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Abstract

In daily speech the linguistic information plays a major role in the communication
between people. However, voice quality and individuality are important in speech
recognition and understanding. For instance, it is exceptionally significant to un-
derstand and discriminate between two or more speakers in a radio or a television
program. Voice individuality, apart from providing the aforementioned advantages in
communication, enriches our daily life with variety.

For a number of modern applications it is important to create and maintain data
bases for different speakers, for example, in gaming, in text-to-speech synthesis and
in cartoon movies. This may be time consuming and expensive, depending on the
requirements of the application. Speaker interpolation (Sl) is the process of producing
an intermediate voice between two or more speakers, while voice conversion (VC) is
the technique of processing the voice of one person, namely the source speaker, such
that his/her voice resembles the voice of another person, namely the target speaker.
Moreover, the converted or interpolated speech should sound natural and intelligible.

Despite the extended research in VC, high-quality voice conversion has not been
achieved yeet. A number of reasons explain this current shortcoming, with the main
ones being a) the oversmoothing effect by using of statistical modeling b) inaccu-
rate estimation of the speaker-depended features and c)the inadequacy of the used
synthesis methods. Voice conversion methods are based on spectral envelope infor-
mation, which represents the vocal tract, since it has an important role on speech
individuality. In conventional VC the excitation signal of the source speaker is ex-
tracted first by inverse filtering. Then this excitation signal is filtered from the vocal
tract of the target speaker. In speech interpolation the excitation signal is filtered
from an interpolated vocal tract of the given speakers.

The scope of this thesis is to deal with this research gap and achieve high quality
speech interpolation and voice conversion of parallel corpora using accurate meth-
ods for spectral envelope estimation (true envelope), time and frequency alignment
(piecewise linear time and frequency warping), and speech synthesis (interpolated
lattice filter or overlap and add). With the use of precise methods in each processing
step it was expected to reduce the artifacts currently met in voice conversion. In
speech interpolation the produced vocal tract is not just an interpolation between
the given speakers, but the vocal tract length can be altered, producing a broad range
of voices. Hence, given a limited data base a substantially larger one that contains
individual speakers for every use can be created.
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Chapter 1

Introduction

1.1 Importance of speaker interpolation and speaker con-
version.

Speech is the ordinary way for people to communicate. In daily speech the lin-
guistic information plays a major role in the communication between people. Yet,
voice quality and individuality are essential in speech recognition and understand-
ing. For instance, it is exceptionally important to understand and discriminate
between two or more speakers in a radio or a television program. Voice individ-
uality, apart from the advantage of communication enriches our daily life with
variety.

For a number of modern applications it is important to create and maintain
data bases for different speakers. In video games, it is a common thing to see
many characters speaking. In cartoons, for each character’s voice a different ac-
tor his/her voice is needed. In mobile telephony bigger databases of speakers
are necessary. Speaker recording requires a large number of people to utter sen-
tences, a procedure deemed costly and time consuming. The method of speaker
interpolation is used to offer a helping hand in similar applications.

There are also applications were the individual voice characteristics are use-
ful, because the identification of the speaker is demanded. In voice mailboxes,
incoming voicemail is reproduced with the voice identity of the user. In inter-
preted telephony two speakers of different language communicate, first recogniz-
ing the sentence uttered by the speaker, and then translating and composing it
with his/her own voice identity. Hence the result is to hear his/her voice in a
language he/she might not speak.

In human-machine communication systems speech is focused upon as a medium
for such communication. The former are classified in the category text to speech
synthesis [20] [38]. Nevertheless they are also useful in method enabling a patient

1



2 CHAPTER 1. INTRODUCTION

without a larynx or with a non-functional larynx to produce voice or speech [4].
The method of speech conversion deals with this kind of problems.

1.2 Problem definition

The present thesis aspires to tackle two issues, namely Speaker-Interpolation
and Voice Conversion, using the fact that spectral envelope information, which
represents the vocal tract, plays an important role in speech individuality [22].
In other words it is the feature that colors voice.

Speaker interpolation (SI) is the process of producing an intermediate voice
between two or more speakers. Provided the shape of the glottis, we seek to
filter it through an interpolated vocal tract in order to produce an interpolated
speaker. The interpolated vocal tract can be a linear combination of the vocal
tracts of the speakers to be interpolated.

Speech conversion (SC) is the technique of processing the speech of one person,
the source speaker, to sound like the speech of another person, the target speaker.
Briefly, in SC the excitation signal of the source speaker is first extracted by
inverse filtering. Then, this signal is filtered through the vocal tract of the target
speaker, while the excitation can be modified to obtain a conversion perceptually
more precise.

In either interpolation or conversion, speech should sound natural and intel-
ligible. Unfortunately high-quality voice conversion has not yet been achieved
[38]. Usually speech conversion suffers from artifacts which affect perception nat-
uralness. The aim of the present piece of work is to improve the quality of the
produced voice by reducing the hitherto present artifacts.

1.3 motivation

Up to this point there have been numerous attempts to convert speech. These
past efforts have relied on a wide variety of methods, such as modeling the glottal
source [5], changing the formant frequencies of the target speaker [20], using vec-
tor quantization over the aligned spectrum [2], transforming formants via neural
networks (in this method the implicit formant transformation is captured by a
neural network)[28], only to name a few. The most popular one is the continu-
ous probabilistic transform for voice conversion, with a Gaussian mixture model
(GMM) that realizes continuous mapping based on soft mapping [36]. While the
mapping is effective, the performance of the conversion is still inadequate. In
recent years there have been some improvements proposed for this method [37]
[39].

Despite extended research in speech conversion, high-quality speech conver-
sion has not yet been achieved. A number of reasons may explain this current
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shortcoming, with the main ones being a) the oversmoothing effect by use of sta-
tistical modeling b) lack o precision of the speaker-depended features estimation
and c¢) inadequacy of the used synthesis methods [39], d) possibly reasons that
have not been identified as yet.

The objective of this thesis is to deal with this research gap and achieve
high quality voice conversion of parallel corpora using accurate methods a) for
spectral envelope True Envelope is applied, which is an improved spectral model
for a precise representation of the estimation of the speakers’ features, b) time
and frequency alignment is achieved by piecewise linear time and piecewise linear
frequency warping, which compared with dynamic time warping yields better
results, ¢) in synthesis interpolated lattice filter or overlap and add methods is
used and is expected to achieve a high quality speech conversion. By the use of
parallel corpora the mapping between two speakers features is optimized. In this
way a reduction in the sources of the artifacts is achieved, thus facilitating their
elimination.

In addition, speech interpolation between two, three or more speakers is pro-
posed in order to achieve high quality speech interpolation. The idea is to extract
the glottal signal of a speaker, and use this signal as the input of an interpolated
vocal tract of the given speakers. The output will be the interpolated signal. The
produced vocal tract is not just an interpolation between the given speakers, but
the vocal tract length can be altered, producing a broad range of voices. Hence,
given a limited database we can create a substantially larger one that contains
many individual speakers.

1.4 Structure of the thesis

The thesis is organized as follows: In Chapter 2, is described methods for spectral
envelope estimation, their advantages and disadvantages. In Chapter 3, meth-
ods are interpreted for the treatment of spectral envelopes, time and frequency
warping algorithms, lattice filtering, and the combination of techniques in order
to attain speech conversion and interpolation. Finally, in Chapter 4, we conclude
this work and we propose future research directions.






