by the brain. The
following step involves converting these sound features into the set of phonemes, words,
and sentences associated with the incoming message through a language translation process
within the human brain. Finally, the last phase in the speech perception model involves the
conversion of the phonemes, words, and sentences of the message into an understanding of
the underlying message’s meaning, enabling the listener to respond appropriately or take
suitable action. Our fundamental comprehension of the processes within most of the speech
perception modules in Figure 1.1 remains rather basic. However, it is generally accepted
that some physical correlate of each step in the speech perception model occurs within the
human brain. Hence, the entire model serves as a valuable framework for contemplating
the processes involved.

In most digital speech processing applications, the initial step involves converting the
acoustic waveform into a sequence of numerical values. Modern A-to-D converters typically
operate by capturing data at a very high rate, applying a digital low-pass filter with a cutoff
set to preserve a predefined bandwidth, and then reducing the sampling rate to the desired
level, which can be as low as twice the cutoff frequency of the sharp-cutoff digital filter.
This discrete-time representation serves as the foundation for most applications. From this
point, various other representations are derived through digital processing. For the most
part, these alternative representations are constructed by incorporating knowledge about
the inner workings of the speech chain, as depicted in Figure 1.1. As we will observe,
it’s feasible to include elements from both the speech production and speech perception
processes into the digital representation and processing. One can assert that digital speech
processing revolves around a set of techniques aimed at reducing the data rate of the speech
representation, either along the upper or lower path in Figure 1.1.
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1.3 Speech Perception

One of the most important aspects of the Speech Chain is speech perception (SP) [7]. SP
is a multifaceted process that can be understood from the perspective of speech signal
processing, highlighting the remarkable capabilities of the human auditory system. When
we speak, we produce complex acoustic signals that are transmitted through the air as
pressure waves. These sound waves are received by the ears, where the external ear captures
and funnels them into the ear canal. Within the ear, the middle ear amplifies and transmits
these acoustic signals to the cochlea, a spiral-shaped, fluid-filled structure in the inner
ear. The cochlea is a critical element in the signal processing chain. It transforms the
analog acoustic signal into a digital neural code through hair cells that respond to different
frequencies of sound. This transformation is essential for subsequent neural processing [8].

Once the auditory signals are converted into electrical impulses, they travel along the
auditory nerve to the brain. This transmission stage corresponds to the initial analog-
to-digital conversion in signal processing. In the brain, the signals experience further
analysis, starting with spectral and temporal decomposition. Spectral analysis dissects the
signal into its constituent frequencies, while temporal analysis tracks how these frequencies
change over time. This process is critical for distinguishing between different speech sounds
(phonemes) since different phonemes are characterized by specific frequency patterns and
temporal sequences. The brain’s ability to recognize and discriminate these patterns is
vital for speech perception [9].

Another crucial aspect of speech perception is the recognition of phonemes and words.
The brain categorizes the speech sounds it processes into familiar linguistic units, facili-
tating the comprehension of spoken language. This categorization requires pattern recog-
nition, a fundamental concept in signal processing. In addition to identifying individual
phonemes, the brain integrates information from preceding and following phonemes, en-
abling us to understand the coarticulatory cues that occur in connected speech. Speech
segmentation, the process of identifying word boundaries in continuous speech, is another
signal-processing task that the brain accomplishes efficiently. Moreover, in challenging lis-
tening conditions with background noise or distortion, the brain exhibits phonemic restora-
tion capabilities, filling in missing speech sounds based on contextual information, which
demonstrates the brain’s role as a sophisticated signal processor that can compensate for
degraded input.

1.4 Speech Intelligibility and Intelligibility Enhancement

Speech intelligibility is a critical aspect of human communication and language process-
ing [10]. It refers to the degree to which spoken language can be accurately and readily
understood by a listener. The assessment of speech intelligibility involves factors such as
the clarity of articulation, pronunciation, and the distinctiveness of phonemes, words, and
sentences. Various factors influence speech intelligibility, including the acoustic environ-
ment, the speaker’s articulatory precision, and the listener’s familiarity with the language
and the specific accent or dialect [11]. Researchers in the field of speech and hearing
science employ various methods to quantify and enhance speech intelligibility, from sub-
jective perceptual evaluations to objective acoustic measurements [12, 13]. Understanding
and improving speech intelligibility is important for numerous applications, including the
design of effective communication systems [14], hearing aid technology [15, 16], speech
therapy [17], and the development of robust automatic speech recognition systems [18].
Moreover, it plays a crucial role in ensuring effective interpersonal communication and in-
formation dissemination, particularly in challenging acoustic environments [19, 20] or for
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individuals with hearing impairments [21].

1.5 Time-Scale Compression of Speech

Speeding up speech recordings, or time-scale compression [22, 23], offers a range of essential
applications across diverse fields. In the domain of digital content creation, this technique
is often used to create engaging and informative video or audio content [24]. Content
creators on platforms like YouTube and social media frequently employ time compression
to change lengthy explanations, tutorials, or presentations into something more digestible
and dynamic. This not only helps maintain viewer engagement but also caters to audiences
with shorter attention spans in the digital age.

In the field of transcription services, time-scale compression is a valuable tool for pro-
fessionals who need to convert spoken content into text efficiently. This approach enables
transcriptionists to work more quickly, reducing the time and costs associated with tran-
scribing lengthy interviews, focus groups, or recorded meetings. Moreover, for researchers
conducting qualitative analysis, time-scale-compressed transcriptions can expedite data
processing and allow for more rapid insights and conclusions.

Education is another domain where time-scale compression has found crucial appli-
cations [25]. Instructors often use time-compressed recordings of lectures, webinars, or
training sessions to create concise study materials for students. These materials can be
instrumental in helping learners review key concepts, save time, and prepare for exams
more efficiently. Moreover, in online learning platforms, educators can offer accelerated
versions of recorded classes, making it easier for students to navigate content at their own
pace and complete courses more rapidly.

In the field of assistive technology, time-scale compression serves as a valuable tool for
individuals with various cognitive disabilities, such as auditory processing disorders or slow
auditory processing [26]. By changing the speed of audio content, individuals with these
conditions can access information more efficiently, reduce the cognitive load associated
with slower listening, and enhance comprehension. This application of time compression
fosters accessibility and inclusion by ensuring that individuals with cognitive disabilities
have equal access to spoken information and educational resources.

Moreover, time compression plays a role in audiobook production, where narrators or
publishers may offer audiobooks in both regular and time-scale-compressed versions [27].
This allows readers to choose the listening speed that suits their preferences and time
constraints, making audiobooks more versatile and accommodating for a wide range of
listeners. Overall, the applications of speeding up speech recordings are diverse, address-
ing the needs of content creators, transcriptionists, educators, individuals with cognitive
disabilities, and audiobook enthusiasts, enhancing the efficiency and accessibility of spoken
content in various contexts [28].

Lastly, visually impaired individuals, in contrast to their sighted counterparts, exhibit
the capacity to listen to speech recordings at accelerated rates depending on their knowledge
of the subject, auditory processing skills, and personal preferences [29]. The heightened
reliance on auditory cues for communication and information acquisition among the visu-
ally impaired population often results in an enhanced ability to process speech at increased
speeds. Assistive technologies and screen reading software further give control over the
playback speed of digital content, enabling efficient consumption of spoken material, which
is particularly beneficial for visually impaired students and professionals.
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1.6 Thesis Motivation

The core aim of this thesis was to identify methods that generate samples at acceler-
ated speeds with a notably high level of intelligibility. To achieve this, three distinct
time-compression techniques were implemented and rigorously evaluated. The first one
was uniform WSOLA [30] while the other two were two non-uniform extensions of it.
These methods were tested within two distinct groups of people, individuals with visual
impairments and those with normal vision, through intelligibility and preference tests in
high-speed samples. The primary objective was to identify which algorithm performed
better in these metrics for most of the tested speedups. For individuals with visual im-
pairments, whose primary source of information acquisition is auditory, ensuring that the
recordings they engage with on a daily basis are both intelligible and comprehensible holds
great significance. Simultaneously, for individuals with normal vision, the ability to utilize
high-speed, intelligible speech when listening to audiobooks or podcasts can be a valuable
time-saving feature. Finally, it is crucial to recognize the limitations tied to the percep-
tual boundaries of auditory processing, which apply to both visually impaired and sighted
individuals. Excessively speeding up speech can reduce comprehensibility, presenting a
challenge. Hence, it’s essential to strike a balance between enhancing speed for efficiency
and maintaining content intelligibility.

1.7 Thesis Organization

This thesis is organized as follows: Chapter 2 presents the relevant literature to this work.
Chapter 3 describes the dataset used in our experiments. Chapter 4 presents the methodol-
ogy of our work. Finally, Chapters 5 and 6 discuss our results and propose future research
directions, respectively.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Related Work

In this Chapter we will discuss methods for time-scale modification of speech signals,
mostly based on the time-domain. Also, the following methods do not rely on speech
modeling, that is, there is no underlying model that is fitted on the speech waveform in
order to manipulate its parameters to achieve time-scaling. On the contrary, time-scaling
is performed using the raw speech sample data.

2.1 Time-Scale Modification

2.1.1 Definition

Time-scale modification (TSM) is the process of changing the playback speed of an audio
signal, making it faster or slower, without altering its pitch.

2.1.2 Challenges

TSM encounters significant challenges with speech signals due to their complexity. Main-
taining aspects like pitch, timbre, tone, and crispness is essential. To preserve these, various
TSM techniques are used. Conventional methods such as WSOLA or PV-TSM excel at
handling harmonic sounds but can pose challenges when applied to percussive sounds.
However, by combining different TSM methods, we can reduce created artifacts.

In a study [31], the audio was initially divided into harmonic and percussive com-
ponents. Subsequently, an appropriate TSM method was applied to each component to
preserve its distinct characteristics. The final output was generated by merging these two
processed signals.

2.1.3 Algorithms

Numerous algorithms are used for this task, with some being standalone solutions, while
others build upon or extend existing methods. Methods will be presented in the next
sections.

2.1.3.1 Generalized processing pipeline of TSM procedures

The most straightforward algorithm to achieve this goal is illustrated in Figure 2.1. The
main idea involves breaking down the input signal into short segments (frames) with a fixed
length between 50 and 100 milliseconds. Each frame contains the local pitch characteristics
of the signal. These frames are then temporally adjusted to achieve the desired time-scale
modification while preserving the original pitch information.

7
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Figure 2.1: Time-scale modification processing pipeline procedure (from [3]).

The first step of this method is to split the input signal into fixed-length (equal to N)
short frames xm,m ∈ Z that are spaced by an analysis hop size Ha. In the second step,
these frames are relocated temporally based on a specified synthesis hop size Hs. The time
scale modification of the signal is performed in this step with the relocation of the frames.
The stretching factor α is defined as the fraction of the synthesis hop size Hs with the
analysis hop size Ha.

