
Actions with Duration and Constraints: the Ramification Problem in Temporal
Databases

Nikos Papadakis, Dimitris Plexousakis
Department of Computer Science, University of Crete, and

Institute of Computer Science, FORTH, Greece
fnpapadak, dpg@csd.uch.gr

Abstract

The ramification problem is a hard and ever present prob-
lem in systems exhibiting a dynamic behavior. The area of
temporal databases in particular is still lacking satisfactory
solutions to the ramification problem. In this paper, we
address the ramification problem based on causal relation-
ships that take time into account. We study the problem for
both instantaneous actions and actions with duration. The
proposed solution advances previous work by considering
actions with effects occurring in any of the possible future
situations resulting from an action’s execution.

1 Introduction
The ramification problem is a well-known in AI [12]

problem that arises in databases [14], robotics, software
engineering [1] and all systems exhibiting a dynamic be-
havior [18]. In most of these disciplines, the ramification
problem has been either ignored or by passed by means of
implicit assumptions about the way that things change. We
argue that significant benefit can be obtained by studying the
problem in the context of systems that represent and reason
with a changing world. In this paper, we consider the case
of temporal databases, which notably lacks solutions to the
ramification problem and its related frame and qualification
problems [12].

We introduce this problem by means of an example.
Assume we are interested in maintaining a database that
describes a simple circuit, which includes two switches
and one lamp (figure 1 (A)). The circuit’s behavior is
described by a set C comprising the following integrity
constraints. First, when the two switches are up, the lamp
must be lit. Second, if one switch is down, then the lamp
should not be lit. The integrity constraints are expressed
as the following formulae employing predicates up and
light with the obvious meaning: C � fup�s�� � up�s�� �
light��up�s�� � �light��up�s�� � �lightg. Action
toggle switch changes the state of a switch as the fol-
lowing set E of propositions describing the direct effect

(B)

up(s2)

up(s3)

light

up(s1)

relay

light

up(s2)
up(s1)

(A)

Figure 1. Simple circuits

of the action specify: E � ftoggle switch�s� �
up�s� if �up�s�� toggle switch�s� �
�up�s� if up�s�g.

A situation is called consistent when it satisfies all in-
tegrity constraints. Assume that the circuit is in situation
S � f�up�s��� up�s����lightg. We can easily see that
S is consistent. Now assume that we execute the action
toggle switch�s��. This action has as its direct effect to
change the state of switch s� from �up�s�� to up�s�� lead-
ing to the situation S� � fup�s��� up�s����lightg. This
situation is inconsistent because it violates the first integrity
constraint. The reasonable conclusion is that the lamp must
be lit. So the final situation isS� � fup�s��� up�s��� lightg.
The change of the condition of the lamp is the indirect effect
of the action toggle switch�s��. Notice that the indirect ef-
fects occur because of the presence of integrity constraints.
The ramification problem refers to the concise description of
the indirect effects of an action in the presence of constraints.

The rest of the paper is organized as follows: in sec-
tion 2, we briefly review solutions which have been pro-
posed for solving the ramification problem in the context

1

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

of conventional (non-temporal) databases and describe an
algorithm that discovers dependencies between fluents. In
section 3, we define the ramification problem in temporal
databases and we present prevalent previous work relevant
to this problem. In section 4 , we propose an extension to the
situation calculus for addressing the ramification problem in
temporal databases. In section 5, we deal with the ramifi-
cation problem in temporal databases when actions execute
sequentially. We examine two cases, namely the case of
instantaneous actions and the case of actions with duration.
Finally, in section 6, we address the ramification problem in
temporal databases when actions execute concurrently.

2 The Ramification Problem

The majority of proposed solutions are based on the Situ-
ation Calculus [12]. The situation calculus is a second-order
language that represents the changes which occur in a do-
main as results of actions. One possible evolution of the
world is a sequence of actions and is represented by a first-
order term. The situation at which no action has occurred yet
is called the initial situation (S�). A binary function do�a� S�
yields the new situation that results from the execution of
action a in the situation S. Predicates whose truth value
may change from one situation to another are called fluents.
Similary, functions whose values are situation-dependent
are called functional fluents.

Among the simplest solutions are those based on the
minimal change approach [21]. These suggest that, when
an action occurs in a situation S, one must find the
consistent situation S� which has as few changes from
S as possible. In the example of section 1, the min-
imal change approach cannot distinguish between the
two situations S� � fup�s��� up�s��� lightg and S� �
f�up�s��� up�s����lightg as they both are equally close
to the original situation S. However, we would like to be
able choose S� because it is reasonable to light the lamp
rather than to toggle switch s�.