Chapter 2

Spectral Envelope Estimation

2.1 Autoregressive (AR) Method

The Autoregressive (AR) [I1] [32] or Linear Predictive (LP) is one of the earlier
developed methods of digital signal processing. Originally, it was utilized on
speech transmission and compression. An AR process represents a signal s(n)
designated by a linear combination of the p preceding values, where p is referred
to as the order of the model, plus white noise v(n):

s(n) =v(n)+ > ags(n — k), (2.1)
k=1

where a1, a2, ,a, are constant called the AR parameters or linear predic-

tion coefficients. The term autoregressive comes from the fact than in (2.I]) the

variable s(n) is regressed on previous values of itself; hence the term “autoregressive “.
We can rewrite equation (2.1 in the following form:

M
ZaZs(n — k) =v(n), where aj =1, a;, = —ay, for k > 1. (2.2)
k=0

The left-hand side of ([22]) is a convolution of the input signal and the sequence
parameters ag. Taking the z-transform of equation (2.2]) yields the following
result:

Hl(2)S(2) = V(2) (2.3)
where

M
H,(z) = Z ayz " (2.4)
n=0

and S(z),V (z) are the z-transform of s(n) and v(n) respectively. We can employ
equation for two alternative purposes:

5



6 CHAPTER 2. SPECTRAL ENVELOPE ESTIMATION

1. Given the AR process s(n), we can use equation 2.3 and filter s(n) in order
to extract v(n). Filter H,(z) is an all-zero filter that analyses the input
signal. This procedure is known as inverse filtering and is a finite-duration
impulse response (IIR) filter.

2. On the other hand given the white noise v(n) as input, s(n) will become
the filter output. In this case the filter in z-transform can be interpreted
as 1/H,(z), which is an all-pole filter and represents a process generator.
This is an infinite-duration impulse response (IIR) filter.

2.1.1 Spectral Envelope Estimation from Linear Prediction

Linear prediction (LP), which is well known as linear prediction coding (LPC),
has some special properties that make this method suitable for spectral envelope
estimation (vocal tract). In section 2] equation (23] can be viewed as the z-
transform of speech sound S(z), vocal tract H(z) = A/H,(z), A is the gain of
the filter which is an all-pole, and of prediction error F(z), respectively. The goal
here is to estimate the filter coefficients a; for specific order p and the gain A to

have a representation of vocal tract (transfer function):

H(z) = sz) (2.5)

Denoted by
p
$(n) = aps(n—k), (2.6)
k=1

the approximated value §(n) of s(n) is calculated as a linear combination of p
s(n) preceding values. The minimization of the prediction error is wanted which
is:
e(n) = 8(n) — s(n)
In LP the coefficients aj are computed for each frame in a way that the
expected value of the squared prediction error

E[e*(n)] = B[(8[n] — s[n])2] (2.7)

is minimized. We arrive at the optimizing solution by taking derivatives with
respect to ay,
OE|[e*(n)]
Oay,

Assuming that input s(n) is a stationary process equation, we get from (2.8]) a set

=0, k=1,2,--,p. (2.8)

of p simultaneous equations, with r(0),r(1),--- ,r(p) being the known quantities
and ap,as, - - ,ap, being the unknown quantities, and produce the following linear
System:

Ra=r (2.9)
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where R is the autocorrelation matrix:

O ) =)
po| TV @ -2
p—1) rlp=2) o r(0)

r(k) is the autocorrelation function of the input signal, a is the vector containing
the LP coefficients:

a = [QI)QQ,' o aap],T

and r is the vector
r=[r(1),7(2), - ,r(p)"
Equation (29) is known as the Yule-Walker equations for an autoregressive model.
Although equation (29) can be solved using the inverse matrix R™!, a =
R !'r, the Toeplitz form of R leads to a more efficient approach. Levinson
algorithm is an efficient solution of system (Z9) and is presented briefly in table

21
Initialization: Fy = r(0)
For1<I<p
-1 - q
kl. = Ell_l [T(l) - Zj:l aé‘ 17"(l - J)]
a{ =k
-1 -1 :
aézaj —klal_j, 1<5<l-1

E=E_1(1-k?)

Table 2.1: Levinson-Durbin algorithm

To compute gain A, the equation (23] is transformed in time domain:
P
h(n) = agh(n — k) + Ad(n) (2.10)
k=1

multiplying equation ([ZI0) by A(n) and sum over all n the following equations
produced, with r to be the autocorrelation function of h(n):

V“h(O) = Zakrh(k) + A2. (2.11)
k=1

An approach to compute gain A is to postulate that the energy in the all-pole
impulse response h(n) equals the energy in the measurement signal s(n), then
rp(0) = r(0), reminding that r(n) is the autocorrelation function of the signal
s(n). Using the property of autocorrelation matching [31], which states that:

rn(k) =r(k), for |k| <p, (2.12)
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we conclude that by (ZI1]) and ([ZI2) the gain can be computed as:

A= |r(0) =) ar(k) (2.13)
k=1

Using the normal equation solution it is easy to show that the corresponding

minimum mean-squared prediction error is given by

Ele(n)] =r(0) — Z agr (k).
k=1

Thus from the previous and ([ZI3)) equation yields that A?> = E[e(n)]. Therefore,
postulating that the energy in the all-pole impulse response h(n) equals the energy
in the measurement signal s(n) brings the squared gain equal to the minimum
mean-squared error.

When the residual signal e[n] is minimized, the analysis filter with transfer
function given by:

1 1=->7 a7t
H(z) A

will attempt to achieve a maximally flat spectrum of the input signal. The

synthesis filter is the inverse of the analysis filter, and thus the frequencies that
have been attenuated by the analysis filter are amplified. The transfer function
of the synthesis filter is given by:

A A

T = " T e

As the analysis filter strives to flatten the spectrum, its inverse filter will describe
the spectral envelope of the signal.

An intermediate set of parameters can be attained from LPC-coefficients,
namely the reflection coefficients k;, in Levinson-Durbin algorithm table 2],
corresponding to the reflection of acoustic waves at the boundaries between suc-
cessive sections of an acoustic tube. The use of reflection coefficients result
to some advantages in synthesis, and can be interpolated without affecting the

stability of the resulting synthesis filter.

Disadvantages of LP method

One disadvantage of the LP method is the chosen model order. The expected
value of the squared prediction error (2.7]) is minimized optimum when the LP-
coefficients order is equal to AR model order, while in practice the real order
of the system is unknown.

Another disadvantage is in the case in which the measured signal is determin-
istic, for example in a speech signal which the excitation pitch period is small,
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T —— DFT spectrum
— — lpc (16)

; .
o~ ; <7

“10

Amplitude [dB]

1
2500 3000 3500 4000

Figure 2.1: The LPC spectral envelope of a stochastic signal (unvoiced speech).

then it can be shown that the autocorrelation function of the speech signal r, is a
severely aliased version of the autocorrelation function ry, of the transfer function
of the system. This means that the estimated transfer function His only math-
ematically obliged to match the real transfer function H as a few under-sampled
points in the frequency domain.

To have a sense of the last disadvantage the estimated spectral envelope will
descend down to the level of residual noise in the gap between two harmonic
partials, where the space between partials is large (small pitch period).

Frequently the LP model exhibit sharp peaks near pitch harmonics with large
powers, featuring an unnatural vocal contour that underestimates the formant
bandwidth, Figure This limitation is dealt with with a regularization tech-
nique [27] [21] as depicted in Figure
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~— —oFT specium
Ioe (70)

1
o 500 000 500 250 3000 350 2000

2000
Frequency [Hz]

Figure 2.2: The LP spectral envelope of a voiced speech signal, with Ipc order
70.