α =
Hs

Ha
(2.1)

So:

• Hs > Ha and α > 1 means signal stretching

• Hs < Ha and 0 ≤ α < 1 means signal shortening

The synthesis hop size Hs can have a fixed value like N/2 or N/4 because it is fine if
there is an overlap on the relocated frames. In each case, the analysis hop size Ha can be
calculated as:

Ha = Hs/α. (2.2)

As the final step, we need to define the relation between analysis frames xm and syn-
thesis frames ym. Analysis frames could be used directly as synthesis frames. However,
directly overlaying the overlapping relocated frames can result in unwanted artifacts like
phase discontinuities at frame boundaries and amplitude differences. In the next two para-
graphs, we will dive more into the problems that are visualized in Figure 2.2.

Problems At first, during the reconstruction of the output signal, the resulting waveform
often has discontinuities on the boundaries of the (unmodified) synthesis frames. These
discontinuities can be perceived as clicking sounds.

Secondly, the synthesis hop size (Hs) is typically selected to ensure overlap in the
synthesis frames. When overlaying the (unmodified) synthesis frames, each with the same
amplitude as the input signal, this often results in an undesirable increase in the output
signal’s amplitude.

In order to solve these issues, the primary question is how to process the analysis frames
(xm) to create the synthesis frames (ym). There are multiple approaches to answer this
question, resulting in conceptually different TSM procedures.

2.1.3.2 Overlap-Add method (OLA)

One such approach is Overlap-and-Add (OLA). OLA is an iterative method that tries to
ensure a smooth transition between frames and to mitigate unintended amplitude fluctua-
tions. The concept of this method involves the application of a window function, usually a



2.1. TIME-SCALE MODIFICATION 9

Figure 2.2: Problems that occur when we select synthesis frames ym to be the same as
analysis frames xm (with zero processing). You can see discontinuities (oval) and amplitude
fluctuations (lines) - extracted from [3].

Hann window, to the analysis frames before reconstructing the output signal y. This win-
dow function tries to eliminate abrupt waveform discontinuities at the boundaries of the
analysis frames. Hann window is shown in also in figures 2.3 and 4.1. The Hann window
has the nice property that for Hs = N

2 the sum of the overlapping windows is equal to 1
(one). ∑

n∈Z
w(r − n

N

2
) = 1 (2.3)

for all r ∈ Z.

Figure 2.3: Overlap-Add method process: (a) selection of analysis frame xm, (b) creations
of synthesis frame ym, (c) selection of analysis frame xm+1 (d) Overlap-add ym+1 to ym -
(from [3]).
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In each iteration (m), the analysis frame xm is selected at first (figure 2.3a). Subse-
quently, it is multiplied with a Hann window, generating the initial synthesis frame, which
is then added to the output signal using the Overlap-Add method (figure 2.3b). The next
analysis frame is chosen at a distance equal to Ha from the previous frame (figure 2.3c), it
is again multiplied with a Hann window (same as before) and is added to the output signal
using the Overlap-Add method with a distance equal to Hs from the previous synthesis
frame (figure 2.3d).

In order to create the synthesis frame ym from the analysis frame xm, we use the
following equation:

ym(r) =
w(r)xm(r)∑

n∈Zw(r − nHs)
(2.4)

In Equation 2.4, the numerator represents the windowing of the analysis frame xm,
achieved by pointwise multiplication with the designated window function w. The denom-
inator helps to normalize the frame by dividing it by the sum of the overlapping window
functions, preventing amplitude fluctuations in the output signal. It’s worth noting that
when the selection for window w is a Hann window and Hs = N/2, the denominator always
sums to one (1) according to Equation 2.3. This property can be easily seen in figure 2.3b,
where the synthesis frame’s amplitude is added directly to the output signal y without
scaling. Moving on to the next analysis frame xm+1 (as shown in Figure 2.3c, this frame
experiences windowing, overlaps with the prior synthesis frame, and is integrated into the
output signal (Figure 2.3d). Figure 2.3 shows a scenario where the original signal is com-
pressed (Ha > Hs). The process remains the same when the signal is stretched (Ha < Hs)
but in this case, the analysis frames overlap surface is larger than the synthesis frames.
Finally, the output signal y is reconstructed as follows:

y(r) =
∑
m∈Z

ym(r −mHs) (2.5)

Problems One of OLA’s problems is that it lacks signal sensitivity: it involves copying
windowed analysis frames from fixed positions in the input signal to fixed positions in
the output signal, with the input signal having no impact on the process. When OLA
is applied to harmonic signals, the resulting signals are marked by a noticeable warbling
effect, defined by periodic frequency modulation [3].

That is because OLA is incapable of preserving the local periodic structures in pe-
riodic signals. You can see this problem in Figure 2.4 in which a periodic input signal
’x’ is stretched by a factor of α = 1.8 using OLA. During the relocation of the analysis
frames, the periodic structures in x may no longer align within the superimposed synthesis
frames, resulting in distorted periodic patterns in the output signal y. These distortions
are commonly referred to as phase jump artifacts.

Advantages OLA is a time-domain TSM procedure. In general, time-domain TSM
procedures are not only efficient but also preserve the timbre of the input signal to a high
degree. Also, it provides excellent results for purely percussive signals. This is
because audio signals containing percussive elements rarely have local periodic structures.
As a result, the phase jump artifacts introduced by OLA in periodic signals, are typically
unnoticeable in the percussive signals. However, it’s crucial to use a very short frame
length ’N’ (approximately 10 milliseconds) to minimize the impact of transient doubling,
an artifact that can be seen in figure 2.6 and is addressed in the next section.
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Figure 2.4: Phase jump artifacts: one of the Overlap-Add problems (from [3]).

2.1.3.3 Waveform Similarity Overlap-Add (WSOLA)

One approach in the time domain to reduce phase jump artifacts, as induced by OLA, is
introducing some flexibility into the TSM process by allowing some degree of tolerance in
the positions of analysis or synthesis frames. The main idea is to adjust consecutive syn-
thesis frames in a manner that aligns the periodic structures within the frame waveforms in
overlapping regions. This ensures that periodic patterns in the input signal are preserved in
the output. In the literature, there are many variations of this concept, including synchro-
nized OLA (SOLA) [32, 33], time-domain pitch-synchronized OLA (TD-PSOLA) [34], and
autocorrelation-based methodologies [35]. For now, we will focus on WSOLA, a waveform
similarity-based OLA method [30].

The core idea of WSOLA is to permit minor shifts (within a range of ±∆max ∈ Z
samples) in the positions of the analysis frames. Figure 2.5 illustrates the underlying
principle of WSOLA. Much like OLA, WSOLA operates iteratively.

Let’ s see more details about WSOLA. Assume that we are in the mth iteration, there
are four steps in each iteration. In the first step, suppose the position of the analysis frame
xm is shifted by ∆m ∈ [−∆max : ∆max] samples. This frame is referred to as the adjusted
analysis frame x

′
m (as depicted in Figure 2.5a) is windowed with a Hann window and added

to the output signal as in OLA. x
′
m is calculated as follows:

x
′
m(r) =

{
x(r +mHa +∆m), if r ∈ [−N/2 : N/2− 1]

0, otherwise
(2.6)

In the second-third step, we need to adjust the position of the next analysis frame
xm+1. This task can be viewed as a constrained optimization problem. Our objective is to
identify the best shift index ∆m+1 ∈ [−∆max : ∆max] that aligns the periodic structures
in the adjusted analysis frame xm+1 optimally with the structures of the previously added
synthesis frame ym in the overlapping region when both frames are superimposed at the
synthesis hop size Hs. In an unconstrained scenario, the optimal choice for the adjusted
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Figure 2.5: WSOLA method process: (a) adjusted analysis frame x
′
m (prime symbol denotes

adjustment), windowed and added to the output signal, (b,c) selection of a frame from the
extended frame region x+m+1 (solid blue box) that closely matches the natural progression x̃m
(dashed blue box) of the adjusted analysis frame x

′
m, (d) adjusted analysis frame x

′
m+1 for

the subsequent iteration is windowed and incorporated into the output signal y - extracted
from [3].

analysis frame xm+1 would be to match the natural progression x̃m of the adjusted analysis
frame xm (dashed blue box in Figure 2.5b):

x̃m(r) =

{
x(r +mHa +∆m +Hs), if r ∈ [−N/2 : N/2− 1]

0, otherwise
(2.7)

This is the case because the adjusted analysis frame x
′
m and the synthesis frame ym are

nearly identical (except for the windowing). Consequently, the structures of the natural
progression x̃m align perfectly with the structures of the synthesis frame ym when these two
frames are superimposed at the synthesis hop size Hs (as shown in Figure 2.5b). However,
the constraint ∆m+1 ∈ [−∆max : ∆max] necessitates that the adjusted frame x

′
m+1 must

fall within the bounds of the extended frame region x+m+1 (solid blue box in Figure 2.5b):

x+m+1(r) =

{
x(r + (m+ 1)Ha), if r ∈ [−N/2−∆max : N/2− 1 + ∆max]

0, otherwise
(2.8)

Hence, the concept is to select the adjusted frame x
′
m+1 from ′x+m+ 1′ as the frame

whose waveform most closely resembles x̃m.’ To accomplish this, we need to establish a
metric that assesses the similarity between two frames. One potential option for this metric
is cross-correlation of signal s1 with the signal s2 that is shifted by ∆ ∈ Z samples:

crosscorr(s1, s2,∆) =
∑
r∈Z

s1(r)s2(r +∆) (2.9)
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We can subsequently calculate the optimal shift index ∆m+1 that maximizes the cross-
correlation between x̃m and x+m+1 by:

∆m+1 = arg max
∆∈[−∆max:∆max]

(crosscorr(x̃m, x+m+1,∆)) (2.10)

The shift index ∆m+1 determines the location of the adjusted analysis frame x
′
m+1

within the extended frame region x+m+1 (as shown in Figure 2.5c). Lastly, we calculate the
synthesis frame ym+1, following a process similar to OLA, by

ym+1(r) =
w(r)x(r + (m+ 1)Ha +∆m+1)∑

n∈Zw(r − nHs)
(2.11)

and to reconstruct output signal y, we use the equation:

y(r) =
∑
m∈Z

ym(r −mHs) (2.12)

same as OLA's reconstruction equation.

Problems WSOLA-like methods often suffer from a significant issue known as transient
doubling or stuttering, as seen in Figure 2.6. In this artifact, a single transient in the input
signal falls within the overlapping region of two consecutive adjusted analysis frames xm
and xm+1. As these frames are shifted and added to the output signal, the transient gets
duplicated and is heard twice in rapid succession. A related artifact is transient skipping,
where transients can be lost during the modification process because they don’t align with
any of the analysis frames. Transient doubling is more common when stretching a signal
(α > 1), while transient skipping typically occurs during signal compression (α < 1).
These artifacts are especially noticeable when working with signals that contain percussive
elements, such as instruments with strong onsets like drums or piano.

Figure 2.6: Transient doubling problem in OLA methods (from [3])

Moreover, WSOLA faces challenges when modifying polyphonic input signals, like or-
chestral music recordings. In such cases, the output often retains a noticeable warbling
effect. This is because WSOLA, by design, can only preserve the most prominent periodic
pattern in the input signal’s waveform. Consequently, when working with recordings that
have multiple harmonic sound sources, only the sound of the dominant source is preserved
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in the output, while other sources can still introduce phase jump artifacts. While WSOLA
is well-suited for modifying monophonic input signals, it may not perform as effectively
with more complex audio.

