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Abstract

Theramification problemisahardand ever present prob-
lem in systems exhibiting a dynamic behavior. The area of
temporal databasesin particular isstill lacking satisfactory
solutions to the ramification problem. In this paper, we
address the ramification problem based on causal relation-
ships that take time into account. We study the problem for
both instantaneous actions and actions with duration. The
proposed solution advances previous work by considering
actions with effects occurring in any of the possible future
situations resulting from an action’s execution.

1 Introduction

The ramification problem is a well-known in Al [12]
problem that arises in databases [14], robotics, software
engineering [1] and all systems exhibiting a dynamic be-
havior [18]. In most of these disciplines, the ramification
problem has been either ignored or by passed by means of
implicit assumptions about the way that things change. We
arguethat significant benefit can be obtained by studying the
problem in the context of systems that represent and reason
with a changing world. In this paper, we consider the case
of temporal databases, which notably lacks solutions to the
ramification problem and its related frame and qualification
problems[12].

We introduce this problem by means of an example.
Assume we are interested in maintaining a database that
describes a simple circuit, which includes two switches
and one lamp (figure 1 (A)). The circuit's behavior is
described by a set C' comprising the following integrity
constraints. First, when the two switches are up, the lamp
must be lit. Second, if one switch is down, then the lamp
should not be lit. The integrity constraints are expressed
as the following formulae employing predicates up and
light with the obvious meaning: C' = {up(s1) A up(s2) D
light,—up(s1) D —light,—~up(s2) D -light}. Action
toggle_switch changes the state of a switch as the fol-
lowing set E of propositions describing the direct effect
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Figure 1. Simple circuits

of the action specify: E = {toggle_switch(s) D
up(s) if —up(s),toggle_switch(s) D

ﬁuﬁ( s%tuétjtclo#lljé c)al}led consistent when it satisfies all in-

tegrity constraints. Assume that the circuit is in situation
S = {-up(s1),up(s2),light}. We can easily see that
S is consistent. Now assume that we execute the action
toggle_switch(sy). This action has as its direct effect to
change the state of switch sy from —up(s;) to up(s;) lead-
ing to the situation S; = {up(s1), up(sz), ~light}. This
situation isinconsistent because it violates thefirst integrity
constraint. The reasonable conclusionis that the lamp must
belit. Sothefinal situationis.Sy = {up(s1),up(sz),light}.
The change of the condition of thelampistheindirect effect
of theactiontoggle_switch(s1). Noticethat theindirect ef-
fects occur because of the presence of integrity constraints.
Theramification problem refersto the concise description of
theindirect effectsof an actioninthe presenceof constraints.

The rest of the paper is organized as follows. in sec-
tion 2, we briefly review solutions which have been pro-
posed for solving the ramification problem in the context
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of conventional (non-temporal) databases and describe an
algorithm that discovers dependencies between fluents. In
section 3, we define the ramification problem in temporal
databases and we present prevalent previous work relevant
tothisproblem. Insection4, we proposean extensionto the
situation calculusfor addressing the ramification problemin
temporal databases. In section 5, we deal with the ramifi-
cation problem in temporal databases when actions execute
sequentially. We examine two cases, namely the case of
instantaneous actions and the case of actions with duration.
Finally, in section 6, we address the ramification problemin
temporal databases when actions execute concurrently.

2 TheRamification Problem

Themajority of proposed solutions are based on the Situ-
ation Calculus[12]. Thesituation calculusisasecond-order
language that represents the changes which occur in a do-
main as results of actions. One possible evolution of the
world is a sequence of actions and is represented by afirst-
order term. Thesituation at which no action hasoccurredyet
iscaledtheinitia situation (Sp). A binary functiondo(a, S)
yields the new situation that results from the execution of
action a in the situation S. Predicates whose truth value
may change from one situation to another are called fluents.
Similary, functions whose values are situation-dependent
are called functional fluents.

Among the simplest solutions are those based on the
minimal change approach [21]. These suggest that, when
an action occurs in a situation S, one must find the
consistent situation S’ which has as few changes from
S as possible. In the example of section 1, the min-
imal change approach cannot distinguish between the
two situations S; = {up(s1),up(s2),light} and Sy =
{—up(s1),up(ss2),~light} as they both are equally close
to the original situation S. However, we would like to be
able choose S; because it is reasonable to light the lamp
rather than to toggle switch s.