I I
o 500 1000 1500 2000 2500 3000 3500 2000
Frequency [Hz]

Figure 2.3: The regularized LP spectral envelope of a voiced speech signal, with
Ipc order 70.
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2.2 Discrete all-pole modelling

The idea of Discrete all-pole modelling (DAP) [7] is to overcome limitations
of the LP method. To be more specific the spectral envelope of deterministic
sounds is wanted to be estimated. As presented in section 2. 1. 1lin LP method the
first p coefficients of the autocorrelation function rj, of the impulse response of the
AR model are not equal to the first p coefficients of the autocorrelation function r
of the signal, but r is an aliased version of 7}, especially for deterministic sounds
with high fundamental frequency fy. While for stochastic sounds LP gives a
satisfactory spectral envelope estimation.

Note, LP optimization criterion (2.7)) is the minimization of the squared pre-
diction error’s expected value. However, there are many optimization criteria for
the solution of ([2.7)). All of them can be expressed by the ratio between the signal

|2 and the model power spectrum |§(w) 2= —|AG(i)‘-

power spectrum |S(w)
In LP the minimization error of (2.7]) can be expressed in Itakuta-Saito (IS)

distance measure [32][24]:

1 (IS(w)|2 - 1n[|s<w>|2} - 1) o (214)

T )\ LS

With respect to deterministic signals the contribution of DAP is to minimize
equation (2I4)) over discrete frequencies [43]. These discrete frequencies will be
the harmonics, as we are interested in estimated spectral envelope passing through
spectrum peaks. Hence, we use a a discrete version of IS distance measure to
produce an all-pole power spectrum S (w):

Jop % <M - 1n[M] - 1) dw (2.15)

M=\ 1S (wn)? |5 (wn)?
where w, forn =1,2,--- , M are the harmonic frequencies. Minimizing the above
criterion, i.e. IS distance, we create an all-pole model differing form the conven-
tional LP, whose distance is minimized (2.I4]) in continuous frequency axis (—, 7]
and is influenced by the energy of frequencies located between two neighboring

harmonics.
As in equation (Z.8)) to find the optimum solution we will set

O

— =0 for k=0,1,--- 2.16
a(lk; ) or ) Ly » D ( )

and gives:

7=
S

~
Il
o

M
(Z[!Swn)r? ~ 18P ’f) —0= (2.17)
n=1

(r[k‘—i] —f[k—z']) =0 (2.18)

=
E

~
Il
o
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where 7, 7 are the autocorrelation functions of signal and transfer function respec-
tively. The method suggested by [7] is an iterative procedure that tackles this
set of non-linear equations by writing:

h—k] = aiilk—i] 1 k=0,1,--- ,p (2.19)
=0

Zp:air[k:—i] =hl—k]:k=0,1,---,p (2.20)

=0

At a first step we perform the standard LP analysis to obtain a set of d;
coefficients and assign a; = @;. We can then compute 7 from equations (217
and ([ZIR) and a first estimation of h, from ZI9), is evaluated. Equation (Z20)
is then solved to extract a new set of coefficients a;, which will generally be closer
to the required ones than the set of a;. To start a new iteration set:

a; = (1 — p)a; + pa;, fori =0,1,--- ,p, (2.21)

where p is a "damping” factor, p € (0,1). We can re-compute equation (2.I9]) for
a; = a;. The process goes on until E is significantly reduced.

In this way for deterministic signals aliasing is minimized with the itera-
tive process presented above. While with stochastic signals the conventional LP
method is used.

Disavantages of All-Pole model

The main disadvantages of All-Pole modeling for spectral envelope estimation
are a)there are some problems with filter stability, b)harmonic-peaks tracking is
needed [41], ¢) the optimal order is difficult to be determined.

2.3 Cepstrum Spectral Envelope

The cepstrum is a speech analysis method that relies on a spectral representation
of the signal. This method takes advantage of the fact that in the speech produc-
tion model [31] [19], speech is made up by an excitation sequence e(n) produced
by the glottis, together with the impulse response of the vocal tract h(n):

s(n) = e(n) * h(n).

Removing one of two signals is easier when the signals are combined in a linear
manner. This can be achieved employing the log magnitude spectra. In frequency
domain, convolution becomes the product of the pertinent Fourier transform:

X(w)=FEw)- Hw) (2.22)
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Utilizing the logarithm of the absolute value of the Fourier transform, we convert
the multiplication of equation Eq (222]) to an addition:

log | X (w)| = log |E(w)[ + log |H (w)|

Following to this, the application of a Fourier transform to the logarithm of the
magnitude spectrum leads to the extraction of the frequency distribution of the
fluctuations in the curve of the spectrum c. This distribution is referred to as the
cepstrum:

c=F1(log|X(w)|) = F ' (log |S(w)|) + F~!(log |H(w)|)

Under the reasonable assumption that the source spectrum has only rapid
fluctuations, its contribution to ¢ will be concentrated in tis higher regions, while
the contribution of H will be the slow fluctuations in the spectrum of X, and
will therefore be concentrated only in the lower part of c¢. Thus, separation of the
two components becomes trivial: Only the first p of the cepstral coefficients are
kept, where p is called the order of the cepstrum®. This computation can been
seen in Figure 2.4

s(n) c(n)

—_— DTFT —> log|.| —_ IDTF —
Voiced Cepstrum
speech

Figure 2.4: Computation of the Cepstrum.

To finally obtain the spectral envelope from the cepstral coefficients, the fre-
quencies f; are defined at which the values of the envelope is to be obtained.
Usually n equidistant frequencies are calculated up to the Nyquist frequency

fs/2:

2
f,:z‘fS/ di=1,...n
n

Then, after passing to angular frequencies:

27
wi = f ZE
the envelope value u; for frequency f; is
P
u; = exp <Z c; cos(jwi)) (2.23)
j=1
so equation [2.23] becomes
u = exp(Mc)

* The cepstrum methob belongs to the class of homomorphic deconvolution methods
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where
1 cos(2mf1) cos(2mf12) -+ cos(2mfip)
M= | : : . (2.24)
1 cos(2mfn) cos(2mfp2) -+ cos(2mwfup)

Disadvantages of cepstrum spectral envelope

Unfortunately, low pass filtering create an envelope following the mean of the
spectrum and not as desired the contour of the spectral peaks. Another dis-
advantage, similar to LP, happens when high-pitched harmonic are analyzed,
where in two neighboring spectral peaks the estimated curve will follow down to
the residual noise level in the gap between partials.

2.4 Discrete Cepstrum Spectral Envelope

The method presented in the previous displays a number of disadvantages. For
example adequate number of cepstrum is necessary in order to generate accu-
rate envelope. Moreover when the partials are located far apart, the envelope
estimated employing cepstrum descends down in to the space. The same limita-
tion is presented in the LP method and is dealt by DAP method by accounting
for the harmonics for the minimization of the error criterion. To overcome the
same limitation we can use the discrete cepstrum method [19] [I8], which also
overcomes the problem by considering the harmonics, however for a least squares
error criterion.

Cepstrum is computed using the spectral representation of the signal with
points spaced equally, on the frequency axis. On the other hand the method
of discrete cepstrum is computed by distinct points in the frequency-amplitude
plane.

The latter is more preferable as some spectral peaks of a sound are not re-
quired to be regularly spaced in frequency in a sinusoidal model.

Given a set of L values of harmonic amplitudes a; measured at the normalized
harmonic frequencies of the fundamental frequency fo, fi = k};—: where Fj is the
sampling frequency, the log-amplitude envelope A.(f) can be evaluated by the
real cepstrum parameters ¢;:

A(f)=co+2 Z cos(2m f1) (2.25)

i=1

T

where ¢ = [cg, -+ ,¢p|" are the real cepstrum coefficients, and p is the order of

the cepstrum.
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The optimum discrete cepstrum coefficients are calculated by minimizing the
squared error in the log-amplitude domain as shown below:

L
= 120logyg ar, — Ac(fi)ll%, (2.26)
k=1

The least-squares solution is

c=(M"M) "MTa (2.27)
where M is defined as:
1 cos(2mfi) cos(2mfi2) -+ cos(27mfip)
M= | : . (2.28)
1 cos(2mfy) cos(2mfp2) -+ cos(2mfnp)

Note the difference of M in ([224) with M in ([228). In the first case f; are

points spaced regularly, f; = i%, in the frequency axis. While in the second case
fi=if.