To ensure that WSOLA can effectively adapt to the most dominant periodic pattern
in the input signal, it’s essential for one frame to capture at least a full period of that
pattern. Additionally, the tolerance parameter ∆max needs to be sufficiently large to allow
for appropriate adjustment, often set to at least half a period’s length. Considering that
the lowest frequency audible to humans is approximately 20 Hz, a common choice is to use
a frame length N corresponding to 50 ms and a tolerance parameter of 25 ms.

To mitigate transient doubling and skipping artifacts in WSOLA, one approach is to
implement a transient preservation scheme. In another method [36], the concept involves
initially identifying the temporal positions of transients in the input signal using a transient
detector. During the WSOLA process, the analysis hop size is temporarily set to be equal to
the synthesis hop size whenever an analysis frame falls within the vicinity of an identified
transient. In this area, which encompasses the transient, the frame is copied without
modification to the output signal, preventing WSOLA from duplicating or skipping it.
Any deviation in the global stretching factor is dynamically compensated for in the regions
between transients.

2.1.3.4 Other Models

Sinusoidal models While OLA-based methods are fast and perform well, there are other
ways to approach the time-scaling problem. Paremetric speech modeling is one o them. A
popular family of models able to time-scale speech waveforms is the so-called Sinusoidal
Models (SMs). These models are particularly useful for capturing the periodic and har-
monic nature of speech, making them valuable for various applications in speech and audio
processing, such as speech synthesis, coding, and analysis. In general, SMs usually de-
compose speech signals into components. This decomposition allows for different handling
of each component during time scaling. Several names are given to these components in
the literature: periodic and aperiodic, stationary and non-stationary, harmonic and noise,
harmonic and stochastic, among others. In sinusoidal modeling, the speech signal x(t) can
be written as

x(t) =
N∑

k=−N

ak(t)e
jϕk(t) (2.13)

where N is the number of sinusoids present in the signal, ak(t) denote the instantaneous
amplitudes, and ϕk(t) denote the instantaneous phases. Index k denotes the sinusoid or
harmonic number. Estimating ak(t) and ϕk(t) is the goal of sinusoidal analysis and can be
achieved in many ways, such as frequency domain transformations [37], Least Squares esti-
mation [38, 39, 40], or subspace methods [41, 42, 43]. Instantaneous parameter estimation
is followed by parameter interpolation in time or frequency domain to obtain time-scaled
instantaneous versions of ak(t) and ϕk(t). Successful attempts on time scaling modification
of these models have been published in literature [44, 45, 46, 47, 48].

Phase Vocoder Another method with very good performance is Phase Vocoder. WSOLA
is proficient at preserving the primary periodicity in the input signal. However, to further
improve the quality of time-scale modified signals, it’s important to retain the periodic
characteristics of all signal components. This is where frequency-domain TSM procedures
come into play. They interpret each analysis frame as a combination of weighted sinu-
soidal components with known frequency and phase. By manipulating these components
individually, phase jump artifacts across all frequencies in the reconstructed signal can be
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mitigated. The short-time Fourier transform is a crucial tool for frequency analysis of the
input signal. However, the accuracy of frequency estimates may vary depending on the cho-
sen discretization parameters. To address this, the phase vocoder technique [49, 50], which
is commonly used for both frequency estimation and time-scale modification, is employed.
In time-scale modification procedures based on the phase vocoder (PV-TSM), these refined
frequency estimates are used to update the phases of sinusoidal components in the input
signal. This process is known as phase propagation.

STRAIGHT More advanced vocoders like Speech Transformation and Representation
using Adaptive Interpolation of weiGHTed spectra (STRAIGHT) [51, 52] are able to per-
form modifications and manipulations of speech with high fidelity. STRAIGHT models the
periodic part of speech as an AM-FM set of sinusoids:

x(t) =
∑
k∈N

ak(t) sin

(∫ t

t0

k(ω(τ) + ωk(τ))dτ + ϕk

)
(2.14)

STRAIGHT employs pitch-adaptive spectral analysis in conjunction with a technique for
reconstructing the signal in the time-frequency domain. It also utilizes an approach to
design the excitation source based on phase manipulation. This combination enables the
preservation of the bilinear surface in the time-frequency domain. As a result, STRAIGHT
can facilitate extensive adjustments, such as pitch, vocal tract length, and speaking rate,
by over 600%, without introducing additional degradation due to these parameter modifi-
cations. However, the complexity of these models is relatively high.

2.2 Conclusions

From all of these methods that were presented, we selected WSOLA as the base method
because it is simple and fast, as it is a time domain method, and with very good quality
results despite the transient skipping or transient doubling effect that can be reduced. We
are trying to solve its intelligibility issues with the protection of non-stationary parts of
the signal that can be lost (in signal shrinking) or stretched badly (in signal stretching),
Finally, we compared and tested these methods on the dataset [1] that is also presented in
chapter. 3. The results of these tests as well as discussion can be found in chapter 5

Among the various methods discussed, we chose WSOLA as the foundational technique
due to its simplicity, speed (as it operates in the time domain), and the commendable
quality of results it offers, notwithstanding potential transient skipping or doubling effects,
which can be mitigated. To address its intelligibility challenges, we focused on protecting
the non-stationary segments of the signal from potential loss during shrinking or excessive
stretching. Next, we proceeded to evaluate and compare these methods using the dataset [1]
introduced in Chapter 3. For a comprehensive examination of the results and an in-depth
discussion, please refer to Chapter 5.
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Chapter 3

Dataset

3.1 Description

The dataset [1] is structured following the Harvard/IEEE sentence material format in
American English as outlined in [53]. This material contains 72 phonetically balanced
lists each containing ten meaningful sentences (e.g., ”Rice is often served in round bowls”)
but in Greek. In our listening tests, we only used two lists for the intelligibility test (20
samples) and two lists for the preference test (20 different samples). Notably, each of these
sentences contains five keywords, each consisting of one or two syllables.

In the subsequent section, we will dive into the initial stages of developing the GrHar-
vard Corpus, a sentence corpus designed in the Harvard/IEEE tradition, tailored for Mod-
ern Greek.

3.2 Design

3.2.1 Criteria

The sentences were crafted based on specific objective criteria:

1. Each sentence consists of precisely five keywords,

2. The sentence length ranges from five to nine words,

3. All words within the sentences have a maximum of three syllables,

4. Sentences are exclusively either statements or commands.

3.2.2 Keywords

In most cases, keywords are content words, but depending on sentence structure and mean-
ing, function words can also serve as keywords. Notable function words marked as keywords
include δεν/δε (not), μην/μη (do not), σαν/σα (like/as), πιο (more), πια (any longer), προς
(to/towards), ενώ (although), μπρος (ahead), τόσος-η-ο (such/so much), όσος-η-ο (as much
as), αλλά (but), αντί (instead). Proverbs and most of the proper names were excluded.

Considerable effort was invested to minimize the repetition of keywords, including their
various conjugated forms, throughout the corpus. Additionally, few foreign loanwords, such
as μπουφάν (jacket), κολιέ (necklace), τρακτέρ (tractor), and others, were incorporated as
keywords.

17
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3.2.3 Translation challenge and change

Translating the original Harvard/IEEE sentences into Greek proved to be a formidable
task, mainly due to the syntax and grammar differences between English and Greek. A
significant number of English words, consisting of just one or two syllables, corresponded
to Greek words with more than three syllables, making them unsuitable candidates for
translation. Moreover, the original sentences were written decades ago, during a wartime
context, many of which would appear illogical or out of context today.

For instance, the sentence from the original Harvard Corpus: ”These days a chicken leg
is a rare dish.” has been translated in the Greek Harvard Corpus as ¨Ο κόσμος τρώει τακτικά
ψητό κρέας’ (People have roast meat regularly). Thus, while the material drew inspiration
from the original American English Harvard/IEEE sentences, most of the sentences have
been modified or have low to no resemblance to the original content.

3.2.4 Greek words selection

The majority of Greek words were manually selected from Greeklex 2, a lexical database
with comprehensive information on part-of-speech, syllabication, phonological attributes,
and stress patterns [54]. The selection process was guided by the principle that the com-
bination of precisely five words should yield a coherent and non-repetitive sentence, one
that easily can be a part of an everyday conversation.

3.2.5 Phonetic Transcriptions

The sentences went through phonetic transcription using the online tool provided by IPLR
[55], a comprehensive online resource for Greek word-level and sublexical information,
followed by a manual review.

To simplify cases involving nasals followed by homorganic stops, a consistent approach
was applied, in line with [55] and [54]. For instance, the word ¨λάμπει’ was transcribed as
[”labi], rather than [”lambi].

The transcriptions for the GrHarvard sentences follow the SAMPA format, as demon-
strated in [56]. For example, the sentence ¨Το σχέδιο δράσης είναι ασαφές προς το παρόν’
is transcribed as [to.”sCeDio.”Drasis.”ine.asa”fes.pros.to.pa”ron] (The plan of action is
unclear at the moment).

The GrHarvard sentence material, presented in Greek orthography along with its
SAMPA transcriptions, is accessible to the research community. Additionally, it includes es-
sential meta-data such as the word count, syllable count, and phoneme count per sentence,
as well as information about keywords and their syllable counts. For more information
check [1].

3.3 Statistical Infomation

3.3.1 Sentence lengths

As previously indicated, the GrHarvard Corpus contains 720 sentences. And given that
each sentence contains five keywords, the number of keywords is 3, 600 keywords. The
sentence length ranges from a minimum of five to a maximum of nine words. Sentence
lengths can be described as a distribution centered around seven, eight, or nine words,
with a smaller portion consisting of sentences with five or six words, as illustrated in
Table 3.1 taken from [1].
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Table

Number of
words per
sentence

Percentage (and abso-
lute number) of sen-
tences in corpus

Sentence example (%)

5 1.5% (11)
Ψύχοντας νερό φτιάχνεις καθαρό

πάγο. (By freezing water one makes
clear ice.)

6 9.6% (69)
Βρέθηκε νέο φάρμακο κατά του δια-

βήτη. (A new drug against diabetes
was found.)

7 28.5% (205)
Εννιά εργάτες σκάβουν τον τόπο για

αρχαία. (Nine workers are digging
the site for ancient artifacts.)

8 38.9% (280)
Χώμα και σκόνη έτσουξαν τα μάτια

του κοριτσιού. (Soil and dust stung
the girl’s eyes.)

9 21.5% (155)
Ο τολμηρός λοχίας σύρθηκε στο πε-

δίο με τις νάρκες. (The bold sergeant
dragged himself on the minefield.)

Table 3.1: Number of words per sentence in the corpus (from [1]).
.

3.3.2 Syllables frequency distribution

Concerning the syllable count within keywords, it’s worth noting that the majority of
keywords consist of either two syllables (42.2%) or three syllables (54.2%). The percentage
of one-syllable keywords is very small (3.58%), mainly because there are relatively few
monosyllabic content words in Greek. In sentences, the total number of syllables spans
a range of 10 to 22 syllables. Most sentences fall within the 15 to 18 syllable range, as
illustrated in Figure 3.1.