Other proposals are based on the categorization of flu-
ents [8, 9]. Fluents are categorized into primary (those
that can change only as the direct effect of an action) and
secondary (those that can change both as direct and indi-
rect effects of an action). In the previous example, pri-
mary and secondary fluents are Fp � fup�s��� up�s��g and
Fs � flightg respectively. When an action occurs in a situ-
ation S, one must find the consistent situation S � which has
as few changes as possible from S in the primary fluents.
Hence, we choose situation S�, because it has no changes
in the primary fluents whereas S� has one (u�s��). The cat-
egorization of fluents solves the ramification problem only
when all fluents can be categorized. Sometimes however,
some fluents are primary for some action and secondary for
others. In that case, the above solutions are not adequate.

The most effective solutions are based on causal rela-

tionships [2, 10, 11, 3, 19, 20, 21]. Each causal relationship
has the form

� causes � if � �
where � is an action, � is the indirect effect and � is the

context, i.e., a set of fluents that describes the conditions
under which the execution of � leads to �. In our example,
we have four such causal relationships:
toggle switch�s�� causes light if �up�s�� � up�s��

toggle switch�s�� causes light if �up�s�� � up�s��

toggle switch�s�� causes �light if up�s��

toggle switch�s�� causes �light if up�s�� �

All the proposed solutions determine the direct and in-
direct effects of an action that refer to the next consistent
situation. As we can observe from the above examples, the
change of fluent f ’s truth value potentially affects the truth-
value of some other fluents, while it does not affect others.
We define a binary relation I between fluents as follows: if
�f� f �� � I , then a change in fluent f ’s value may affect
the value of f �. In the above example, �up�s��� light� � I ,
whereas �up�s��� up�s��� �� I . The causal relationships are
defined only for the pairs of fluents that belong in I . This
means that in the example with the single switch there is
a causal relationship between the action toggle switch�s��
and fluent light, but there is no such relationship between
toggle switch�s�� and fluent up�s��. In the next subsec-
tion, we propose an algorithm for the construction of I .
2.1 Fluent Dependencies

Assume that we have two kinds of integrity constraints:
(a) Gf � Kf and (b) Gf � Kf , where Gf and Kf are
fluent propositions. The difference between the two kinds
is that, for the latter, when �Gf holds then �Kf also holds,
whereas this is not necessarily the case for the former. For
the first kind of constraints, for each f � Gf and f � � Kf

we add the pair �f� f �� in I . Notice that �f �� f� �� I

(because Kf �� Gf). For the second kind of constraints
we make the following hypothesis: The change of the truth
value of a fluent belonging to Gf is expected to affect the
truth values of some fluents belonging to Kf , while it is
not expected to affect the truth values of other fluents which
belong to Gf . We make the same hypothesis for the fluents
of Kf . Now we can construct the set I . For each pair
of fluents f� f �, such that f � Gf and f � � Kf we add
�f� f �� and �f �� f� to I . Consider the circuit in figure 1
(B). The integrity constraints specifying the behavior of this
system are expressed as the following formulae:

�a� light � up�s�� � up�s��

�b� relay � �up�s�� � up�s��� �c� relay � �up�s��

By applying this procedure the set I is constructed as
follows: for constraint (a) we conclude that �up�s��� light�,
�up�s��� light�, �light� �up�s���,�light� �up�s��� must be
added in I . From rule (b) we obtain �up�s��� relay�,

2

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

up(s1) up(s2)

up(s4)

up(s3)

up(s5)

relay
light

Figure 2. A more complex circuit

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

s0 s1 s2 s3 situation axis

t0 t1 t2 t3 t4 t5 time axis

a1 a2 a3 action axis

Figure 3. The Time-Situation-Actions Corre-
spondence

�up�s��� relay�, �relay� �up�s���,�relay� �up�s��� in I

and from rule (c) we obtain �relay� up�s��� in I .
Because of our hypothesis, �up�s��� light� � I ,
while �up�s��� up�s��� �� I . Assume that the cir-
cuit is in the situation that is depicted in figure 1
(B). The action toggle switch�s�� has as indirect ef-
fect to light the lamp and not to toggle the switch
s�. We observe that it is not reasonable to in-
clude the fluent pairs �light� �up�s���,�light� �up�s���,
�relay� �up�s���,�relay� �up�s��� in I . The truth values
of fluents light and relay cannot change as the direct effect
of an action, so they cannot affect the truth values of other
fluents. In order to eliminate them from set I we modify the
algorithm as follows:
� For each f � Gf � f

� � Kf , where Gf � Kf is a
specified constraint do

{ If f can change its truth value as the direct effect
of an action, then add �f� f �� in I . If f � can
change its truth value as direct effect of an action
then add �f �� f� in I .