A problem with the solution given by (ZZT7)) is that the matrix MTM is often
poorly conditioned, meaning that small differences in data can produce large
differences in the result. Hence, the estimated spectral envelope may fall far
from the true one. These problems frequently appear when:

1. The are large frequency regions with no frequency point specified in them.

2. A number of frequency points are closely located in frequency, but differ
substantially in magnitude.

3. The number of cepstrum coefficients reaches the number of frequency points.

The above issues can be solved using a regularization technique [29] that
achieves an improved spectral envelope estimation by the regularized discrete
cepstrum coefficients.

2.5 True Envelope Estimator

True envelope (TE) is a method that was developed in 1979 in Japan [I7]. Un-
luckily, the method failed to gain recognition among researchers due to its intro-
ductory paper being published in Japanese. It is a cepstrum-based estimator that
employs iteratively cepstral smoothing, aiming to link the prominent peaks of the
log spectrum with a smooth and steady curve. The problem of spectral envelope
estimation is viewed as a band-limited extrapolation problem. The well known
Papoulis-Gerchberg algorithm [30] [15] [8] for restoring lost samples is used. In
the following section a shortly presentation of Papoulis-Gerchberg algorithm is
illustrated.
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2.5.1 Papoulis-Gerchberg Algorithm

The formal Papoulis-Gerchberg algorithm, for a band-limited signal s(n) with
known values at n € A, performs the following steps:

1. f(n) initialization:

f(n) = { s(g‘) EZ ;j (2.29)

2. Calculate the Fourier transform of f(n):
1 N—-1 ‘
F(k) = > f(n)ed2mknN (2.30)
n=0

3. Use the band-limited property:

1 |k <o
F(k) = F(k)P,(k), P,(k) = = 2.31
(k) = F(R)P, k), Py (k) {OWZU (2.31)
where o is the bandwidth of the original signal, s(n).
4. Perform IDFT:

N-1 A

fo(n) =" F(k)e?¥mkn/N (2.32)
k=0

5. Update f(n) and an estimation of lost samples retrieval is computed:

_J s(n) ifnecA
f(n)—{ fn) ifnd A (2.33)

Repeat steps (2)-(5) until convergence.

It is easy to prove [I5] that the Mean Square Error

N-1
MSE =+ 7;) £ (n) = s(n)]

is reduced in each iteration of Papoulis-Gerchberg algorithm, but in [§] is indi-
cated that there is a class of problems, like low-pass signals with contiguous set
of nonzero harmonics, where convergence is very slow. However the algorithms
conversion rate usually is slow.

Despite that, the conversion rate of the algorithm is generally low. Efforts
for a more effective approach of the algorithm have been made by [I5], where it
transforms the initial signal to a new one, matching the border conditions in a
way to approximate a band-limited signal.

In this section it was presented a useful algorithm for restoring lost samples.
The following section will focus on showing that by using some properties of the
algorithm we can have an efficient estimation of spectral envelope known as True
Envelope.
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2.5.2 True Envelope estimation

In all spectrum envelope estimations it is desirable to link the outstanding peaks
in a smooth way. In this method, the knowledge of Papoulis-Gerchberg algorithm,
presented in the previous section, provides a tool for a smooth curve passing
through the prominent peaks of the amplitude spectrum.

It is known that the prominent spectral peaks contain the information about
the spectral envelope. Thus, having a sub-sampled spectral envelope, we can
reach an approximation by the Papoulis-Gerchberg algorithm, only in the case
the spectral envelope is band limited.

TE is a cepstral-based method, thus for an input signal frame s(n) the log-
spectrum is computed:

A(k) = log(|S(k)]) (2.34)

where S(k) is the K-point DFT of the signal frame, s(n).
The algorithm for the TE estimation follows the next steps:

1. C(k) initialization:
C(k) = A(k) (2.35)

oli) = = > Clk)e 72mkIN (2.36)

n=0

where ¢ is the discrete cepstrum coefficient introduced in section 2.4.
3. Use the band-limited property:

1

(i) = cli)pali), pali) = { ) by (2:37)

where o is the bandwidth of the original signal, C'(k).

4. Perform IDFT:

-1
Cr(k) = c(i)e??mR/N (2.38)
=0
5. Update C'(k):
C(k) = max(A(k), Cy (k) (2.39)

6. Go back to step (2) until:

ler — eroal <€ (2.40)
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where € is sufficiently small quantity compare to the desired accuracy, er is
the mean square error in the desired points:

1 M-—1
er = > 10k — Ak,
=0

of the current estimation, k; is a desired point and M the total number of these
points, while er,;4 is the mean square error of the previous iteration.

At this point it is important to highlight a number of remarks for the algo-
rithm presented above. In the first step the log Spectrum is assigned to variable
C, is reminded the fact that the perceived loudness of human listener is ap-
proximately logarithmic with the signal amplitude, in order to perform cepstral
smoothing in the following steps, (2)-(4). Second step provides us discrete cep-
strum coefficients, for this reason TE is a cepstral-based method for the spectral
envelope representation.

In the third step it is important to pay attention to the selection of the
appropriate cut-off frequency during the estimation of TE. For harmonic signals
with fundamental frequency fp and sample rate Fy it is easy to show that the
optimal cut-off frequency (Nyquist frequency [23]) is:

- 2F)’
Consequently the optimal cepstral order p, for harmonic sounds is 2%0 , while in

general the optimal order and cut-off frequency is is

oc=p= %0n
where dp is the largest distance between two neighboring spectral peaks.

The execution of steps four and five results in filling the valleys between two
neighboring spectral peaks with the mean spectrum. Additionally, it increases
the estimated envelope that tends to cover the spectral peaks.

The final step (6), is a termination criterion which determines the accuracy of
estimated envelope, producing a trade-off between accuracy and the number of
iterations. More specifically, as the number of iterations increases the estimated
envelope will also increase until it covers all the spectral peaks.

Following the above steps we achieve a good estimation of the spectral en-
velope (Figure 2.5)), from which we can obviously extract directly the discrete
cepstrum coefficients, since this is a cepstrum-based method. However, having
a good representation of the spectral envelope it would be possible to estimate
other types of coefficients too, such as the LPC ones. The next section describes
how to estimate the LP coefficients, called TE-LPC.
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Figure 2.5: The TE spectral envelope estimation for a male speaker.

2.56.3 True envelope LPC modeling

The type of the limitations shown in the spectral modeling of voiced speech by
the standard LPC technique shows that LPC performance is restricted by the
procedure itself and is also influenced by the local characteristics of the signal.

More particularly, in LPC method it is assumed that the autocorrelation
function r of the measured signal equals the autocorrelation function 7j of the
transfer function. Nevertheless, as we have seen in harmonic signals, r is a sever-
ally aliased version of 7. In this case, the fitting of the spectral envelope is not
as close as possible, but it is rather closer to the original spectrum. To deal with
these shortcomings the proposition of [12] is followed.

Initially it is used an optimal band limited interpolation to interpolate the
spectrum as described in chapter Subsequently is imposed a high order
all-pole model such that the Line Spectral Frequency (LSF) representation of the
spectral envelope is still attainable. Further to this improvement it is demon-
strated [40] that the high order LPC model will gain a superior representation
of the narrow formants of the spectrum, which are generally too broad following
the band limited interpolation.