3.3.3 Phonemes frequency distribution

The GrHarvard Corpus holds a total count of 20, 230 phonemes and allophones scattered
across its 3, 600 keywords. Detailed information on the frequency of vowel and consonant
phonemes and allophones can be found in Tables 3.2 and 3.3, respectively.

The collective number of phonemes found within keywords per sentence varies from 16
to 38. However, in the majority of sentences, keywords contain between 24 to 34 phonemes,
as depicted in Figure 3.2.

3.3.4 Comparison with other corpora

To offer insights into the phoneme frequency distribution within the GrHarvard Corpus,
they performed a comparative analysis with two other Modern Greek corpora.

The first, known as the ”C Corpus,” contains an extensive collection of 34 million tokens
derived from journalistic, legal, and literary texts in the Hellenic National Corpus (written
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Figure 3.1: Histogram of the number of sentences given the number of syllables in the
corpus (from [1]).

Table

APA/SAMPA
Vowels

Allophones
in APA (and
SAMPA) 1 (%)

Allophones
in APA (and
SAMPA) 2 (%)

Total (%)

i 8.14 4.74 12.88

e 4.84 3.30 8.14

a 7.92 4.69 12.61

o 5.22 3.26 8.48

u 1.42 1.08 2.50

j 0.44

Table 3.2: Vowels Frequency Distribution (from [1]).

corpus), carefully curated and cross-verified with an online Greek dictionary [54]. While
there are more extensive corpora available, they selected the ”C Corpus” for comparison
due to its comprehensive verification.

The second corpus (spoken corpus) is a singular corpus that had been analyzed for
phonemic frequency. This corpus includes 102,934 words extracted from 100 television and
radio shows of the Hellenic Broadcasting Corporation [57] (spoken corpus). The frequency
of phonemes in this spoken corpus was analyzed and recorded.

Figure 3.3 provides an illustrative comparison of phoneme frequency distribution be-
tween the GrHarvard Corpus and the two corpora mentioned earlier. In general, the
phoneme frequency distribution within the GrHarvard Corpus aligns well with both the
written and spoken corpora. As expected, some variations exist, primarily in phonemes
that appear in frequently used function words, because they were excluded from their
keyword-based analysis. Consequently, the deletion of definite articles like ό/η/το,΄ indef-
inite articles like ΄ένας/μία/ένα,΄ and the conjunction ΄και΄ (and) contributes to a reduced
representation of /o/, /i/, /e/, /t/, [c], and [n] within the GrHarvard Corpus.
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Table

APA/SAMPA
Consonants

Unstressed (%) Stressed (%) Total (%)

p (p) 4.01

t (t) 4.80

k (k) k (k): 3.75 c (c): 1.25 5.00

b (b) 0.50

d (d) 0.63

g (g) g (g): 0.20 ı̈ (gj): 0.07 0.27

f (f) 1.93

v (v) 1.62

T (T) 1.22

D (D) 2.08

s (s) 9.23

z (z) 0.98

x (x) x (x): 1.15 X (C): 1.12 2.27

⊗ (G) ⊗ (G): 1.17 ⊗ (jj): 0.88 2.05

ts (ts) 0.26

Table 3.3: Consonants Frequency Distribution (from [1]).

Figure 3.2: Histogram of the number of sentences given the number of phonemes in keywords
per sentence (from [1])

.
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Figure 3.3: The graph illustrates how phoneme frequencies in the GrHarvard Corpus com-
pare to those in other corpora. Negative values indicate that a particular phoneme appears
less frequently in the GrHarvard Corpus compared to the corresponding phoneme in the
reference corpus. SAMPA notation is used for phoneme representation (from [1]).

.



Chapter 4

Non-Stationarity Detection
Method

This paper [58] proposes a powerful tool for automatically controlling time-scale factors
in speech signals by analyzing their characteristics and also protecting the input signal's
sensitive parts. This tool consists of two parts, the front-end and the back-end.

4.1 Back-end - Time Scale Modification

Let’s start with the back-end method. To produce fast speech from normal speech, the time-
domain algorithm for time-scale modification of speech that used is called WSOLA [30].
WSOLA was selected because of its advantages in contrast to other signal processing
methods as we explained in the chapter section 2.2. WSOLA takes as input the signal
we want to change its scale and the desired scale factor that we want this signal to have
and as an output gives the final signal. The desired scale factor can be one value (i.e. 0.5)
or a vector of values with the same length as the input signal. This allows us to control
differently every region of the input signal with different scales. The problems were two.
At first, at large scale factors, WSOLA suffered from unnatural artifacts and tonalities and
the amount of these perceived artifacts depended on the time scale factor and the speaker.
On the other hand, at small scale factors, some parts of the signal vanished. So, we used
a front-end method to diminish those issues.

4.2 Front-end - Detection of non-stationarity

4.2.1 Overview

The front-end method's main purpose was to protect signal regions sensitive to scale factor
changes. So, we needed a method that protects them by changing their scale factor to
be closer to 1 (neutral) so, they will not be affected by the audio speed changes. It
was found that the areas of the speech signal that were most affected were those that
could be described as non-stationary. By controlling the time scale factors in these non-
stationary areas, it is possible to reduce the tonalities and disappearance of sounds in the
time-expanded signal. To find these areas, this paper uses three features including Line
Spectrum Frequencies LSFs (C2), the derivative of Root Mean Square RMS values (C1),
and a combination of both features (C3) that measure non-stationarity over the signal.
Only one of these features is needed to change the scale factor across the signal. After the
protection of the scale factor, We pass the signal and the final scale factor vector in the
back-end method to produce the final signal.

23
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4.2.2 Method

To identify non-stationarity in speech signals, we use a frame-by-frame analysis method
that calculates three criteria in each frame (C1, C2, C3) of the signal. As a frame, we used a

Hanning window with size length(Cwin) which was being shifted length(Cwin)
2 each time (50%

window coverage). Hanning is a window that helps you deal with the windows'coverage as
you can see from the figure 4.1 on page 24. After that, we can use one of the three criteria
to finally protect the signal. We will see how in the next paragraphs. First, let's analyze
the criteria.

Figure 4.1: Example of Hann(Hanning) window (from [4])

4.2.3 Criteria

Implementation details Following an exploration of window sizes, we aimed to select
a window size that introduces variability into the three criteria while minimizing noise.
That's why we selected a window size equal to 20 milliseconds and a shift size equal to 10
milliseconds. You can see some plots in figure 4.2 (in page 25) in which we used values
of criterion C2 to compare. Our purpose was for the result to be smooth because we
did not want to create any weird tonalities in the output signal but not close to linear.
The optimization is not yet complete, making it a potential avenue for future research to
investigate how varying sizes may impact the quality of the output audio samples.

4.2.3.1 C1

Description The first criterion C1 is based on the transition rate of the Root Mean
Square (RMS) values En and It is a time-domain criterion. As we can find in [59], RMS
means the root mean square value of a signal. You can calculate it by squaring each value,
calculating their mean, and at the end, taking the square root of the result. They represent
the average ”power” of a signal and they are only related to the signal amplitudes.

A normalized transition rate of the RMS values is given by:

C1
n =

|En − En−1|
En + En−1

(4.1)

where the transition rate of the RMS value En is given by:

En =

√√√√√ 1

N + 1

N/2∑
m=−N/2

x2[n+m] (4.2)
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(a) window size 6ms (b) window size 12ms

(c) window size 20ms (d) window size 32ms

Figure 4.2: C2 plots over different analysis window sizes.

This criterion can take values:

C1
n =

{
∼ 1, if |En − En−1| is large

∼ 0, if |En − En−1| is small
(4.3)

Figure 4.3 shows four segments of speech with the measurements of the C1 criterion
below them. It is easy to see from Figures 4.3b and 4.3d that C1 is good for detecting
abrupt changes in speech signals (such as the stop burst at time ≈100ms). However, it is
easy to see that C1 is too noisy in voiced speech (check at time after 300ms).

Implementation detail We could not calculate the first value of C1
n because we could

not calculate E0 (there is not a valid frame before the first frame given that frames started
from 1).

C1
n(1) =

|E1 − E0|
E1 + E0

(4.4)

This means that in the first iteration, we only calculated E1. After, we continued to the
next frame and we calculated the second value:

C1
n(2) =

|E2 − E1|
E2 + E1

(4.5)

.
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(a) male - C1 figure (b) male - C1 first 800ms figure

(c) female - C1 figure (d) female - C1 first 800ms figure

Figure 4.3: Signal (top plots) and C1 criterion (bottom plots) of two recording versions
(Male-Female) of file 'P1' extracted from [1]. The left figures contain the whole signal
while the right figures contain only the first 800ms of the signal.

Finally, to fix the problem of missing value in this feature, we copied the second value
of C1

n to the first one in the second frame.

C1
n(1) = C1

n(2) (4.6)

4.2.3.2 C2

Description The second criterion C2 is based on the slope of the regression line that
represents the change in Line Spectrum Frequencies (LSFs) over time. It is a frequency
domain criterion. The number of LSFs is represented with P. So, for the LSF l, for
l = 1, · · · , P , at instant n, within the time interval [n−M,n+M ], the slope for the LSF
l, yl, is calculated as:

gln =

∑M
m=−M myl(n+m)∑M

m=−M m2
(4.7)

where the transition rate mn is given by:

mn =

P∑
l=1

(
gln

)2
(4.8)
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Normalization of mn between 0 and 1 is achieved through the function:

C2
n =

2

1 + e−β1mn
− 1 (4.9)

In the normalization looks like they are using a sigmoid function [60]

f(x) =
1

1 + e−x
(4.10)

As parameters, P = 10 and β1 = 20 are used. The weight β1 was defined based on
measurements they made on known stable and voiced signals and on signals with fast
transitions. These values were found inside the paper [58]

Fig.4.4 shows the same segments of speech as Fig.4.3 on the top plots but now, on the
bottom plots exists the C2 criterion. In this figure, stop signals have not-so-strong values
compared to this criterion's max values, but you can see in fig 4.7 (in page 31) that in the
voiced sections it is not as noisy as the first criterion C1. Thus, while this criterion appears
to be more effective in distinguishing voiced sections, when compared to the initial criterion
it isn’t suitable for sound types like stops, or, in a broader sense, speech events with brief
durations. That's because the regression line gradient in these instances is nearly zero. As
a result, they determined that combining criteria C1 and C2 is a more suitable approach
for detecting transitions in all types of speech events.

Implementation details To compute criterion C2, it was essential to have already
calculated the Line Spectral Frequencies (LSFs) for all frames. Therefore, we computed
LSFs as part of the preprocessing step prior to criteria computation. This was accomplished
by using a 30 ms window with a 5 ms frame rate, using a standard Linear Prediction
procedure (a pre-emphasis [61] of the signal before the computation of the AR filter has
been used).

For the calculation of the LSF frequencies, in each frame, we calculated the Linear
Prediction Coefficients. Then, using MATLAB's poly2lsf function, we converted the LPC
coefficients to LSFs. Up to that point, we had LSF values calculated for each frame’s
midpoint, but we aimed to obtain values for the entire signal. To achieve this, we performed
linear interpolation with extrapolation (to create also the values before the first and after
the last midpoint). All LSFs are saved into a matrix with size P x N , where N is the
number of samples.