Other proposals are based on the categorization of flu-
ents [8, 9]. Fluents are categorized into primary (those
that can change only as the direct effect of an action) and
secondary (those that can change both as direct and indi-
rect effects of an action). In the previous example, pri-
mary and secondary fluentsare F, = {up(s1),up(s2)} and
Fy = {light} respectively. When an action occursin asitu-
ation S, one must find the consistent situation S’ which has
as few changes as possible from S in the primary fluents.
Hence, we choose situation S, because it has no changes
in the primary fluents whereas .S, has one (u(s;)). The cat-
egorization of fluents solves the ramification problem only
when all fluents can be categorized. Sometimes however,
some fluents are primary for some action and secondary for
others. In that case, the above solutions are not adequate.

The most effective solutions are based on causal rela-

tionships[2, 10, 11, 3, 19, 20, 21]. Each causal relationship
has the form
€ causes p if P,

where e is an action, p isthe indirect effect and @ is the
context, i.e., a set of fluents that describes the conditions
under which the execution of e leadsto p. In our example,
we have four such causal relationships:

toggle_switch(sy) causes lightif —up(s1) A up(sz)
toggle_switch(sz) causes lightif —up(s2) A up(sy)
toggle_switch(s1) causes —=light if up(s1)
toggle_switch(ss) causes —light if up(s2).

All the proposed solutions determine the direct and in-
direct effects of an action that refer to the next consistent
situation. As we can observe from the above examples, the
change of fluent f’struth value potentially affects the truth-
value of some other fluents, while it does not affect others.
We define abinary relation I between fluents as follows: if
(f,f') € I, then a change in fluent f’s value may affect
thevalue of f’. Inthe above example, (up(s1),light) € I,
whereas (up(s1),up(s2)) ¢ I. Thecausa relationshipsare
defined only for the pairs of fluents that belong in 7. This
means that in the example with the single switch there is
acausal relationship between the action toggle_switch(s)
and fluent light, but there is no such relationship between
toggle_switch(s;) and fluent up(s2). In the next subsec-
tion, we propose an algorithm for the construction of 1.

2.1 Fluent Dependencies

Assume that we have two kinds of integrity constraints:
(@ Gy D Ky and (b) Gy = Ky, where Gy and Ky are
fluent propositions. The difference between the two kinds
isthat, for the latter, when —G'; holdsthen — K also holds,
whereas thisis not necessarily the case for the former. For
the first kind of constraints, for each f € Gy and f' € K
we add the pair (f, f') in I. Noticethat (f',f) & I
(because Ky % Gy). For the second kind of constraints
we make the following hypothesis. The change of the truth
value of a fluent belonging to G5 is expected to affect the
truth values of some fluents belonging to Ky, while it is
not expected to affect the truth values of other fluents which
belong to G . We make the same hypothesis for the fluents
of K;y. Now we can construct the set 1. For each pair
of fluents f, ', such that f € Gy and f' € Ky we add
(f, f) and (f',f) to I. Consider the circuit in figure 1
(B). Theintegrity constraints specifying the behavior of this
system are expressed as the following formulae;

(a) light = up(sl) A up(s2)

(b) relay = —up(sl) Aup(s3), (c¢) relay D —up(s2)
By applying this procedure the set I is constructed as

follows: for constraint (a) we concludethat (up(s1),light),

(up(s2),light), (light, (up(sl)),(light, (up(s2)) must be
added in I. From rule (b) we obtain (up(sl),relay),
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Figure 2. A more complex circuit
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Figure 3. The Time-Situation-Actions Corre-

spondence
(up(s3),relay), (relay,(up(sl)),(relay, (up(s3)) in I
and from rule (c) we obtain (relay,up(s2)) in I.
Because of our hypothesis, (up(sl),light) € 1,
while (up(s1),up(s2)) ¢ I. Assume that the cir-
cuit is in the situation that is depicted in figure 1
(B). The action toggle_switch(s1) has as indirect ef-
fect to light the lamp and not to toggle the switch
S9. We observe that it is not reasonable to in-
clude the fluent pairs (light, (up(sl)),(light, (up(s2)),
(relay, (up(sl)),(relay, (up(s3)) in I. The truth vaues
of fluentslight and relay cannot change asthe direct effect
of an action, so they cannot affect the truth values of other
fluents. In order to eliminate them from set I we modify the
algorithm as follows:

e Foreach f € Gy, f' € Ky, where Gy = Ky isa

specified constraint do
{ If f canchangeitstruth value as the direct effect
of an action, then add (f, f') in I. If f' can
changeits truth value as direct effect of an action
thenadd (f’, f)inI.