Having a good estimation of the spectral envelope Hyp we can compute the
autocorrelation function rp, h is the impulse response of the transfer function H,
directly from the estimated spectral envelope. The Wiener—Khinchin theorem
relates the autocorrelation function to the power spectral density via the Fourier
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transform:

K
1 o
’I“h(i) = ? ]; HTE(wk)erwkZ, (241)
where Hrp is the estimated K-point spectral envelope. Calculating r, from
2410, LP can be computed from the well-known Yule-Walker equations:

r1(0) rh(1) rr(p—1) ay rp(1)
R ’I“h.(l) ’I“h.(O) . rh(p‘— 2) a‘2 _ ’I“h.(Q) (2.42)
rn(p—1) ma(p—2) -+ 74(0) ap h(p)

and the TE-LPC coefficients are obtained from:
a=R'ry, (2.43)

It should be noted that the above estimation does not minimize the expected
value of the standard squared prediction error as in the conventional LP estimator
(equation [27)). Nevertheless, this estimation yields (generates) a curve which is
closer to the spectral envelope. In Picture below is depicted the comparison
between the LP and the TE-LP method.

Amplitude (dB]

(] 500 1000 1500 2500 3000 3500 4000

2000
Frequency [Hz]

Figure 2.6: Example of LPC and TE-LPC spectral fitting (model order =60).

However this method can be improved with respect to execution complex-
ity, by using a proposal of Robel and Rodet in [I] and by taking advantage of
zeros appearing in Fourier transform for a pruned fast fourier transform (FFT)
implementation [14] [9].



Chapter 3

Speaker Conversion and
Interpolation

3.1 Spectral Matching

3.1.1 Dynamic Time Warping

Dynamic time warping (DTW) is a time alignment algorithm launched in the
60’s [19] [B5]. In the past it has been extensively used in speech recognitions,
but in the present its application has been extended in various areas (e.g. online
signature matching, gesture recognition, computer animation, surveillance, etc).
It is an algorithm popular amongst researchers for being efficient as the time-
series similarity measure, that minimizes the effects of shifting and distortion
in time. This is accomplished by warping the time axis of time series in order
to detect shapes with different phases (figure B.1). Given two time series A =
{ay,a9, -+ ;an}, and B = {by,ba, - by}, with N, M € N, DTW will find the
optimal solution for the sequence alignment in the O(M N) time.

Let sequence A, B take values form the feature space ®. In order to compare
them a local distance function, often called cost function, is needed to define the
measure function:

d:dx®—>R>0. (3.1)

Intuitively, d has a small value when sequences are similar and a large one if
they are different. The optimal alignment of the sequences becomes the task of
arranging all sequence points by minimizing the cost function.

RNXM

The algorithm starts with the distance matrix D & representing all

pairwise distances between A and B. This matrix is labeled the local cost matrix

21
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val ues

time

Figure 3.1: Raw time series, arrows show the desirable points of alignment.

for the alignment of two sequences A and B:
D e RNXM : dly] = Ha’l - b]H’Z € {1,25 ’N}’j S {152, ,M} (32)

After the computation of the distance matrix, the algorithm finds the align-
ment path which runs through the low-cost areas, “valeys“ on the cost matrix
Figure This alignment path defines the correspondence of an element a; € A
to b; € B (a3 — by), with the restriction to assign first and last elements a; — by
and a,, — b, respectively, known as boundary conditions.

Formally speaking, the alignment path built by DTW is a sequence of points
P = p1,p2, - ,PK With pp = (Zk,]k) € [1,N] X [1,M]ﬂN for k =1,2,--- K
which must satisfy the following criteria:

1. Boundary condition: p; = (1,1) and pr = (N, M). The starting and
ending points of the warping path must be the first and the last points of
aligned sequences.

2. Monotonicity: The path should be monotonic. This means that:

ik—1 < i and jr_1 < ji (3.3)

3. Global Path Constraints: Is the amount of the allowable compression
or expansion in time axis from the warping function:

| Jk =ik [S W, (3.4)

where W is called the “window width .
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Figure 3.2: Cost matrix containing all pairwise distances.

4. Local Path Constraints: Given a node py = (ix, jx) on the cost matrix,
the legal set of predecessor nodes is specified by the Local Path Constraints.
Several types of local path constraints in term of predecessor nodes have

been studied by various researchers. for example:

(ix — 1, k)
pe—1=19q (ig,Jx — 1) (3.5)
(i — 1, jr — 1)

constraints the predecessor node in the overall path to take one value only
of equation (B.3]).

The cost function associated with a warping path computed with respect
to the local cost matrix will be:

L
dy =Y d(ir, jy) (3.6)
=1

where i C {1,2,--- N} and 5; C{1,2,--- , M}.

The warping path with the minimum cost function is called optimal warping
path and is denoted by P*. To find the optimal warping path we calculate all the
possible warping paths between time series A and B. However the computational
cost grows with exponential order. DTW overcomes this difficulty via Dynamic
Programming resulting in an algorithm with O(M N) complexity.

In speech signal processing the utility of DTW as described above is straight
forward. The position of time series A, B can be taken by cepstrum coefficients,
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Figure 3.3: Coefficient alignment in a phoneme between two speakers.

mel-cepstrum or LPC coefficients. Note that for LPC the distance measure
changes from Euclidean to Itakura-Saito. Figure illustrates an example coef-

ficient alignment of two speakers in the same phoneme.

3.1.2 Dynamic Frequency Warping

In DTW technique two different time sequences of the same shape with different
phase are aligned. It is obvious that the DTW provides reliable correspondences
for sequences having similar shape and different phase. In speech signals DTW
achieves an accurate comparison when the vocal tract lengths are close, male to
male or female to female. When speakers of different gender are aligned with
DTW, the comparison is not accurate because the frequency characteristics of
the features are not taken into account. We will attempt to resolve this problem
using an alternative method called Dynamic Frequency Warping (DFW), which
is used to normalize the frequency scale [10] [16].

DFW aims at getting an optimal non-linear warping function of the frequency
axis to normalize the signal characteristics in the frequency domain. For speech
signal DFW is more closely related the acoustic theory of speech production,
because it uses frequency specific properties of the speech signals. Therefore, in
this subsection will be dedicated in describing this method specifically for speech
signals.

To begin with, we will briefly explain the computation of the DFW path on
a pair of log-magnitude spectrum. Next, we will explain how to find a transfor-
mation for a given acoustic class.
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Let S™(k) and S*(k) denote the reference log-amplitude spectrum and the
target log-amplitude spectrum respectively, with K is the bins of Fourier trans-
form. The algorithm starts with the distance matrix D € RV*M representing all
pairwise distances between S”(.) and S!(.). This matrix is labeled the local cost
matrix for the alignment of two spectrum S” and S*:

D ERKXK: d(Z,]) :| ST(Z) _St(]) |’ for Z,] € {1,25 ’K} (37)

Each element of cost matrix can be considered as a two-dimensional match-
ing space. The alignment path built by DFW is a sequence of points p =
1,02, »Pr With pr = (ig, i) for ik, jp,k = 1,2,--- | K. The algorithm for
the case of a pair of log-amplitude cepstrum is the same to the DTW algorithm
but with some different constraints:

1. Boundary condition: p; = (1,1) and py = (K, M), M < K. Ouly
the starting points of the warping path must be the first points of aligned
sequences.

2. Monotonicity: The path should be monotonic. This means that:

ik—1 < ix and jJr—1 < Jg (3.8)

3. Global Path Constraints: Is the amount of the allowable compression
or expansion in time axis from the warping function:

| gk — ik S W, (3.9)

and W is called the “window width“. Here we can use stricter slope con-
straints for low frequencies than for high ones, becaues in vowel formant
frequencies for different speakers the variability of the two formants is low.