Finally, for consistency, we copied the second value of C2
n to the first one in the second

frame. That is because we could not calculate C1
n and C3

n on the first frame (because we
did not know the value of E0 as it is explained in implementation details of C1

n). So,

C2
n(1) = C2

n(2) (4.11)

4.2.3.3 C3

Description Trying to improve the performance of the two metrics a third criterion was
proposed that tried to join the benefits of the above two criteria. It is calculated as follows:

C3
n =

2

1 + e−β2mn−αC1
n
− 1 (4.12)

As parameters, they used β2 = 17 while α is given from the following equation:

α =

{
18.43

(
1.001− 1.0049eC

1
n + C1

ne
C1

n

)
, if C1

n ≤ 0.5

0.5, if C1
n > 0.5

(4.13)
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(a) male - C2 figure (b) male - C2 first 800ms figure

(c) female - C2 figure (d) female - C2 first 800ms figure

Figure 4.4: Signal (top plots) and C2 criterion (bottom plots) of two recording versions
(Male-Female) of file 'P1' extracted from [1]. The left figures contain the whole signal
while the right figures contain only the first 800ms of the signal.

The values of parameter α have been determined using a least squares approach (using
an exponential model) to normalize the criterion C3

n between 0 and 1.

Fig.4.6 shows also the same speech segments as Fig.4.3 and Fig.4.4 along with the third
criterion C3

n. It is easily seen that criterion C3 combines C1 and C2.

Implementation detail C3
n uses β2 and mn from C2

n and C1
n itself for its calculation.

That's why we also could not calculate the first value of C3
n. For that reason, we again use

the second frame's value as we did in C1
n and C2

n.

C3
n(1) = C3

n(2) (4.14)

4.2.3.4 Comparison

You can the differences between all the criteria (we explained above) in figure 4.7. C1
exhibits more significant discrimination but introduces some noise in voiced regions. On
the other hand, C2 performs better in voiced regions but struggles in areas with sudden
transitions. Lastly, C3 attempts to harness the advantages of both C1 and C2.
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(a) Male

(b) Female

Figure 4.5: Male voice and Female voice LSFs figures over the signal P1.

4.2.3.5 Challenge

Even though it is said that the criteria are ready to be used in scale factor protection, we
found that their values are not always inside 0 and 1 as you can see in Figures 4.3, 4.4, 4.6.
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(a) male - C3 figure (b) male - C3 first 800ms figure

(c) female - C3 figure (d) female - C3 first 800ms figure

Figure 4.6: Signal (top plots) and C3 criterion (bottom plots) of two recording versions
(Male-Female) of file 'P1' extracted from [1]. The left figures contain the whole signal
while the right figures contain only the first 800ms of the signal.

Especially C2's values are very small (10−5). To solve this issue, after we calculate all the
features, we normalize all features C∗

n so that:

0 ≤ C∗
n ≤ 1 (4.15)

We interpolated them as well with extrapolation (in order to have one value per signal
sample) to be used in the scale factor protection we will see in the next section.

4.2.4 Scale Factor Protection

To understand how this protection works, let us remember the problem at hand. Time
domain techniques, such as TD-PSOLA and WSOLA, have been suggested for their sim-
plicity and flexibility in time-scaling speech signals. However, when the time-scaling factor
differs significantly from 1 (neutral), the quality of the time-scaled signal worsens, resulting
in tonalities and artifacts in some parts of the output signal. These issues do not occur in
the whole signal but can be found in transitional segments and thus in segments where the
signal is non-stationary. So, to find regions where the signal is non-stationary, one of the
3 criteria can be used because all of them can be defined as the following function:
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(a) Male

(b) Female

Figure 4.7: Male (a) and Female (b) speech waveform along with C1, C2, C3 respectively.

f(t) =

{
∼ 0, when a speech segment is stationary

∼ 1, when a speech segment is non-stationary
(4.16)

It can be seen in Fig. 4.8 at page 32 an ideal function f(t) with the above characteristics.
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Figure 4.8: An ideal function f(t) for detection of non-stationarity.

The protection function is the following:

β = 1 + d(t)b (4.17)

where

• d(t) = 1 − f(t) and has the opposite behavior than f(t). d(t) = 1 when the speech
segment is stationary while d(t) = 0 when the speech segment is non-stationary (and
needs protection)

d(t) =

{
∼ 1, when a speech segment is stationary

∼ 0, when a speech segment is non-stationary
(4.18)

• β: The final scale factor of the output signal after protection with function f(t) that
is declared above.

• b: The desired relative modification of the original duration of the output signal.
For stretching, For example, without protection (d(t) = 1), b = 0.25 means 25%
stretching and thus β = 1.25. On the other hand, b = −0.25 means 25% shrinking
and thus β = 0.75

Let's see a complete example of protection: If a speech segment is going to shrink by
25%, there are two cases as we examined before. The first case is to be stationary. This
means that the shrinking is done without any protection:

b = −0.25 (4.19)

f(t) ≃ 0 (4.20)

d(t) = 1− f(t) ≃ 1 (4.21)

β = 1 + d(t)b ≃ 1 + 1 · (−0.25) = 0.75 (4.22)

The second case is to be non-stationary. This means that the more non-stationary is this
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part, the more this change will fade:

b = −0.25 (4.23)

f(t) ≃ 1 (4.24)

d(t) = 1− f(t) ≃ 0 (4.25)

β = 1 + d(t)b ≃ 1 + 0 · (−0.25) = 1 (4.26)

After the protection, we observed that C1 protects more than C3 as you can see in the
figure 4.10. As a result, the output signal of C1 is larger than the output signal of C3 which
is also larger than the output signal of uniform WSOLA. You can easily see it if you check
in figure 4.9 in which comparing the three methods, WSOLA's average scale factor is 0.5
(uniform), C3-WSOLA's average scale factor is 0.52367 (non-uniform) and C1-WSOLA's
average scale factor is 0.56994 (non-uniform). So,

ScaleFactorWS ≤ ScaleFactorC3 ≤ ScaleFactorC1 (4.27)

Additionally, in the second subfigure of Figure 4.9, it is evident how the non-uniform
scale factor protects the input signal in non-stationary regions by slowing them down. As
observed in the first 50 milliseconds of each plot, uniform WSOLA’s output is similar to
the input signal, while in the next two outputs, there is a noticeable delay in the signals’
start.
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(a) All methods length vs initial signal’s length

(b) All methods first 800 ms comparison

Figure 4.9: Comparing output signals generated by their respective methods.
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(a) Scale factor protection based criteria on the whole signal.

(b) Scale factor protection based criteria on the first 800ms of the signal.

Figure 4.10: Scale factor protection: scale factors change as a function of the criteria
values.
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Chapter 5

Results & Discussion

We performed two experiments of listening tests. The first experiment, conducted in June
2023, aimed to determine whether protecting non-stationarities enhanced or diminished
the intelligibility of the signals. The second experiment was carried out in August 2023
and focused on comparing all methods under the same words-per-minute condition. We
compared the methods: (1) uniform WSOLA, (2) protected WSOLA using C3, and (3)
protected WSOLA using C1, differently in each experiment.

Listening tests were conducted on two groups of people. The first group consisted
of visually impaired people (being in that condition for a lot of years) who used a screen
reading app while the second one was the control group. For each individual, the conducted
test consisted of two components: an intelligibility test and a preference test. All tests were
created by randomly sampling a subset of corpus [1] (different subsets were used for the
different types of tests). It is important to mention that we manually removed the initial
and final silences from each sample in this dataset before using them.

All tests were conducted using a set of high-quality over-ear headphones (Seinheiser HD
650) connected to a dedicated laptop. Most tests involving subjects from the control group
were performed within a soundproof room. In contrast, tests involving subjects from the
visually impaired group were conducted at their homes or the corresponding Association.
All subjects had no reported speech, language, or learning difficulties.

In the subsequent sections, we will delve into each experiment in greater detail, pre-
senting and analyzing the results.

37
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5.1 Experiment 1: Methods Comparison

In this experiment, our purpose was to assess whether the incorporation of protective
measures discussed in chapter 4 had a positive or negative impact on the intelligibility of
speech signals.

5.1.1 Participants

We conducted these tests with a total of 36 participants (24 males and 12 females, 20.8±0.8
and 23.1 ± 1.3 years old, respectively) from the control group, along with three visually
impaired individuals (2 males and 1 female). Finding additional visually impaired partic-
ipants in Heraklion proved to be very challenging, as we were informed that many were
unavailable during our testing period or had permanently relocated to another place in
Greece. Consequently, our analysis will primarily emphasize individuals from the control
group. All participants were informed about the experiment, its goals, its limitations, and
all signed an informed consent form. Consent forms are collected and safely stored by
thesis supervisor, Prof. Yannis Stylianou. All consent forms will be destroyed two years
after the completion of this thesis.

5.1.2 Description

For this experiment, we created a listening test for each user, with samples that were
randomly sampled from a subset of the main corpus [1]. This test was used to analyze
both the intelligibility and preference of the users. We first performed the intelligibility
test because users had to listen to every sample only once before giving their answers
about what they understood. After, the same test was used as a preference test and
users selected their preferred method in each scale factor. This was valid because, in the
preference test, they could listen to every sample as many times as they wanted. In
Figure 7.1 (Appendix), the reader can find an example of a test used as an intelligibility
test at first and then as a preference test.

5.1.3 Scale factors

In both tests (intelligibility and preference) we tested the signal's scale factors

scale factors = [0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50] (5.1)

In other words, we tested signals with speedups

speedup factors = [10.0, 6.6, 5.0, 4.0, 3.3, 2.8, 2.5, 2.2, 2.0] (5.2)

respectively (1.0 is zero speedup). We tested a lot of speedups to find the first speedup
which made it difficult for users to understand the content of the samples. Every speedup
was calculated from the scale factor as follows:

speedup =
1

scale factor
(5.3)

Speedups were presented to users in ascending order from the slower one (x2) to the
faster one (x10). For every one of them, we randomly selected a sample from a specific
subset (12 male and 12 female voices) from GrHarvard speech corpus [1] without using any
sample twice in the test, in the same or any other scale factor.



5.1. EXPERIMENT 1: METHODS COMPARISON 39

5.1.4 Samples per scale factor

We use each selected sample to produce the following samples:

1. Non-protected WSOLA output sample: this is simple WSOLA output, using a con-
stant time-scale factor resulting in a uniform time-scale compression.

2. C1-protected WSOLA output sample: this is simple WSOLA output, using a non-
constant time-scale factor obtained from criterion C1, resulting in a non-uniform
time-scale compression.

3. C3-protected WSOLA output sample: this is simple WSOLA output, using a non-
constant time-scale factor obtained from criterion C3, resulting in a non-uniform
time-scale compression.

Figure 5.1 illustrates a series of flowcharts that produce (a) samples with uniform time-
scale compression and (b) samples with non-uniform, Ci-based time-scale compression.
Figure 5.1(c) provides an explanation of each shape used in the flowcharts.