In our example, the above changeisright if and only if
each of thefluentslight and relay appear in oneonly ruleof
theform Gy = K. For example, consider that the circuit
infigure2. Theintegrity constraints specifying the behavior
of this system are expressed as the following formul ae:

(a) light = up(s1) A up(s2), (b) light = up(s4) A up(s5),
(¢) relay = —up(sl) Aup(s3), (d) relay D —up(s2)

Applying the procedure described above yields
(up(sl),light), (up(s2),light), (up(s4),light), (up(sb),
light), (up(sl),relay), (up(s3),relay), (relay, up(s2)) €
I.  Assume that the circuit is in the situation de-
picted in figure 2. Then, after the execution of ac-
tion toggle_switch(sy), because (up(sd),light) € I,

the fluent light changes from =—light to light.
Because  (light,up(sl)), (light,up(s2)) ¢ I,
the fluents wup(sl),up(s2) do not change. This
means that the circuit will be in situation
—up(sl), up(s2), up(sd), up(sd), ~up(s3), ~relay, light,
which violates the rule (a). Assume now that the integrity
constraints specifying the behavior of this system are
expressed as the following formul ae;

(a) light = (up(sl) Aup(s2)) V (up(sd) A up(s5))
(b) relay = —up(sl) Aup(s3), (c) relay D —up(s2)

In the above specification of constraints, the fluent light
isonly in one constraint of type Gy = Ky and the modified
algorithm behaves correctly.

3 Temporal Databases and Ramifications

To address the ramification problem in temporal
databases we need to incorporate time in the situation cal-
culus. Some works have suggested some ways for in-
serting time in the situation calculus by drawing a cor-
respondence between situation calculus and a linear time
line [13, 5, 15, 16, 4]. This correspondence is defined be-
tweenreal situationsandtime. Thisisnot absolutely correct
because the situation calculus supports parallel histories of
situations. The above weakness can be overcome by defin-
ing a correspondence between a branching time structure
and situations. The branching time structure creates many
parallel historiesof situations. Aswe show inthesequel, we
extend this approach for addressing the ramification prob-
lem in temporal databases. We describe the problemin this
context with an example.

Assume that when a driver p drinks alcohol then sheis
considered drunk for the next five hours. In this time span
other actionsmay occur leading to many different situations.
Inall thesesituationsthefluent drunk(p) must betrue. After
five hoursthe fluent drunk(p) must becomefalse and, thus,
the database must change into a new situation without any
actiontaking place. Theactiondrive(p) cannot be executed
if drunk(p) holds. The causal relationships cannot solve
the ramification problem because they determine the direct
and indirect effects only for the next situation. The same
weakness characterizesall other solutionsof theramification
problem in conventional databases.

The above weakness can be aleviated by constructing a
correspondence between situations and actions with time.
We adopt the correspondence shownin figure 3 [13]. There
are three paralel axes: the first is the situations axis, the
second is the time axis and the third is the actions axis. For
now, we assume that all actions areinstantaneous. When an
actiontakes place, the database changesinto anew situation.

We assume adiscrete model of timeinwhich each times-
tamp specifiesapoint intimeor moment. Each action occurs
at a specific time point. When an action a; occurs at time
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point t3 in asituation S;, anew situation S, = do(az, S1)
results. Hence, at each time moment, we must determine
the truth value of fluents.

The most prevalent previous works are those by Reiter
[17], Reiter and Pinto [15, 16] and by Kakas [6, 7]. Reiter
has suggested an extension of the situation calculusin order
to encapsulate time and axioms which ensure that in each
legal situation all natural actions have been executed. A nat-
ural action is an action which executes in a predetermined
time moment except if some other action has changed the
time of execution. Reiter has extended the fundamental ax-
ioms of the situation calculus in order to determine which
fluent is true at each time moment. The problem addressed
isthe frame! rather than the ramification problem. However
the work of Reiter sets the basis for encapsulating time in
the situation calculus. Inthis paper, we propose a futher ex-
tension of the situation calculus based on Reiter’s proposal.
Kakas [6, 7] proposed the language E which contains a set
¢ of fluents, a set of actions, and a partially ordered set of
time points. E employs the following axiom schemas for
the description of the world (assume L and F' are fluents, '
isatimepoint, A isan action and C isaset of fluents).