In our example, the above change is right if and only if
each of the fluents light and relay appear in one only rule of
the form Gf � Kf . For example, consider that the circuit
in figure 2. The integrity constraints specifying the behavior
of this system are expressed as the following formulae:
�a� light � up�s�� � up�s��� �b� light � up�s�� � up�s	��

�c� relay � �up�s�� � up�s��� �d� relay � �up�s��

Applying the procedure described above yields
�up�s��� light�� �up�s��� light�� �up�s��� light�� �up�s	��
light�� �up�s��� relay�� �up�s��� relay�� �relay� up�s��� �
I . Assume that the circuit is in the situation de-
picted in figure 2. Then, after the execution of ac-
tion toggle switch�s��, because �up�s��� light� � I ,

the fluent light changes from �light to light.
Because �light� up�s���� �light� up�s��� �� I ,
the fluents up�s��� up�s�� do not change. This
means that the circuit will be in situation
�up�s��� up�s��� up�s��� up�s	���up�s����relay� light,
which violates the rule (a). Assume now that the integrity
constraints specifying the behavior of this system are
expressed as the following formulae:

�a� light � �up�s�� � up�s��� � �up�s�� � up�s	��

�b� relay � �up�s�� � up�s��� �c� relay � �up�s��

In the above specification of constraints, the fluent light
is only in one constraint of type Gf � Kf and the modified
algorithm behaves correctly.

3 Temporal Databases and Ramifications

To address the ramification problem in temporal
databases we need to incorporate time in the situation cal-
culus. Some works have suggested some ways for in-
serting time in the situation calculus by drawing a cor-
respondence between situation calculus and a linear time
line [13, 5, 15, 16, 4]. This correspondence is defined be-
tween real situations and time. This is not absolutely correct
because the situation calculus supports parallel histories of
situations. The above weakness can be overcome by defin-
ing a correspondence between a branching time structure
and situations. The branching time structure creates many
parallel histories of situations. As we show in the sequel, we
extend this approach for addressing the ramification prob-
lem in temporal databases. We describe the problem in this
context with an example.

Assume that when a driver p drinks alcohol then s/he is
considered drunk for the next five hours. In this time span
other actions may occur leading to many different situations.
In all these situations the fluentdrunk�p�must be true. After
five hours the fluent drunk�p� must become false and, thus,
the database must change into a new situation without any
action taking place. The action drive�p� cannot be executed
if drunk�p� holds. The causal relationships cannot solve
the ramification problem because they determine the direct
and indirect effects only for the next situation. The same
weakness characterizes all other solutions of the ramification
problem in conventional databases.

The above weakness can be alleviated by constructing a
correspondence between situations and actions with time.
We adopt the correspondence shown in figure 3 [13]. There
are three parallel axes: the first is the situations axis, the
second is the time axis and the third is the actions axis. For
now, we assume that all actions are instantaneous. When an
action takes place, the database changes into a new situation.

We assume a discrete model of time in which each times-
tamp specifies a point in time or moment. Each action occurs
at a specific time point. When an action a� occurs at time

3

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

point t� in a situation S�, a new situation S� � do�a�� S��
results. Hence, at each time moment, we must determine
the truth value of fluents.

The most prevalent previous works are those by Reiter
[17], Reiter and Pinto [15, 16] and by Kakas [6, 7]. Reiter
has suggested an extension of the situation calculus in order
to encapsulate time and axioms which ensure that in each
legal situation all natural actions have been executed. A nat-
ural action is an action which executes in a predetermined
time moment except if some other action has changed the
time of execution. Reiter has extended the fundamental ax-
ioms of the situation calculus in order to determine which
fluent is true at each time moment. The problem addressed
is the frame1 rather than the ramification problem. However
the work of Reiter sets the basis for encapsulating time in
the situation calculus. In this paper, we propose a futher ex-
tension of the situation calculus based on Reiter’s proposal.
Kakas [6, 7] proposed the language E which contains a set
� of fluents, a set of actions, and a partially ordered set of
time points. E employs the following axiom schemas for
the description of the world (assume L and F are fluents, T
is a time point, A is an action and C is a set of fluents).