(a) No-protection samples

(b) C*-protection samples

(c) Flowchart labels

Figure 5.1: Experiment 1: System that produces time-scale compressed samples.

We presented the three methods in the following order: the first method presented was a
non-protected method WSOLA, the second method presented was a C3-protected method
WSOLA and the last one presented a C1-protected method WSOLA. That is because more
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protection means slower (and larger) output and we know that C1 protects more than C3
(as it is shown in Figure 4.9).

5.1.5 Intelligibility test

In every intelligibility test, after listening to every method sample once, the users had to
say exactly what they heard from it in order to measure the percentage of correct keywords
found in each case. Before every sample, we used a warning tone that the sentence was
about to begin. The final samples had the following form: [silence, warning tone, silence,
signal].

5.1.5.1 Results & Discussion

As we can see in the Figures 5.3 and 5.2, we can draw the following conclusions given that all
users listened to the samples of each scale factor starting with the ’fastest’ sample (method
of least protection) and ending with the ’slowest’ sample (method of most protection):

• For scale factors > 0.40, we observe that all methods are almost balanced (high
intelligibility in all methods > 90%). This indicates that users found it challenging
to distinguish differences in larger scale factors (slower speedups) among the samples.
This slight difference may also be attributed to the fact that users listened to the
same sample three times. The balance in the preference tests is further illustrated in
Figure 5.6.

• For scale factors ≤ 0.40, we observe that C1-WSOLA was the most intelligible
method with a big difference from the other methods (C3-WSOLA, WSOLA). That
is because C1-WSOLA results were less time-compressed (more protected) than the
other methods and users were able to understand the speech content better. The
difference was high enough to bypass the bias from listening the same sample three
times. This is because the results for C1-WSOLA were less time-compressed, indi-
cating better preservation of the speech content compared to the other methods and
thus better understanding from the users. This is why there is a noticeable differ-
ence in intelligibility, and it is significant enough to overcome any potential bias that
might arise from listening to the same sample three times.

• The variance in correctly understood words was higher in the scale factors ranging
from 0.2 to 0.4. However, it was not so high for very large and very small scale
factors. Nearly everyone could comprehend the samples under the large scale factors
(0.45 and 0.5), while only a few users were able to understand those at the smaller
scale factors (0.1 and 0.15).

• The results might have been more consistent if we could have included more users
from this group, but as previously mentioned, this was quite challenging. This is why
we can observe some unusual results, such as the percentage of correct words in the
0.35 scale factor shown in Figure 5.3c, where the percentage was lower than in the
0.30 scale factor.

Statistical Significance - Intelligibility For each scale factor, a separate one-way
analysis of variance (ANOVA) test was conducted to assess the statistical significance of
differences among the various methods. ANOVA techniques are designed to determine
whether a set of group means (representing treatment effects) are equal or not. Rejecting
the null hypothesis indicates that not all group means are equal. In our case, the null
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hypothesis, denoted as H0, assumed that the results of all methods were drawn from the
same distribution, while the alternative hypothesis, H1, posited that there was at least one
pair of methods that originated from different distributions. Detailed ANOVA results for
each scale factor are provided inside Table 5.1.

ScaleFactor Source SS df MS F Prob > F

0.1 Columns 0.06838 2 0.03419 14.05 3.51877e-06
Error 0.27744 114 0.00243
Total 0.34581 116

0.15 Columns 0.31607 2 0.15803 15.32 1.2788e-06
Error 1.1759 114 0.01031
Total 1.49197 116

0.20 Columns 1.94581 2 0.97291 38.17 2.0422e-13
Error 2.90564 114 0.02549
Total 4.85145 116

0.25 Columns 6.1827 2 3.09137 64.15 2.16753e-19
Error 5.4938 114 0.04819
Total 11.6766 116

0.30 Columns 4.7646 2 2.38231 20.16 3.1912e-08
Error 13.4723 114 0.11818
Total 18.2369 116

0.35 Columns 4.875 2 2.43752 28.1 1.20233e-10
Error 9.8903 114 0.08676
Total 14.7653 116

0.40 Columns 1.01744 2 0.50872 7.13 0.0012
Error 8.13333 114 0.07135
Total 9.15077 116

0.45 Columns 0.36376 2 0.18188 4.42 0.0142
Error 4.6959 114 0.04119
Total 5.05966 116

0.50 Columns 0.00838 2 0.00419 3.03 0.0521
Error 0.15744 114 0.00138
Total 0.16581 116

Table 5.1: Experiment 1: Intelligibility test: ANOVA Results per Scale Factor. Red values
indicate that the null hypothesis H0 cannot be rejected while purple values are close to
the threshold, suggesting that they are close to being significant enough to reject the null
hypothesis.

We observe that scale factor 0.50 has a P-value equal to 0.05 and [0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.45] have a P-value smaller than 0.05. This means that we can reject the
null hypothesis H0 for almost all the scale factors. Thus, there is a statistically significant
difference in results between at least one pair of methods within each of these specific scale
factors.

It’s important to note that this outcome, by itself, doesn’t specify which group means
differ from one another. So, to compare methods inside the scale factors, for each scale
factor, we performed a multiple-comparisons post-hoc test using the MATLAB's function
multcompare(stats). This function takes as argument stats that is one of the outputs of the
MATLAB's one-way ANOVA function anova1(test results). [62] Detailed multi-comparison
[63] test results for each scale factor are provided inside Table 5.2.

Based on the observations in Tables 5.1 and 5.2 and in Figures 5.4 and 5.5, we can
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Method A Method B p-value

0.1-WSOLA 0.1-C3 1
0.1-WSOLA 0.1-C1 3.3936e-05

0.1-C3 0.1-C1 3.3936e-05

0.15-WSOLA 0.15-C3 1
0.15-WSOLA 0.15-C1 1.4789e-05

0.15-C3 0.15-C1 1.4789e-05

0.20-WSOLA 0.20-C3 0.58283
0.20-WSOLA 0.20-C1 9.5915e-10

0.20-C3 0.20-C1 1.4596e-09

0.25-WSOLA 0.25-C3 0.10219
0.25-WSOLA 0.25-C1 9.5604e-10

0.25-C3 0.25-C1 9.5617e-10

0.30-WSOLA 0.30-C3 0.023588
0.30-WSOLA 0.30-C1 1.634e-08

0.30-C3 0.30-C1 0.0011251

0.35-WSOLA 0.35-C3 3.8539e-06
0.35-WSOLA 0.35-C1 1.0772e-09

0.35-C3 0.35-C1 0.076998

0.40-WSOLA 0.40-C3 0.050102
0.40-WSOLA 0.40-C1 0.0008691

0.40-C3 0.40-C1 0.36722

0.45-WSOLA 0.45-C3 0.11479
0.45-WSOLA 0.45-C1 0.012324

0.45-C3 0.45-C1 0.64606

0.50-WSOLA 0.50-C3 0.087766
0.50-WSOLA 0.50-C1 0.087766

0.50-C3 0.50-C1 1

Table 5.2: Experiment 1: Intelligibility test: Multi-comparison results for all scale factor
pairs. Red values indicate that the null hypothesis H0 cannot be rejected while purple values
are close to the threshold, suggesting that they are close to being significant enough to reject
the null hypothesis H0.

deduce that in scale factors greater than 0.35, it becomes more challenging to reject the
null hypothesis. This phenomenon is primarily attributed to the decreasing magnitude
of differences in results among the various methods. Conversely, for scale factors below
0.30, the only null hypothesis H0 that we are unable to reject is the one concerning the
comparison between WSOLA and C3. This suggests that these two methods consistently
exhibited similar performance.

5.1.6 Preference test

In every preference test, we presented the three methods as we did in the Intelligibility
test but when we played the different methods to users we used a random order each time.
We used this approach to prevent users from consistently choosing the same number in the
method sequence. After users listened to all the samples of a specific speedup, they had to
select the faster method that was intelligible as well (first, second, or third method). Thus,
the main purpose here was to examine the method preference of users in each speedup.
After the selection of the best methods from a user (in all scale factors), we downloaded
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them with the button ”Show results”.

5.1.6.1 Results & Discussion

As we can see in the figure 5.6, we can draw the following conclusions given that all users
listened to the samples of each scale factor in random order:

• For scale factors > 0.40, the balance between methods can be easily seen here. It is
because of the same reason we analyzed in Intelligibility test's results.

• For scale factors ≤ 0.40, we observe that C1-WSOLA was the most preferable method
with again a big difference from the other methods (C3-WSOLA, WSOLA). That's
also due to that users selected the most intelligible method, and thus the slowest
method. If we combine this with the intelligibility test's results, in these scale factors
they could barely understand 1-2.5 keywords (0-50% correct words in fig 5.3) with
WSOLA and 1-3.5 words with C3-WSOLA (0-70% correct words in fig 5.3) while for
C1-WSOLA it was 1-5 words (0-100% correct words in fig 5.3).

• Once again, the results from the control group were similar to those of the visually
impaired group, although they could potentially be improved from a broader user
base. Consequently, we cannot draw any conclusions for the visually impaired group.

Statistical Significance - Preference For the preference tests, based on [64] [65], we
performed a chi-squared test for each scale factor measuring the difference of our results
(WS selections, C3 selections, C1 selections, None selections) from a uniform distribution.
MATLAB’s method ’chi2gof’ [66] was used. The null hypothesis H0 was that the distribu-
tion of the results followed a uniform while the alternative hypothesis H1 stated that the
results do not follow the uniform distribution. Results for each scale factor are provided
inside the first tabular of Table 5.3. We observe that all p-values are below the significance
threshold of 0.05, allowing us to reject the null hypothesis H0.