4. Local Path Constraints: Given a point pg = (ix, jx) on the cost matrix
the legal set of predecessor nodes is specified by the Local Path Constraints,
a legal constraint that it often used is:

(ix — 1, jx)
pr =79 (ikJjk—1) (3.10)
(i — 1, Jk — 1)
As in DTW, the optimum path is:
K
P = iny " d(i, j 3.11
arg H;}HZ; (i1, Ju) (3.11)

We have shown how to apply DFW for a pair of log-amplitude spectrum. Next
we will focus in the procedure which find DFW for an utterance pronounced by
two speakers.
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Initially we extract a set of coefficients representing the sequence for each
speaker. These can be cepstrum coefficients, LPC etc. Subsequently, we perform
DTW to provide the correspondences of the coefficients. Each pair of correspond-
ing coeflicients leads to a respective pair of spectral envelopes. The computation
of the optimal DFW path takes place for the whole utterance. Each pair of
reference and target spectral envelope will be accounted for in the frequency
normalized distance. Consequently, DFW procedure will find the path P* that
minimizes the new global distance:

N K
D =min» > " dn (i ji) (3.12)
p
n=1k=1

where N is the number of analysis frames and d,, calculates the distance in the
frame n.

Note that the optimum path P* is global, meaning that in all spectral envelope
pairs the warping frequency function is the same.

With this method we achieve a normalization of vocal tract length for the
two speakers. Resulting a more accurate comparison of the extracted features,
especially when DFW applied in voices of different gender.

3.1.3 Segment-wise time warping

As discussed in subsection B.I.T] the technique of searching for similar patterns
among time series data can be applied to many different areas. Time warping
distance is a similarity measure that is derived from and related to the area of
speech recognition. When the time warping technique was introduced in the area
of time series searching, it was applied using DTW [6]. With DTW some portion
of the time is dynamically warped to minimize the effects of distortion in the
time domain.

a_2

—>

a_l

Figure 3.4: Distortion of time series using point-wise time warping.

For example, given two time series A = {ay,as}, B = {b1,b2,b3,b4}, a1 can be
matched with {b1,b2} and ay with {b3,bs}. The warping in this example means
repetition, i.e. a; and as are repeated two times, figure[3.4]. This time distortion
is called point-wise warping (PTW).
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An alternative method was proposed called segment-wise time warping (STW)
[25]. This time warping method based on segments. For the previous example
the stretched segment will be:

i
441

si=al+ (a2 —al), 0<i<4+1, (3.13)

and is depicted in figure

a_2

Figure 3.5: Distortion of time series using segment-wise time warping, s; is given
from equation [3.13]

1.8}
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Figure 3.6: Time series A and B (taken by Zhou and Wong [25])

Zhou and Wong [25] give an example of two sequences A = (1,2,1.75,1.5,1.25,1)
and B = (1,1.25,1.5,1.75,2,1) Figure The correspondences between A and
B using DTW is shown in Figure BTl and the time warped sequences in B.7I1.
Similarly the correspondences between A and B using STW is shown in Figure
B and the time warped sequences in [B.701.
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Figure 3.7: (I) The correspondences between A and B using point-wise warping,
(IT) the time warped A and B (taken by Zhou and Wong [25]).
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Figure 3.8: (I) The correspondences between A and B using segment-wise warp-
ing, (IT) the time warped A and B (taken by Zhou and Wong [25]).
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We have given a general idea of STW method, however it is not in the purpose

of this paper to present it in more detail.

Piecewise linear time warping for speech signals

The time series warping distance was derived from the time warping in speech
processing. Now we will use the segment-wise time warping (STW) that was
created for time series, to obtain a similar method for speech signals.

Given two time series the reference A = {aj,a2, -+ ,an}, and the target
B = {by,ba, - ,bp}, with N, M € N, we will find the optimal solution for a
piecewise linear time warping of the target axis.

The algorithm begins with the transformation of the reference axis from
{1,2,--+ N} to [0, 1], dividing interval [0, 1] to three equal segments: (0, %), (%, %),
(%, 1), as depicted in Figure 3.9al

Following, is the transformation of the target axis from {1,2,--- , N} to [0, 1],
dividing the interval [0,1] to three segments:(0,t1), (t1,t2), (t2,1) as depicted in
Figure 3.9l Segment wise warping is then performed in each interval:

0,t1) — (o%) (3.14)
(t1,t2) — <%,§> (3.15)
(t2,1) — (%1) (3.16)

In this way a warped axis for the whole sequence is obtained. We will symbolize

this warping function g(.), figure BI0l

I I I I I I
0 1/3 2/3 1 0 tl t2 1
(a) Reference axis normalization and seg-(b) Target axis normalization segmenta-
mentation in three equal segments. tion in three segments, 0 < t; < t2 < 1.

Figure 3.9: Transformation and segmentation of reference@ and target @ axis.

Let sequence A, B take values from the feature space ®. The local distance
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1

t2=g(2/?i

t1=9(1/3) [

| | |
0 1/31 2/3] 1!

Figure 3.10: Piecewise linear time warping function.

function is used in order to define the measure function:

d(Z,j) = ”ai_bj”7 (&S {1727"' 7N}7 je {1727"' 7M} (317)
d:dPxd—R=>0.

then the warping error will be:

N
c=> d(k,g(k)) (3.18)

k=1

The optimal ¢1,ts will be obtained by the minimization of e:

{tP 4P} = arg tlrél(ior}l){arg t21g%£171) e} (3.19)

To clarify things an example is given for a phoneme represented by cepstrum
coefficients. Let the reference axis (0,1/3) contain the cepstrum coefficient vectors
{@1,ds,ds,ds}, and the target axis (0,¢;) contain the cepstrum coefficient vectors
{b1,bo}, @;,b; € RP (p is the order of cepstrum coefficients). Then the target
axis is warped from (0,%1) to (0,1/3) and the new target cepstrum vectors are
obtained {57, 3, §5, 84} from the relation:

+b, 1<i<A. (3.20)

The number of the warped vectors is the same with the number of the reference
vectors in order to compare them. Thus the local error for the first pair of
segments, (0,1/3) with (0,¢;), will be:

4
€local = Y _ ||k — 5kl (3.21)
k=1
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The same procedure is performed for the rest two pairs, (1/3,2/3) with (¢1, t2)
and (2/3,1) with (¢2,1), and the total error € is calculated as the sum of local
errors. Then we choose the ¢; and t9 that minimize the total error € and the
optimum warping path is obtained, which we remind that is a piecewise linear
path, as in figure

Usually when we compare the phonemes of two speakers we find that their
time duration differs. When using DT'W the consequence of this is the repetition
of some moments during warping. With the use of the above method we avoid
these repetitions by extracting a new set for which the number of features equals
with that of the reference set. This method can also be used as an alternative to
DFW [13]. The only difference is the warping of the local path. The results were
improved compare to both DTW and DFW.

3.2 Lattice filtering

The lattice filter is extensively used in digital speech processing and in the im-
plementation of adaptive filters. It is a preferred form of realization over other
FIR or IIR filter structures because in speech analysis and synthesis the small
number of coefficients allows a large number of formants to modeled in real time

[BT1H21[3].