L holds at T� A happens at T

C intiates or terminates F when C�

L whenever C� A needs C

As we may observe, the third axiom is dynamic because
it executes when an action executes, while the last two are
static because they execute each time moment. In E one
cannot declare effects that persist over a time span as in
the aforementioned example where, if someone drinks then
s/he is drunk for the subsequent five hours. Also, E cannot
represent delayed effects, as e.g., if someone drinks alcohol
then s/he becomes drunk after half an hour and remains
drunk for the next five hours. The language E is based on
the assumption that fluents persist until their truth value is
changed. We consider these assumptions rather strong and
examine the problem in a strictly more general setting.

4 Extended Situation Calculus

We extend the temporal situation calculus as follows:

� For an action a, functions start�a� and end�a� return
the time moment at which the action a starts and the
time moment at which it ends respectively.

� For a situationS, functions start�S� and end�S� return
the time moments at which situation S begins and ends
respectively.

� The functional fluent f��a� is defined as
current moment 	 start�a�, i.e., the duration
of execution of action a until the present moment.

1The problem of determining which predicates and functions are not
affected when an action is executed is the frame problem [12].

� Time is discrete and isomorphic to the natural numbers.

� A fluent f is represented as f�t��, mean-
ing that the fluent f is true in the in-
terval
current moment� current moment � t��.
�f�t�� means that f is false in the interval

current moment� current moment � t��. As time
progresses, t� is decreased by one time unit.

� Actions are ordered as follows:

For instantaneous actions start�a� � end�a� and
a� � a� � ���� � an � when

start�a�� � start�a�� � ����� � start�an�

Two actions a�� a� execute concurrently when
start�a�� � start�a��.

For actions with duration, a� � a� when end�a�� �
start�a��. Two actions a�� a� execute concurrently
when start�a��
 start�a��
 end�a��
 end�a��
holds. We assume that all actions which execute at the
same time moment execute concurrently.

� Function do is defined as
do
 actionn � situation 	� situation.
do�fa�� a�� ��� ang� S� � S� means that the actions
a�� a�� ��� an execute concurrently in the situation S

and the result is the situation S�.

� For two situations S�� S�, S� � S�, when end�S��

start�S��. It is not necessarity the case that S� �
do�fai�� ai�� ���g� ������ do�faj�� ���g� S������.

� We extend predicate poss�a� S� as follows:
poss�fa�� a�� ���ang� S� �

V
i�������n poss�ai� S�,

meaning that actions fa�� a�� ���ang can execute con-
currently iff all their preconditions are true.

4.1 Fundamental Axioms
We use the axioms defined by Reiter [17]

S� �� do�fa�� ���� ang� S� ���

do�fa�� ���� ang� S� � do�fa
�

�
� ���� a

�

ng� S
�

� �

fa�� ���� ang � fa
�

�� ���� a
�

ng � S � S
�

���

start�a�t�� � t ���

�
P ��P �S�� � �
fa�� ���� ang� S�
P �S� �

P �do�fa�� ���� ang� S�� � �
S�P �S� ���

Axiom (4) is an inductive axiom which means that each
situation is the result of the execution of a sequence of ac-
tions. Thus, if the intial situation is khown we can determine
which fluent is true in each situation. This axiom does not
hold in our case because the transition from one situation to
the next does not necessarily happen after the execution of
an action. In order for the above axiom to hold, we define
a natural action af for each fluent f . The only direct effect

4

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

of the action af is that the fluent f becomes false (f���).
Hence, when an action a has as effect f���� the action af
will execute 10 time moments later. Natural actions do not
affect the world being modeled. They are employed to en-
sure that the transition from one situation to the next is the
result of the execution some action (natural or not). The
transition from one situation to the next happens when the
truth value of at least one fluent changes. By the inclusion of
natural actions no fluent can change its truth value without
some action taking place.

4.2 Axioms for the Description of the World

For each action A we define one axiom of the form
A �

�
Li�t

�� �
whereLi�t

�� is fi�t�� or�fi�t��. Such an axiom describes
the direct effects of an action. For each fluent f we define
two axioms

G�t� � f�t��� K�t� � �f�t�� �
where G�t� is a formula which when true causes fluent

f to become true at the next t� time moments (respectively
for K�t�). These axioms encapsulate the indirect effects of
an action. Axioms of the former type are dynamic (they are
evaluated after the execution of an action), while those of
the latter are static (they are evaluated at each time point).