Subsequently, in search of a method for conducting a post-hoc test on the preference
test results, one approach similar to it was to calculate standardized residuals [67] [68].
They measure the difference of each value from the mean value of a uniform distribution
among the results. In our case, residual values results can be found inside the second
tabular of Table 5.3 in which they indicate that in the majority of the scale factors, C1 is
the preferred method.
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Chi-Squared Test Results

SF WS C3 C1 Nn Exp.WS Exp.C3 Exp.C1 Exp.N Pvalue

0.50 6 41 39 14 25 25 25 25 1.3773e-07
0.45 1 36 36 17 25 25 25 25 2.5092e-04
0.40 8 25 64 3 25 25 25 25 4.7973e-18
0.35 3 22 75 0 25 25 25 25 2.6098e-28
0.30 0 39 58 3 25 25 25 25 8.0802e-19
0.25 0 17 83 0 25 25 25 25 1.5019e-36
0.20 0 8 92 0 25 25 25 25 4.6440e-47
0.15 0 0 91 9 25 25 25 25 9.1176e-46
0.10 0 0 91 9 25 25 25 25 9.1176e-46

Chi-Squared Test Results with Residuals

SF WS C3 C1 Nn Res.WS Res.C3 Res.C1 Res.N Pvalue

0.50 6 41 39 14 -4.1288 2.5153 2.1356 -2.6102 1.3773e-07
0.45 1 36 36 17 -3.1797 1.5661 1.5661 -2.0407 2.5092e-04
0.40 8 25 64 3 -3.7492 -0.5220 6.8814 -4.6983 4.7973e-18
0.35 3 22 75 0 -4.6983 -1.0915 8.9695 -5.2678 2.6098e-28
0.30 0 39 58 3 -5.2678 2.1356 5.7424 -4.6983 8.0802e-19
0.25 0 17 83 0 -5.2678 -2.0407 10.4882 -5.2678 1.5019e-36
0.20 0 8 92 0 -5.2678 -3.7492 12.1967 -5.2678 4.6440e-47
0.15 0 0 91 9 -5.2678 -5.2678 12.0068 -3.5593 9.1176e-46
0.10 0 0 91 9 -5.2678 -5.2678 12.0068 -3.5593 9.1176e-46

Table 5.3: Experiment 1: Preference test: Chi-squared test results with Residuals (WS:
Uniform WSOLA, C3: C3-Protected WSOLA, C1:C1-Protected WSOLA, Nn: None, Exp:
Expected results if we had a uniform distribution, Res: Standardized Residual value). All
p-values are small enough to reject the null hypothesis.
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(a) All groups (n=39)

(b) Control group (n=36)

(c) Visually impaired group (n=3)

Figure 5.2: Experiment 1: Intelligibility Listening Tests Results with bar plots.
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(a) All groups (n=39)

(b) Control group (n=36)

(c) Visually impaired group (n=3)

Figure 5.3: Experiment 1: Intelligibility Listening Tests Results with line plots.
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Figure 5.4: Experiment 1: Listening test: Boxplots containing the three methods results in
the following order WS-C3-C1. (PART A)
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Figure 5.5: Experiment 1: Listening test: Boxplots containing the three methods results in
the following order WS-C3-C1. (PART B)
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(a) All tests (n=39)

(b) Control Group tests (n=36)

(c) Visually impaired Group tests (n=3)

Figure 5.6: Experiment 1: Preference Tests Results with bar plots.
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5.2 Experiment 2: Same words per minute

In this experiment, our purpose was to compare all methods given that they produce
samples with the same words-per-minute (WPM) ratio that is equal to uniform WSOLA’s
WPM. To do that, we pass all other methods outputs from a uniform WSOLA again with
a scale factor that corrected their length as it can be seen in figure 5.7. Also, we solve
some of the previous listening test issues discussed in the next section.

5.2.1 Experiment 1: Challenges and new approaches

After the first experiment, we identified numerous issues:

1. Both Intelligibility and preference tests used the same subset of samples. Solution:
We made them more independent by choosing disjoint subsets.

2. We used the same sample in all methods of a scale factor. This made it easier for the
user to focus only on the words that did not listen the first time (especially in the
intelligibility test). Solution: In this test, we used different samples in the different
methods per scale factor.

3. We found only 3 visually impaired individuals in Crete in the first experiment.
Solution: This time, we also went to the local association of visually impaired people
in Kalamata and Ioannina, Greece, where we found 6 more individuals willing to
participate.

4. In the previous experiment, C3-WSOLA and (especially) C1-WSOLA had an ad-
vantage over the other methods because they made the output slower. The more
protected the output signal was, the slower it was. Solution: This time, we forced
all methods output to have the same size. This means that output samples had the
same words per minute number.

5. In preference tests, it was hard for users to remember the differences between three
samples for each scale factor. Solution: we now compare methods in couples (2-by-2).

This is why we performed a second set of tests aimed at addressing these concerns.

5.2.2 Participants

We conducted these tests with 21 participants (14 males and 7 females) from the control
group and 9 individuals who were visually impaired. In order to find more visually impaired
individuals, we visited more related associations including the ones in Heraklion, Kalamata,
and Ioannina, Greece. Specifically, we found 5 participants in Heraklion and 4 in Kalamata.
Similarly to the first experiment, informed consent forms are signed by all participants.

5.2.3 Description

For this experiment, we also created two listening tests for each user (an intelligibility and
a preference test). Each listening test had samples that were randomly sampled from a
different subset of the main corpus [1]. These subsets contained two (out of 72) phonetically
balanced lists from the corpus.

We first performed the intelligibility test in which again users had to listen to every
sample only once before giving their answers about what they understood. After, the
second test was used as a preference test and users selected their preferred method in each
scale factor.
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5.2.4 Scale factors

In the previous experiment, we tested 9 scale factors with some of them having zero variance
among the users' results. This is why we only tested the 3 most important scale factors in
this experiment including [0.25, 0.33, 0.50] and thus speedups [4.0, 3.0, 2.0]. Speedups are
also calculated with the same method:

speedup =
1

scale factor
(5.4)

and presented to users in ascending order.

For every scale factor, we randomly selected a sample from a specific subset (listening
and preference tests have different and disjoint subsets).

5.2.5 Samples per scale factor

We again used samples in subsets to produce the following three speech samples:

1. Non-protected WSOLA output sample: this is simple WSOLA output, using a con-
stant time-scale factor resulting in a uniform time-scale compression.

2. C1-protected WSOLA output sample: this is simple WSOLA output, using a non-
constant time-scale factor obtained from criterion C1, resulting in a non-uniform
time-scale compression.

3. C3-protected WSOLA output sample: this is simple WSOLA output, using a non-
constant time-scale factor obtained from criterion C3, resulting in a non-uniform
time-scale compression.

but the difference now is that every one of them has the same size (none of them will have
the advantage of the slower output anymore). The reader can see how in Algorithm 1 in
page 54 and the system in Figure 5.7.

This means that since all of them have the same length, the differences will be inside
the signals, in the stationary and non-stationary parts, More specifically, ”protection” with
”slow down” non-stationary parts while stationary parts will be ”sped up” in the output
signal. You can see the differences between all methods in figure 5.8. On the top subfigure,
it is evident that all methods produce output signals of the same length. However, in
the bottom subfigure, you can observe the differences in the lengths of the stationary and
non-stationary parts of the output signals.

5.2.6 Intelligibility test

To eliminate the bias introduced by listening to the same sample across all methods for a
particular scale factor, this time, we used distinct samples. Methods were again presented
the same way as before: (1) non-protected method WSOLA, (2) C3-protected method
WSOLA, and (3) C1-protected method WSOLA as you can see in the following example.
The reader can also see the basic idea in Algorithm 2. Again, we used a warning tone
that the sentence was about to begin. So, the final samples had the following structure:
[silence, warning tone, silence, signal]. An example of an intelligibility test can be found
in Figure 7.2 (Appendix).

5.2.6.1 Results & Discussion

Drawing insights from the subfigures in Figure 5.9, we can conclude the following:
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(a) No-protection samples

(b) C*-protection samples

(c) WSOLA length C*-protection samples

(d) Flowchart labels

Figure 5.7: Experiment 2: System that produces samples with the same words per minute.

• The results exhibited a trend wherein, in the majority of cases, the C1 method
yields the highest intelligibility value (with the exception of 0.25) but it’s difficult to
definitively determine which method is superior. The next two positions are typically
occupied by the other two methods, C3 and WS. However, due to the same number of
words per minute, it was quite challenging for the user to understand the distinctions
between the compared methods, as further evidenced in the preference test results
discussed below.

• The results from the control group and the visually impaired group are similar. We
anticipated that visually impaired individuals might perform better, but the limited
sample size made it challenging to discern significant differences.
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(a) All methods length vs initial signal’s length.

(b) All methods full length comparison.

Figure 5.8: Same Words Per Minute Methods Output Comparison.

Statistical Significance - Intelligibility For each scale factor, a separate one-way
analysis of variance (ANOVA) test was again conducted to assess the statistical signifi-
cance of differences among the various methods. The null hypothesis H0 assumed again
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Algorithm 1 Create same size samples (WS, C1, C3) for tests

Input: X: the input sample
Input: SF : the desired scale factor vector with the same size as the input sample
Input: C: the criterion that will be used for the protection of the input signal. It takes
values [NP-WS, C1-WS, C3-WS] where ’NP-WS’ means zero-protection pass to WSOLA,
’C1-WS’ means C1 protection but length equal to ’NP-WS’ and ’C3-WS’ means C3

protection but length equal to ’NP-WS’
Output: Y : the output sample

//All variables starting with ’T’ and ’L’ are used for temporary calculations (signals and lengths)

if C = ’NP’ then
Y = wsolaScale(X, . . . , SF );

else if C = ’C1’ then
//first calculate NP-WS

TWS = wsolaScale(X, . . . , SF );
LWS = length(TWS);
//then calculate C1 as we explained in chapter 4

SFC1 = protect(SF , ’C1’);
TC1 = wsolaScale(X, . . . , SFC1);
LC1 = length(TC1)
//make TC1

with same duration as TWS

SFinput2wsola = SF ; //WSOLA Second pass - not always close to the desired scale after protection

SFC1−WS = (LWS / LC1) * (SF / SFinput2wsola);
Y = wsolaScale(TC1 , . . . , SFC1−WS);

else if C = ’C3’ then
//first calculate NP-WS

TWS = wsolaScale(X, . . . , SF );
LWS = length(TWS);
//then calculate C3 as we explained in chapter 4

SFC3 = protect(SF , ’C3’);
TC3 = wsolaScale(X, . . . , SFC3);
LC3 = length(TC3)
//make TC3

with same duration as TWS

SFinput2wsola = SF ; //WSOLA Second pass - not always close to the desired scale after protection

SFC3−WS = (LWS / LC3) * (SF / SFinput2wsola);
Y = wsolaScale(TC3 , . . . , SFC3−WS);

end if

that the results of all methods were drawn from the same distribution, while the alterna-
tive hypothesis, H1, posited that there was at least one pair of methods that originated
from different distributions. Detailed ANOVA results for each scale factor are provided in
Table 5.1.

We observe that scale factors [0.25, 0.50] have a small P-value, smaller or equal to 0.05.
This means that we can (or are close to) reject the null hypothesis H0. Thus, there is a
statistically significant difference in results between at least one pair of methods within
each of these specific scale factors.

This doesn’t specify which group means differ from one another. So we again performed
a post-hoc multiple-comparison test using MATLAB’s function ’multcompare(stats)’ [63].
where ’stats’ was one of the outputs of MATLAB’s one-way ANOVA function ’anova1’ [62].
Detailed multi-comparison post-hoc results are presented in Table 5.5.
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Algorithm 2 Create an intelligibility test

Input: S: the subset of corpus for intelligibility tests
Output: I: the intelligibility listening test (one per user)
for scalefactor in [0.5, 0.33, 0.25] do

Randomly pick 3 samples α, β, γ (no replacement) from S
Generate WS sample from sample α
Generate C1 sample from sample β
Generate C3 sample from sample γ
Add warning tone in α as αnew = [silence, warning, silence, α]
Add warning tone in β as βnew = [silence, warning, silence, β]
Add warning tone in γ as γnew = [silence, warning, silence, γ]
Place them inside I

end for

ScaleFactor Source SS df MS F p-value

0.25 Columns 0.242 2 0.121 3.07 0.0517
Error 3.434 87 0.03947
Total 3.676 89

0.33 Columns 0.3282 2 0.16411 1.47 0.2348
Error 9.69 87 0.11138
Total 10.0182 89

0.50 Columns 0.10689 2 0.05344 3.44 0.0364
Error 1.351 87 0.01553
Total 1.45789 89

Table 5.4: Experiment 2: Intelligibility test: All groups ANOVA results per Scale Factor.
Red values indicate that the null hypothesis H0 cannot be rejected while purple values are
close to the threshold, suggesting that they are close to being significant enough to reject
the null hypothesis.