L holds at T, A happens at T

C intiates or terminates F when C,

L whenever C, A needs C

Aswe may observe, the third axiom is dynamic because
it executes when an action executes, while the last two are
static because they execute each time moment. In E one
cannot declare effects that persist over a time span as in
the af orementioned example where, if someone drinksthen
s/he is drunk for the subsequent five hours. Also, E cannot
represent delayed effects, ase.qg., if someone drinks a cohol
then s/he becomes drunk after half an hour and remains
drunk for the next five hours. The language E is based on
the assumption that fluents persist until their truth value is
changed. We consider these assumptions rather strong and
examinethe problem in a strictly more general setting.

4 Extended Situation Calculus

We extend the temporal situation calculus as follows:

e For an action a, functions start(a) and end(a) return
the time moment at which the action a starts and the
time moment at which it ends respectively.

e Forasituation S, functionsstart(S) andend(S) return
thetime moments at which situation S beginsand ends
respectively.

e The functiona fluent f,(a) is defined as
current-moment — start(a), i.e., the duration
of execution of action a until the present moment.

1The problem of determining which predicates and functions are not
affected when an action is executed is the frame problem [12].

¢ Timeisdiscreteandisomorphicto thenatural numbers.

e A fluent f is represented as f(¢'), mean-
ing that the fluent f is true in the in-
terval [current-moment, current-moment + t'].
-f(t) means that f is fase in the interva
[current_moment, current_moment + t']. Astime
progresses, t' is decreased by one time unit.

e Actions are ordered as follows:
For instantaneous actions start(a) = end(a) and

a; < as < ....<a, ,when
start(ar) < start(as) < ..... < start(ay)

Two actions aj,as execute concurrently when
start(ay) = start(as).

For actions with duration, a; < as when end(a;) <
start(ag). Two actions a,as execute concurrently
when start(a,) < start(asz) < end(a;) < end(az)
holds. We assume that all actions which execute at the
same time moment execute concurrently.

e Function do is defined as
do : action™ X situation — — situation.
do({a1,as,..,a,},S) = S; means that the actions
ai, as, .., a, execute concurrently in the situation S
and the result isthe situation S; .

e For two situations Sy, Sa, S1 < Sa2, when end(S;) <
start(S2). It is not necessarity the case that S, =

}, ..... ,do({ajl,...},Sl)...).

e We extend predicate poss(a, S) asfollows:
poss({ai,as,..an},S) = A, ,poss(a;,S),
meaning that actions {a1, as, ...a,,} can execute con-
currently iff all their preconditions are true.

do({ail ,Ai2,y .-

4.1 Fundamental Axioms
We use the axioms defined by Reiter [17]
SO #do({alv---aan}as) (1
do({ay, ...,an},S) = do({ay,...,a,},S
{a1,...an} ={ay,-.,a,}AS =5 (
start(a(t)) =t (3)
(VP).P(So) A (W{a, ...,an}, S) [P(S) D
P(do({ay,...,an},S)] O (VS)P(S) (4)
Axiom (4) is an inductive axiom which means that each
situation is the result of the execution of a sequence of ac-
tions. Thus, if theintial situation iskhownwe can determine
which fluent is true in each situation. This axiom does not
hold in our case because the transition from one situation to
the next does not necessarily happen after the execution of

an action. In order for the above axiom to hold, we define
anatural action a for each fluent f. The only direct effect
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of the action ay is that the fluent f becomes false (f(0)).
Hence, when an action a has as effect f(10) the action ay
will execute 10 time moments later. Natural actions do not
affect the world being modeled. They are employed to en-
sure that the transition from one situation to the next is the
result of the execution some action (natural or not). The
transition from one situation to the next happens when the
truth valueof at least one fluent changes. By theinclusion of
natural actions no fluent can change its truth value without
some action taking place.