5 Sequential Action Execution
In this section we address the ramification problem in

temporal databases when actions execute sequentially. This
solution extends the solution which has been proposed in
[11]. Each action A is represented as A�t� which means
that the action A executes at time t. For each action A, we
define one axiom of the form

A �
�

Li�t
��

For each fluent f we define two axioms
G�t� � f���� K�t� � �f��� �

where G�t� is a formula which when true causes fluent
f to become true at the next time moment (respectively for
K�t�). The systematic generation of these axioms solves
the ramification problem in temporal databases, beause the
last two axioms encapsulate the indirect effects not only for
the next time moment, but for each time moment. We need
O�A���F � such axioms, whereA is the number of actions
and F the number of fluents.

Consider the following example: if a public employee
commits a misdemeanor, then for the next five months s/he
is considered illegal, except if s/he receives a pardon. When
a public employee is illegal, then s/he must be suspended
for the entire time interval over which s/he is considered
illegal. These are expressed by the following constraints
assumming that the time granularity is that of months2:
occur�misdemeanor�p�� t� � illegal�p� t�� � t� � t� 	

2Quantifiers are committed in the expression of these propositions.
They are considered to be implicitly universally quantified over their tem-
poral and non-temporal arguments.

take pardon�p� t� � �illegal�p���

illegal�p� t�� � suspended�p� t�� �
where t and t� are temporal variables and the pred-

icate occur�misdemeanor�p�� t� denotes that the action
misdemeanor�p� occurs at time t. In a temporal database
we need to describe the direct and indirect effects of an ac-
tion not only in the immediately resulting next situation but
possibly for many future situations as well. In the above
example, the action misdemeanor�p� has the indirect ef-
fect that the public worker is in suspension for the next five
months. The dynamic and static axioms are

occur�misdemeanor�p�� t� � illegal�p� 	�

take pardon�p� t� � �illegal�p����

illegal�p� t�� � suspended�p� �� �
The first axiom is dynamic and "encapsulates" the direct

effects, while the second and third are static and "encapsu-
late" the indirect effects of the action at time t.

5.1 Production of Static Rules

The static rules encapsulate the indirect effects of the
execution of each action. Indirect effects exist because of the
presence of integrity constraints. Hence, it is reasonable to
produce the static rules from the integrity constraint. Static
rules are produced as follows:

1. Transform each integrity constraint in its CNF form.
Now each integrity constraint has the form C� � C� �
C������� � Cn, where each Ci is a disjunct.

2. For each i from 1 to n do
(a) assume Ci � f� � ���� � fm

For each j from 1 to m do
For each k from 1 to m, and k �� j, do

if �fj � fk� � I then
R � R � ��fj causes fk if

V
�fl�� l �

�� ��m� l �� j� k.

3. For each fluent fk the rules have the following form�
fi causes fk if ��

�
f �

i causes �fk if ��

We change the static rules from Gfk � fk and Kfk �
�fk into G�

fk
� fk and K �

fk
� �fk (respectively),

where G�

fk
� Gfk � �

V
fi � ��� and K �

fk
� Kfk �

�
V
f �

i ����.

4. For each rule Gfp � fp, we replace each fluent f with
f�t�, as has been defined above. Static rules have the
form Gp�t� � fp���.

The propositionGfp�t� could contain information which
permit us to understand that the fluent fp is true for a time
interval greater than one time unit. In that case, it is not
necessary to execute all static rules at every time unit. We
change the static rules in order to encapsulate the above
observation. The rules change from Gfp�t� � fp��� to
Gfp�t� t

�� � fp�t
��, where Gfp�t� t

�� means that, if Gfp is
true at time moment t, then the fluent fp is true for the next
t� time units:

5

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

1. For each static rule G�t� � f do
(a) let G � G� � ���� �Gn

(b) For each j from 1 to n do
� let Gi � f��t�� � ���� � fn�tn�

� let t � min�t�� ���� tn�

� replace Gi with Gi�t�

(c) t� � max�ti
 Gi is true�

(d) replace G�t� with G�t� t��

5.2 Dynamic ans Static Rule Execution

As we noted in the previous section, if the proposition
Gfp�t� contains information which permit us to understand
that the fluent fp is true for a time interval greater than one
time unit, then it not necessary to execute the static rule
Gfp�t� � fp at every time moment. The generated rules are
evaluated as follows:

1. After the execution of one action execute the dynamic
rule which references this action.

2. At each time moment do

(a) If no action takes place at this moment do
i. Execute all static rules except these which

have as conclusion fluents which are true for
time greater than one time unit.

ii. if a fluent f�t� becomes true after an execu-
tion of a static rule, then set �f��� to true.

iii. Repeat until no change occurs.
(b) If at this time moment an action takes place do

i. Execute all static rules.
ii. if a fluent f��� becomes true after an execu-

tion of a static rule, then set �f��� to true.
iii. Repeat until no changes occur.