Method A Method B p-value

0.25-WSOLA 0.25-C3 0.086915
0.25-WSOLA 0.25-C1 0.086915

0.25-C3 0.25-C1 1

0.3-WSOLA 0.3-C3 0.88818
0.3-WSOLA 0.3-C1 0.22513

0.3-C3 0.3-C1 0.45687

0.5-WSOLA 0.5-C3 0.62138
0.5-WSOLA 0.5-C1 0.22742

0.5-C3 0.5-C1 0.029968

Table 5.5: Experiment 2: Intelligibility test: All groups results multi-comparison for all
scale factor pairs. Red values indicate that the null hypothesis H0 cannot be rejected while
purple values are close to the threshold, suggesting that they are close to being significant
enough to reject the null hypothesis H0.

Based on the observations in Tables 5.4, 5.5 and in Figure 5.10, we have arrived at the
conclusion that rejecting the null hypothesis across all scale factors was a challenging task.
This observation can be further substantiated by the results depicted in the intelligibility
and preference test figures, where it becomes evident that the two methods consistently
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(a) All groups (n=30)

(b) Control group (n=21)

(c) Visually impaired group (n=9)

Figure 5.9: Experiment 2: Intelligibility Test Results with bar plots.
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demonstrated nearly identical performance as we discussed above.
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Figure 5.10: Experiment 2: Intelligibility test: All groups boxplots containing the three
methods results in the following order WS-C3-C1.

5.2.7 Preference test

In the preference test, our objective was to help users concentrate on comparing only
two samples at a time. Consequently, for each scale factor, we offered three separate
comparisons, each involving a different combination of methods from the set [WS-C1, WS-
C3, C1-C3]. In every comparison, the order of methods was randomized to ensure that
users made selections exclusively based on what they heard, rather than relying on memory
from prior choices. The basic idea is described in Algorithm 3 on page 58 and an example
of a preference test exists in Figure 7.3 (Appendix).

5.2.7.1 Results & Discussion

Preference test results can be found in Figures 5.11 and 5.12. Based on them we conclude
the following:

• In Figure 5.11, a comparison of all methods is presented regarding how frequently
they were selected. Notably, in scale factors 0.33 and 0.25, WS appears to be more
preferable compared to the other methods. However, upon closer examination of
the results, it becomes apparent that there is no dominant method. This suggests
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Algorithm 3 Create a preference test

Input: S: the subset of corpus for preference tests
Output: P : the preference listening test (one per user)
for scalefactor in [0.5, 0.33, 0.25] do

Randomly pick 3 samples α, β, γ (no replacement) from S
Generate WS − C3 samples from sample α
Change their position with 50% probability
Generate WS − C1 samples from sample β
Change their position with 50% probability
Generate C1− C3 samples from sample γ
Change their position with 50% probability
Place them inside P

end for

that all methods exhibit similar performance, and the differences among the samples
are relatively minor and challenging for users to distinguish. Consequently, drawing
further conclusions from these figures is a complex task.

• However, things are getting better when we compare methods in pairs as we do
inside Figure 5.12. Comparing WS and C1, it is not immediately evident which
one is dominant. Users preferred WS more at the scale factor of 0.33, while they
favored C1 more at scale factors 0.25 and 0.5. When comparing WS and C3, WS
was consistently more preferable in each scale factor but in the comparison between
C1 and C3, a certain level of confusion emerged again, especially at a scale factor
of 0.33. At the scale factor of 0.50, C1 was more preferable, whereas at 0.25, C3
received higher user preference. So, WS ≃ C1 , WS > C3 and C1 ≃ C3

• Yet, both the control and visually impaired groups exhibited similar preferences, with
the control group’s preferences aligning more closely with the overall preferences due
to its larger sample size of 21 individuals compared to 9 in the visually impaired
group.

Statistical Significance - Preference For the preference tests, based on [64] [65], we
performed a chi-squared test for each scale factor measuring the difference of our results
(WS selections, C3 selections, C1 selections, None selections) from a uniform distribution.
MATLAB’s method ’chi2gof’ [66] was used. The null hypothesis H0 was again that the
distribution of the results followed a uniform while the alternative hypothesis H1 stated
that the results do not follow the uniform distribution. Results for each scale factor are
provided inside the first tabular of Table 5.6. We observe that the p-values of scale factors
0.33 and 0.50 are close rejecting the null hypothesis H0 while the p-value of 0.25 is not.

Subsequently, in search of a method for conducting a post-hoc test on the preference
test results, we again calculated standardized residuals [67] [68]. As we said earlier, they
measure the difference of each value from the mean value of a uniform distribution among
the results. Residual values results can be found inside the second tabular of Table 5.3
in which they indicate that there is no dominant method, especially in scale factor 0.25
where results were more uniform.
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(a) All tests (n=30)

(b) Control Group tests (n=21)

(c) Visually impaired Group tests (n=9)

Figure 5.11: Experiment 2: Preference Tests Results with bar plots.
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(a) WS-C1-None
All tests (n=30)

(b) WS-C3-None
All tests (n=30)

(c) C1-C3-None
All tests (n=30)

(d) WS-C1-None
Control group tests (n=21)

(e) WS-C3-None
Control group tests (n=21)

(f) C1-C3-None
Control group tests (n=21)

(g) WS-C1-None
Visually impaired group tests
(n=9)

(h) WS-C3-None
Visually impaired group tests
(n=9)

(i) C1-C3-None
Visually impaired group tests
(n=9)

Figure 5.12: Experiment 2: Preference Test Results with bar plots - 2-by-2 Methods. In the
x-axis you can see the scale factors (0.50, 0.33 and 0.25 respectively)

Chi-Squared Test Results

SF WS C3 C1 Nn Exp.WS Exp.C3 Exp.C1 Exp.N Pvalue

0.50 25 21 39 26 27.75 27.75 27.75 27.75 0.0863
0.33 41 27 22 21 27.75 27.75 27.75 27.75 0.0270
0.25 32 25 26 28 27.75 27.75 27.75 27.75 0.7925

Chi-Squared Test Results with Residuals

SF WS C3 C1 Nn Res.WS Res.C3 Res.C1 Res.N Pvalue

0.50 25 21 39 26 -0.5220 -1.2814 +2.1356 -0.3322 0.0863
0.33 41 27 22 21 +2.5153 -0.1424 -1.0915 -1.2814 0.0270
0.25 32 25 26 28 +0.8068 -0.5220 -0.3322 +0.0475 0.7925

Table 5.6: Experiment 2: Preference test: Chi-squared test results (WS: Uniform WSOLA,
C3: C3-Protected WSOLA, C1:C1-Protected WSOLA, Nn: None, Exp: Expected results
if we had a uniform distribution, Res: Standardized Residual value).). In red values, null
hypothesis H0 cannot be rejected while purple values are close to the threshold.
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Conclusion & Future Work

In this work, we demonstrated the effectiveness of signal processing methods based on the
Waveform Similarity Overlap-Add (WSOLA) for highly intelligible time-scale compression
of speech signals. Examples of time-scale compression in everyday life include listening to
audiobooks and podcasts, as well as in online learning and speech transcription. Moreover,
in the visually impaired population, high speech rates are very useful during screen-reading
from a mobile phone, enabling them to maintain a connection to societal events.

WSOLA is a well-known algorithm for time scaling, able to handle both uniform and
non-uniform time-scaling factors while minimizing the perceived artifacts that can occur
when altering the tempo of a speech recording. WSOLA is known for its ability to provide
high-quality time-stretching results with minimal audible artifacts. However, in very high
time-scale compression rates, speech intelligibility decreases rapidly. We investigated the
potential of protecting sensitive to time-compression parts of speech via signal processing
techniques able to detect transient and non-stationary speech segments. The two methods,
called C1 and C3, are based on signal RMS energy and Line Spectral Frequencies (LSFs):
C1 detects non-stationarity by computing the RMS energy on a frame-by-frame basis while
C3 combines the latter with the inclusion of the gradient of the regression line of LSFs over
time as a measurement of transition rate. C1 and C3 can be used to build a time-varying
function of stationarity of a speech signal. This function, when fed to WSOLA, was able
to guide time-compression in a way that non-stationary and transient parts of speech are
protected from time-scale compression.

Experiments were conducted on four of the GrHarvard lists, encompassing both sighted
and visually impaired participants. Following the experiments, a comprehensive statistical
analysis was executed, employing ANOVA and post-hoc tests, to determine the significance
of the differences in the results derived from the intelligibility tests of both experiments. In
the first experiment, a comparison between uniform WSOLA, non-uniform C1-protected
WSOLA, and non-uniform C3-protected WSOLA was conducted. The primary aim of
this test was to evaluate whether the protective measures enhanced or diminished the
intelligibility of the speech signals. The results revealed that the most protective method
consistently outperformed the others in terms of both intelligibility and user preference.
In our study, this top-performing method was C1-Protected WSOLA, the second position
was occupied by the other protected method, C3-protected WSOLA, and the uniform
WSOLA method took the last position. In this experiment, where substantial differences
existed, most of the observed variations were indeed statistically significant. In the second
experiment, we aimed to evaluate the same three methods under conditions where they
produced speech at an equal number of words per minute. This approach led to more similar
outcomes, making it challenging for users to distinguish significant differences between
the methods. The variations in results were primarily attributed to differences within

61
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the signals, which related to the sizes of their stationary and non-stationary components.
Despite the tendency for the C1 method to exhibit higher intelligibility (in most cases,
except at 0.25), it remained challenging to conclusively determine the superior method due
to the overall similarities in performance, as observed in both preference and intelligibility
test results. Additionally, despite the initial expectations of enhanced performance in the
visually impaired group compared to the control group, such differences did not materialize,
primarily owing to the limited number of visually impaired participants. Consequently,
the majority of observed differences failed to achieve statistical significance, despite the
occasional discernible patterns among the methods.

Future work can include further tuning of parameters that affect C1 and C3 computa-
tion. As an example, different lengths of analysis and hop frames can be used, as well as
pitch-synchronous analysis in stationary parts of speech. Moreover, further experiments
- including a larger sample from visually impaired people - could strengthen statistical
conclusions about the performance of each method. Furthermore, research can be done
towards including these methods in popular audio processing tools and screen-reading
software. Another noteworthy research direction is the training of a neural vocoder to
generate controllable output signals, enabling adjustments to speed up and ensuring non-
stationarity protection. Finally, further investigation into the analysis and preservation of
the phonemes targeted by this method is a promising avenue of study.
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Appendix

7.1 More Figures

Figure 7.1: Intelligibility & Preference test for group 1 of listening tests.
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Figure 7.2: Intelligibility test for group 2 of listening tests.
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Figure 7.3: Preference test for group 2 of listening tests.
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