3.2.1 The FIR lattice filter

Let s(n) be the measured signal, which is an AR process. Consider the transfer
function:

Alz)=1-> ajz" (3.22)
k=1

which is the ith-order prediction error filter, section Z.I.Jl Taking the inverse
z-transform we obtain:

ei(n) =s(n) — Y aks(n—k)=s(n)— 5(n) (3.23)
k=1

where e;(n) is the forward prediction error sequence for the ith-order prediction
error (inverse) filter. In the z-domain the forward prediction error is given by:

Ei(z) = A(2)S(2) (3.24)

Consider now the backward prediction error sequence as:

bi(n) = s(n—1i) = ajs(n—i+k), (3.25)
k=1
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and b; represents the difference between the s(n — i), the value of the input
function 7 samples ago, and a linear combination of the following 7 samples of
s(n — ). One way to think about b;(n) is what we would have obtained if we
calculated e;(n) but with the input function presented in time-reversed order.
The z-transform of b;(n) can be found as follow:

Bi(z) = 27'8(z) — Zaiz_iS(z)
k=1

= 27'8(2) [1-— Z aizk]
k=1
= A (27NHS(2) (3.26)

With the above time and frequency expressions for the forward and backward
prediction and using the third step of the Levinson algorithm, table 2] i.e.,

aé = aé_l — kiaﬁi}, 1 < j <, we can arrive at the following relations:
ez(n) = ei,l(n) - kﬁibifl(n - 1) (327)
bz(n) = bi_l(n — 1) — k:iei_l(n) (3.28)

These equations can be depicted by a flow graph which we refer to as a lattice
filter structure (Figure BII]). The output of the pth stage of the lattice equals
the forward prediction error for the Nth-order predictor, i.e, ey (n) = e(n) which
equals the output of A(z).

sin] eolnt] ejlnf exln] ey yln] enin]
o o
v k; “k ky
1 ko % i A %
Bl BT Balnl by (1T by[n]

Figure 3.11: Flow graph of the lattice FIR filter.

3.2.2 The lIR lattice filter

As noted above, we have developed an all-zero lattice filter in the previous section
with transfer function

N
A) =1-) ayzF (3.29)
k=1

In figure BTl the input is s(n), measured signal, and the output is e(n), the
prediction error.. Keeping the same filter structure but interchanging the input
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and output, the following transfer function is obtained

1 1
= 3.30
Az) 11— Z}]CV::L aé\fsz ( )

which is an all-pole transfer function.
Recall that the original definitions of the stages if the FIR lattice filter are

ei(n) =ei—1(n) — kibi—1(n — 1), (3.31)
bl(n) = bi,l(n - 1) - k:l-el-,l(n), (332)

and equation (33I]) can be rewritten as
ei_l(n) = ez(n) + kibi_l(n — 1). (3.33)

From equations (8:32]), (3:33)) is obtained the lattice structure of figure ([B12I).

enlnf ey_jinf esfn]f ejnf epln]  s[n]
o o — — O
+kN +k’f
_kN —)r(;
.~ 1 -1
R, Yiinl  ¥53ln] Biin]

Figure 3.12: Flow graph of the lattice IIR filter.

Note that ey (n) is now the input and that eyp(n) is the output. This filter
have the transfer function:

B 1

- N N
Yk ap 2

where the LPC parameters a; are related to the reflection coefficients k; according

to the usual Levinson-Durbin relationship. Since the filter is IIR with feedback
loops, it does have the potential to be unstable. However, it is guaranteed to

H(z) (3.34)

remain stable because
| ki |< 1 for all i. (3.35)

3.2.3 Interpolated Lattice Filter

The use of reflection coefficients results in some advantages in lattice filter inter-
polation, because they can be interpolated without affecting the stability of the
interpolated lattice filter.
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In fact when two or more lattice filter are interpolated, each k:; of the result-
ing filter is an interpolation kil, k?, e ,k:ZM coefficients, where m of k" indicate
reflection coefficient of filter m.

For example, the linear interpolation of two FIR lattice filters Hy, Ho, will

have the reflection coefficients:
ki = ak! + (1 —a)k?, a€l0,1] (3.36)

The same can performed in IIR latice filter. In the case of interpolation be-
tween two ARMA lattice filter, the numerators and denominators are interpolated
as above.

3.3 Speech Conversion

Given an utterance voiced by two speakers, i.e. the source and the target speaker,
we wish to convert the voice of the source speaker in a way that it sounds like the
voice of the other speaker. Spectral envelope information plays an important role
in voice individuality [22]. Extracting the excitation signal of the source speaker
and replacing the spectral envelopes of the source speaker to the corresponding
of the target speaker we expect the conversion of the voice. The steps that need
to be taken in order to achieve the conversion of speech are the analysis, spectral
matching and conversion.

3.3.1 Analysis.

In analysis step the estimation of spectral envelopes is performed in order to
extract speaker voice characteristics. To smoothly represent the alternations of
the spectral envelope, a hamming window with length 30ms with step 5ms is
used. In voiced speech portions the True Envelope (TE) method is used, be-
cause it is an efficient method for spectral envelope estimation, compared with
the existing methods (section [Z1]) [33]. TE is based on fundamental frequency
Fy and sampling rate Fs. The optimal order is Fy/(2Fy) (section 2Z5.2]), so pitch
estimation is performed before spectral envelope extraction. The basis of the TE
algorithm is the consideration of spectral envelope as band-limited signal with
lost samples. The known samples lie on the spectral peaks and the restoring
Papoulis-Gerchberg algorithm is applied. Missing signal sampling regularly re-
sults in spectral peak at 0Hz and possibly Fs/2 being generally missing so that
for harmonic excitation with fundamental frequency Fjy the maximal frequency
difference between the supporting peaks will be Ap = 2Fy. Thus to estimate the
values at the frequencies 0 and F/2 the true envelope method is performed with
order Fy/(4Fp) first. In unvoiced portions LPC is an efficient method for spectral
envelope estimation and it is being used. The order selection is chosen to Fy/1000
[19]. Table Bl presents a briefly description of the analysis procedure. We must
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note here that Fy varies in different frames and for different speakers, thus a mean
value of the two speakers fj is taken which gives an estimated spectral envelope
close to the optimum.

step 1:  pitch estimation of s(n)

step 2: if voiced frame:
step 2, TE method with order 4%0
step 2y envelope estimation on 0Hz and %Hz
step 2. TE method with order 2%0
else:
step 2,/ LPC method is used with order 1580

Table 3.1: Spectral envelope estimation for input signal s(n).

3.3.2 Spectral matching.

In time and frequency warping the cepstrum coefficients are used. Cepstrum coef-
ficients are suitable perceptual features in warping measurements [44]. Also they
provide a better spectral alignment compared with the line spectral frequencies
(Isf), in the sense of speech naturalness. The extraction of cepstrum coefficients
from TE is straightforward, as the DFT of the estimated spectral envelope. For
LPC the estimated spectral envelope is calculated from the log-amplitude of
transfer function
1

S 120 agemdwR

H(w) (3.37)

where p is the model order. The cepstrum coefficients are computed via the
log-amplitude DFT of the envelope.

Parallel corpora are processed, thus each corpus, of the source and the tar-
get speaker, is consisted from the same phonemes with the same order. The
cepstrum coefficients of the corresponding phonemes are aligned using piecewise
linear time warping, which compared with DTW, is superior for a more efficient
alignment. After a first estimation of time warping between source and target
speaker, piecewise frequency warping is performed for the normalization of the
target vocal tract. Then again time warping between the normalized target cep-
strum and original source cepstrum is performed and so on, until the warped
time axis converges. The iterative procedure is shown in table From the pro-
cess explained above the enhancement of time alignment for the parallel corpora
alignment is expected compared with a single DTW or piecewise linear warping
execution.
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/*time warping of the target time axis*/

t = timeW arping(Cs, Cy)

for a fixed number of maximum iterations do
/*frequency warping of the target spectral envelope*/

3 C, = FrequencyWarping((Cs, Cy),t')

4t =timeWarping(Cs, C;)

5 if ||t —t,.ll2 <edo

6 break;

7

8

N =

end if
end for

Table 3.2: spectral matching of source Cs and target Cy cepstrum.