In the aforementionedexample with the public employee,
the static rule now changes to:

illegal�p� t�� �t � �� � suspend�p� t� �

This means that the rule need not be evaluated at each
time moment. We have proved the following result:3

Theorem 1 At each time unit, the algorithms terminate in
a finite number of steps and return a consistent situation.

5.3 Actions with Effects in Future Situations

The ramification problem becomes more complex when
the direct and indirect effects of an action arise after some
time moments and not necessarily at the immediate next.
For instance, assume that if someone drinks alcohol, s/he
becomes drunk after 30 minutes and remains drunk for a time
interval of 5 hours. In this case, the above representation
of fluents cannot encapsulate the direct and indirect effects
of action drink alcohol. We change the representation of
fluents as follows: each fluent f is represented as f�L�,

3Proofs are ommitted due to lack of space

where L �

t� t��� ���� is a list whose members are time
intervals
t� t��, meaning that the fluent is true at each such
time interval
t� t��. At each time moment t

��

, we ignore (and
delete from the list) the time intervals (
t� t��), which refer in
the past (t

��

� t�). Now the rules (dynamic and static) need
to change in order to encapsulate the above change.

The static rules are produced from the same algorithm
as before. At each time moment at which it is necessary
to execute a static rule, prior to the evaluation of the rule,
execute the following algorithm

1. At time moment t, for the static rule G�t� t�� � f do
(a) let G � G� � ���� �Gn

(b) For each j from 1 to n do

� let Gi � f��
���� � ���� � fn�
����

i. for each fluent fi�L� take the first ele-
ment
t

�

� t
��

� of the list L.
ii. if t

�

� t thenG is false and the algorithm
terminates.

iii. else ti � t
��

	 t.
� let tmin � min�t�� ���� tn�

� replace Gi with Gi�t� t� tmin�

When a static rule G�t� t
�

� � f�L� is evaluated, the
element
t� t

�

� is added in the list L and it is removed from
L�, where L� is the list of time intervals that the fluent �f is
true. More specific we add some subsets of
t� t

�

� in the list
L, so that after that the list L contains the interval
t� t

�

, and
we remove some subsets of
t� t

�

� (L�

t� t
�

�� �
t� t
�

�) from
the list L

�

so that after this preceess the list L
�

�

t� t
�

�� � �.
The same algorithm applies to dynamic rules as well.

The algorithm for evaluating the dynamic and static rules
does not change. We have proved the following result:
Theorem 2 The algorithm for evaluating the dynamic and
static rules always retun a legal situation when the direct
and indirect effects refer to future states.

Consider the example with the drunk driver. Assume
that the time granularity is that of an hour. The dynamic and
static rules are:

driver�p� � drink alcohol�p� t� �

drunk�
t� ��	� t� ��	 � 	��

drunk�L� � �drive�L� �

As we can observe, with the above rules we can capture
all direct and indirect effect of the action drink alcohol.
The rules are not evaluated at each time moment, but only
one time after the execution of action drink alcohol. This
is enough for ensuring that the indirect effects referring to
the future time intervals are captured correctly.

5.4 Actions with Duration

So far, we have assumed that actions are instantaneous.
In the case of actions with duration, all effects must be de-
termined with reference to the start, the end and the duration

6

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

of action. If all direct and indirect effects can be described
by reference to the start and the end of the action, then we
can assume that one action with duration is equivalent to two
instanteous actions, one for the start and one for the end. In
that case, the dynamic rules must be defined as for instanta-
neous actions. The previously presented algorithms can be
used to address the ramification problem without change.

In the case that the effects of an action depend on its
duration, the above solution cannot solve the ramification
problem. Consider the example that someone who drinks
alcohol for more than 10 consentive minutes is drunk, oth-
erwise s/he is not. Usually, the duration of an action is
unknown before the end. So we cannot describe the direct
and indirect effects of an action with reference to its start and
to its end. Hence, we must change the dynamic and static
rules. The fluent representation does not change. For each
action a, we define a new fluent fa�t� x�� x � f�� �g, such
that when x � � then t is the duration of action until now.
If x � � then the execution of the action has completed.
At the start of the execution of action a we set fa��� �� (as
direct effect) and at the end we set fa�t� ��.

The fluent fa helps us determine the indirect effects of
an action which depends on the duration of action a. All
direct effects of an action do not depend on the duration of
the action’s execution. We must change the static rules in
order to encapsulate the fluents fa. The following algorithm
incorporates this change.

1. For each static rule G�t� t�� � f do

(a) let G � G� � ���� �Gn

(b) For each action a which can affect the fluent f if
executed for more than one time instant do

i. set G� � G � �fai�t� x� � �t � b��

ii. set G � G�

(c) let G � G� � ���� �Gm

(d) For each j from 1 to m do
� let Gi � f��t�� � ���� � fn�tn�

� let t � min�t�� ���� tn�

(e) set t�� � max�ti
 Gi is true�

(f) replace G�t� t�� with G�t� t���

The above algorithm "adds" at each static rule the effects
which depend on the duration of an action. The algorithm
for evaluating the dynamic and static rules does not need to
change. The following result has been shown to hold:

Theorem 3 The algorithm always return a legal situation
in case that the effect of an action depends on its duration.

Consider again the example of the drunk driver. Assume
that a driver is drunk if s/he drinks alcohol for more than 10
minutes. We define the fluent fdrink alcohol as we explained

above. Now the granularity of time is the minute. The
dynamic and static rules are:
driver�p� � fdrink alcohol�t� �� � �t � ��� �

drunk�
now� now � 	��

driver�p� � enddrink alcohol�t� � fdrink alcohol�t
�� �� �

�t� � ��� � drunk�
t� t� 	��

drunk�L� � �drive�L� �
where endfdrink alcohol

is the end of action
drink alcohol. The algorithm checks a static rule
Gf � f iff the fluent f is false. Thus, the first rule will
be executed for each time moment that the fluent drunk is
false. This means that if a driver drinks for 5 hours and 30
minutes, the rule executed each time minute before the 10
minutes. In the last execution the driver was drunk for 5
hours (thus the fluent drunk becomes true for the next five
hours). Hence, the rule will be executed again after 5 hours
(5 hours and 10 minutes from the start of action drink).

6 Concurrent execution of instantaneous ac-
tions

In this section, we examine the case that two or more
instantaneous actions can execute concurrently. The direct
and indirect effects of an action do not start necessarily
from the next time moment. This means that two or more
actions cannot necessarily be executed concurrently if the
preconditions holds. It must be determined that the direct
and indirect effects of these actions are consistent not only
in the next time moment but in the future, as well.

For example a person cannot work in the public and in
the private sector at the same time. Suppose the actions
hire in public and hire in company are defined:
hire in public�p� t� � public worker�p�
t � ������

hire in company�p� t� � private employee�p�
t� ������
This means that the employment started ten time mo-

ments after the action took place. The integrity constraints
public worker�p� L� � �private employee�p� L�

private employee�p� L� � �public worker�p� L�
denote that the actions hire in public and

hire in company cannot execute concurrentily. The
following algorithm addresses the ramification problem.

1. Before an action’s execution check the preconditions.
If some precondition does not hold, reject the action.

2. After the execution of concurrent actions execute the
dynamic rules which refer to those actions.

3. Execute the algorithm of the evaluation of static rules
(see below)

4. If the algorithm of the evaluation of static rules returns
inconsistency, then reject the last action, else continue.

5. Until some other action executes use the situations
which have been estimated by the algorithm of the
execution of static rules.

7

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

The following is the algorithm for the execution of static
rules. This algorithm cannot change the direct effects of the
actions.

1. After the execution of the rule Gf � f�L��, if �f�L��
and L� � L� �� fg then

(a) if L� �L� does not belong in the direct effects of
one action set L� � L� n �L� � L�� and execute
the rule Kf � �f�����.

(b) else return inconsistency
2. Repeat step 1 until L� and L� do not change or until

they take previous values. In the second case return
inconsistency.

3. Repeat the step 1 and 2 for all rules.

4. Repeat the step 1,2 and 3 for all time moments at which
there are references.

In the above example assume that we try to
execute concurrentily the actions hire in public and
hire in company. Note that inconsistency does not exist
in the next time moment but after 10 minutes. The algorithm
of the execution of static rules detects an inconsistency.

7 Summary and Future Research
The ramification problem in temporal databases is a com-

plex and many-faceted problem. We have described a so-
lution to this problem for the cases that the effects of an
instantaneous action (direct and indirect) refer to the current
and future situations. Also we have described a solution for
these cases when the actions have durations.