3.3.3 Conversion.

To this point we have the spectral envelope of the source and of the target, as well
as their correspondences in time. Our purpose is to compute the LPC coefficients,
and from LPC we could obtain reflection coefficients, for each spectral envelope.
LPC or reflection coefficients are used depending on what king of synthesis is
performed. For instance, using the interpolated ARMA lattice filter the reflec-
tions coefficients are needed. In voiced frames the TE-LPC coefficients (equation
[2.43]) are extracted for each spectral envelope of the source and the target individ-
ual, while in unvoiced frames the LPC coefficients are known for both speakers.
Frequently the LP model exhibit sharp peaks near pitch harmonics with large
powers. A regularization technique is applied to obtain smoother contoured all-
pole spectral envelopes. Given the source signal as input in the inverse filter
results in the excitation signal as output. In the position of the source’s spectral
envelopes used for inverse filtering we place the respective envelopes of the target
speaker. Then we filter the excitation signal with the spectral envelopes of the
target represented by the LPC coefficients. Both inverse filtering and filtering
can be conducted with the use of the ARMA interpolated lattice filter, or with
the use of a MA and AR filter with the overlap and add (OLA) method. The
speech conversion procedure is depicted in figure

3.4 Speaker Interpolation

Given the voices of two or more speakers, the source speakers, the task of speaker
interpolation (IS) is to interpolate the voice characteristics of the given voices,
in order to obtain an intermediate speaker. The new speaker’s voice can be cal-
culated as the linear combination between the voice characteristics of the source
speakers. To be more specific, the voice characteristics represent the speaker



38

source
data

target
data

CHAPTER 3. SPEAKER CONVERSION AND INTERPOLATION

v
Pitch Spectral Envelope Inverse
Estimation extraction Filtering
converted
Spectral excitation through data
matching target envelope
Pitch S T
_— i s pectral Envelope
Estimation extraction

Figure 3.13: Block diagram of the conversion procedure.

identity and the appropriate voice feature that represents speaker identity is the

spectral envelope.

In this section the source speakers for parallel corpora is considered. The

steps for the proposed SI are:

1.

Analysis: The extraction of spectral envelope for each speaker is per-
formed. The analysis procedure is exactly the same as in voice conversion
(subsection B.3.1]), using TE method in voiced frames and LPC in unvoiced

(table [3.1)).

Spectral matching: The alignment in speech conversion is based upon
the source speaker. In SI the time warping takes place in accordance with
a reference speaker. For instance, interpolating three speakers, speaker 1,
speaker 2 and speaker 3, one of them is chosen as the reference speaker,
let be speaker 1 as reference. Then the times axis of speakers 2 and 3 are
warped, each of them, to correspond to the time axis of reference speaker
1. Spectral matching is also identical with speech conversion (table B.2]).

Interpolating Speakers: The difference here compared to VC is that the
excitation of the reference speaker is filtered from an interpolated spectral
envelope. To further the range of the produced voices, the vocal tracts of
the given speakers are normalized in accordance with the reference speaker,
and we differentiate the length of the interpolated vocal tract to a factor A.

Thus, for speakers 1 and 2, the interpolated vocal tract is:
Hw)=(1-a)H(M\w) + aH(M\w), a€[0,1], (3.38)

where H; is the spectral envelope of the reference speaker, Hs is the normal-
ized spectral envelope of speaker 2 with reference to speaker 1. The vocal
tract length normalization is conducted through linear piecewise frequency
warping algorithm [13].
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The above procedure could be also applied for N speakers, and the interpo-
lated vocal tract will be (figure BI4]):

N
H(w) =a1Hi(\w) + agHo(MAw) + - - ayHy(Aw),  with Z a; =1. (3.39)
i=1

,multiplication of each envelope
,~ by the interpolation factor

P
Speaker 1
E—
Speaker 2
Speaker3 | | a3 @ T~ L\ ey Interpolated spectral
E—— . '
Warping envelope
Speakers |
by a factor 7
Spectral . \ '
Envelopes Lo
Speaker N

Figure 3.14: Spectral envelope interpolation.

Any subset of a given set of voices could be used applying the proposed method
to produce a considerably larger new set that will contain high quality voices. The
block diagram of two speakers interpolation is depicted in figure[BI5lIn this thesis
the interpolation was performed between two and three speakers. A subset of re-
sults is provided in the enclosed cd and in http://www.csd.uoc.gr/~ ggrekas/SC_SI.html.

speaker 1 - ] Inverse
— Pitch Spectral Envelope.
(reference) Estimation extraction l l Filterin
new

Spectral || Envelope excitation through |—SPeaker
matching Interpolation interpolated envelopd

speaker 2 Pitch Spectral Envelope
Estimation extraction

Figure 3.15: Block diagram of Speakers interpolation.
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Chapter 4

Conclusion

To summarize, in the present thesis i worked on the speaker interpolation problem
and on speech conversion. Parallel corpora were used to limit the artifacts of VQ,
GMM or other conversion techniques, which generally are not methods of parallel
corpora. Efficient techniques for spectral envelope extraction (TE) and time and
frequency warping (i.e. piecewise linear and frequency warping) were used.

The usage of TE compared with the regularized LPC achieved a better repre-
sentation of spectral envelope, particularly in high pitch voices. As a result, the
produced SI and SC were substantially improved in quality, with the improvement
being especially noticeable in high pitch voices. By applying piecewise linear time
warping the interpolated and converted voices presented fewer artifacts in the ar-
eas ranging from voiced to unvoiced speech, or from unvoiced to voiced speech.
In synthesis, the interpolated lattice filter resulted in high peaks in some areas
of voiced to unvoiced portions, when the first formant amplitude, of the target
speaker, was very high compared to the following formants. In OLA method
these peaks were not present, and this happened because the lattice parameters
vary with time and the unnormalized lattice filter may lose stability [34].

The advantages of this work were considerable in speaker interpolation. The
linear interpolation of the spectral envelopes provided an intermediate speaker.
The widening or the shrinking of spectral envelope was analogous to the change of
vocal tract length, thus the resulting individual speaker has had an interpolated
vocal tract with a desired length. Consequently, the number of the produced
individual speakers is substantially larger compared to the initial set of speak-
ers. In speech conversion the artifacts were reduced as expected, and they only
appeared in a small set of speakers (10%), with most of them being detectable
after careful listening.

Despite its contribution to the improvement of SI and SC, a number of limita-
tions present should also be mentioned to be considered in future research. Firstly,

41
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the proposed method is deemed unsuitable for use in real-time applications, due
to the iterative nature of the procedures used in TE and in spectral matching.
Secondly, the quality of the results could be further improved, especially from
unvoiced-to-voiced portions or to voiced-to-unvoiced. One more limitation of
this work is the speaker interpolation and conversion for non-parallel corpora,
but it is suitable for a compare measure as a the target quality in interpolation
or conversion.

Future work could involve many different sections of the method, such as
improvements with respect to the complexity of the algorithm. For instance, in
TE method pruned FFT could be used [14][9], where the non-zero elements in
cepstral smoothing are less than 10% of the total elements, while methods to
reduce TE iterations could be proposed [I][I5]. A stable lattice filter can be used
to improve the quality of the results [34]. The extension of this thesis to non-
parallel corpora, like GMM based conversion, VQ, etc. Another improvement
is a pitch synchronous analysis-synthesis processing of the above method, which
gives more efficient representations of the acoustic feature in each portion. The
improvements varies with the desired application and the accommodation of this
technique must take into account the possible artifacts could occur, when high
quality is demanded.
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