Further research includes the study of the problem for
concurrent actions with duration and non-deterministic ac-
tions, as well as the problem of changing time granularities.
Another direction is the study of the problem in the case of
actions changing our beliefs about the past. In this case,
effects may be periodically recursive and one needs to be
able to determine what is allowed to change in the past and
what isn’t. The related qualification problem, which refers
to determininig the preconditions which must hold prior to
the execution of an action, is a topic of current research.
We are studying the extension of the proposed framework
for solving the qualification problem by defining static rules
specifying when actions become disqualified.

References

[1] A. Borgida, J. Mylopoulos and R. Reiter. On the Frame Prob-
lem in Procedure Specifications. IEEE Transactions on Soft-
ware Engineering, 21(10), Oct. 1995, pp.785-798.

[2] C. Elkan. Reasoning about action in first order logic. Proceed-
ings of the Conference of the Canadian Society for Comptuta-
tional Studies in Intelligence (CSCSI), pp 221-227, Vancouver,
May 1992.

[3] M. Ginsberg and D. Smith. Reasoning about action I: A possi-
ble worlds approach. Artificial Intelligence, 35:165-195, 1988.

[4] J. Gustafon. Extending Temporal Action Logic for Ramifica-
tion and Concurency, Thesis No 719 of Linkoping Studies in
Science and Technology, 1998.

[5] A. Fusaoka. Situation Calculus on a Dense Flow of Time,
Proceedings of AAAI-96, pp. 633-638, 1996

[6] A.C. Kakas, R.S. Miller and F. Toni, E-RES: Reasoning about
Actions, Events and Observations, in Proceedings of LP-
NMR2001, pp. 254-266, Springer Verlag, 2001.

[7] Antonis Kakas and Rob Miller, A Simple Declarative Lan-
guage for Describing Narratives with Actions, The Journal of
Logic Programming, Vol 31(1-3) (Special Issue on Reasoning
about Action and Change), pages 157-200, Elsevier, 1997.

[8] V. Lifshitz. Towards a metatheory of action. In J.F. Allen, R.
Fikes, and E. Sandewall, editors, Proceedings of the Interna-
tional Conference on Principles of Knowledge Representation
and Reasoning, pages 376-386, Cambridge, MA, 1991.

[9] V. Lifshitz. Frames in the space of situations, Artificial Intel-
ligence, 46:365-376, 1990.

[10] V. Lifschitz. Towards a metatheory of action. Proceedings of
KR’91, pp. 376-386, Cambridge, MA, 1991.

[11] N. McCain and H. Turner. A causal theory of ramifications
and qualifications. Proceedings of IJCAI-95, pp. 1978-1984,
Montreal, Canada, August 1995.

[12] J. McCarthy and P.J. Hayes. Some philophical problem from
the standpoint of artificial intelligence. In B. Meltzer and D.
Mitchie, editors, Machine Intelligence 4, pp. 463-502. Amer-
ican Elsevier, 1969.

[13] Nikos Papadakis and Dimitris Plexousakis. Action Theories
in Temporal Databases. Proceedings of the 8th Panhellenic
Conference on Informatics, pp. 254-264, Cyprus, Nov. 2001.

[14] Dimitris Plexousakis, John Mylopoulos. Accomodating In-
tegrity Constraints During Database Design. Proceedings of
EDBT 1996, pp. 497-513, Avignon, France, 1996.

[15] J. Pinto. Temporal Reasoning in the Situation Calculus. Ph.D.
Thesis, Dept. of Computer Science, Univ. of Toronto, Jan.
1994.

[16] J. Pinto and R. Reiter. Temporal Reasoning in Logic Pro-
gramming: A Case for the Situation Calculus, Proceedings of
10th Int. Conf. on Logic Programming, Budapest, Hungary,
June 21-24, 1993.

[17] R. Reiter. Natural Actions, Concurrency and Continous Time
in the Situation Calculus, KR 96, pages 2-13, 1996.

[18] R. Reiter. Khowledge in Action: Logical Foundation for
specifying and implemending Dynamical Systems, MIT Press,
2001.

[19] M. Thielscher. Ramification and causality. Artifical Intelli-
gence, 89(1-2):317-364, 1997.

[20] M. Thielscher. Reasoning about actions: Steady versus sta-
bilizing state constraints. Artifical Intelligence, 104:339-355,
1988.

[21] M. Winslett. Reasoning about action using a possible models
approach. Proceedings of AAAI-88, pp. 89-93, Saint Paul,
MN, August 1988.

8

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