4.2 Axiomsfor the Description of the World

For each action A we define one axiom of the form
AD Lz (tl) ’

where L;(t") is f;(¢') or = f;(t"). Suchanaxiomdescribes
the direct effects of an action. For each fluent f we define
two axioms

G(t) D f(t), K(t)D~f(t),

where G(t) is a formula which when true causes fluent
f to become true at the next ¢' time moments (respectively
for K (t)). These axioms encapsulate the indirect effects of
an action. Axioms of the former type are dynamic (they are
evaluated after the execution of an action), while those of
the latter are static (they are evaluated at each time point).

5 Sequential Action Execution

In this section we address the ramification problem in
temporal databases when actions execute sequentially. This
solution extends the solution which has been proposed in
[11]. Each action A is represented as A(t) which means
that the action A executes at time ¢. For each action A, we
define one axiom of the form

A> A\ Li(t)
For each fluent f we define two axioms
G(t) > f(1), K(t)D>-f(1),

where G(t) is a formula which when true causes fluent
f to become true at the next time moment (respectively for
K(t)). The systematic generation of these axioms solves
the ramification problem in temporal databases, beause the
last two axioms encapsul ate the indirect effects not only for
the next time moment, but for each time moment. We need
O(A+2xF) such axioms, where A isthe number of actions
and F' the number of fluents.

Consider the following example: if a public employee
commits a misdemeanor, then for the next five months s’he
isconsideredillegal, except if ghereceivesapardon. When
a public employee is illegal, then s’lhe must be suspended
for the entire time interval over which s/he is considered
illegal. These are expressed by the following constraints
assumming that the time granularity is that of months?:
occur(misdemeanor(p),t) D illegal(p,t1) A t1 <t+5

2Quantifiers are committed in the expression of these propositions.

They are considered to be implicitly universally quantified over their tem-

poral and non-temporal arguments.

take_pardon(p,t) D —illegal (p, 00)

illegal(p, t1) D suspended(p,t1),
where t and ¢; are tempora variables and the pred-
icate occur(misdemeanor(p),t) denotes that the action
misdemeanor(p) occurs a time¢. In atemporal database
we need to describe the direct and indirect effects of an ac-
tion not only in the immediately resulting next situation but
possibly for many future situations as well. In the above
example, the action misdemeanor(p) has the indirect ef-
fect that the public worker isin suspension for the next five
months. The dynamic and static axioms are
occur(misdemeanor(p),t) D illegal(p, 5)
take_pardon(p,t) D —illegal (p, 00),
illegal(p,t1) D suspended(p,1) .
Thefirst axiom is dynamic and "encapsulates’ the direct
effects, while the second and third are static and "encapsu-
late" the indirect effects of the action at time .

5.1 Production of Static Rules

The static rules encapsulate the indirect effects of the
execution of each action. Indirect effectsexist because of the
presence of integrity constraints. Hence, it is reasonable to
produce the static rules from the integrity constraint. Static
rules are produced as follows:

1. Transform each integrity constraint in its CNF form.
Now each integrity constraint hastheform C; A Cs A
Cs...... A C,,, where each C; isadisunct.

2. Foreachifrom1ltondo
(@ assumeC; = f1 V...V i
For each j from1tomdo
For eachk from1tom, and k # j, do
if (fj, fx) € I then
R =RV (~f; causes fr if AN-fi), | =
1,.m,l # j,k.
3. For each fluent f;, the rules have the following form
/\fi causes f, if @, /\fl' causes —fy if @
We changethe static rulesfrom G4, D fi, and K¢, D
—fi into G O fr and K D —fy (respectively),
where G; = Gy V(ANfiN®),and K} = Ky, V
(N fin@').

4. ForeachruleGy, D f,, wereplace each fluent f with
f(t), ashas been defi ned above. Static rules have the

formG,(t) D
The proposm on Gp coul d contain information which

permit us to undersxand that the fluent f, istruefor atime
interval greater than one time unit. In that case, it is not
necessary to execute all static rules at every time unit. We
change the static rules in order to encapsulate the above
observation. The rules change from G, (t) D f,(1) to
Gy, (t,t") D fp(t'), where Gy, (t,t') meansthat, if G, is
true at time moment ¢, then the fluent f,, is true for the next
t' time units:

TEEE .2

COMPUTER
SOCIETY

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'02)
1082-3409/02 $17.00 © 2002 IEEE



1. Foreach staticrule G(t) D f do
@ leeG=G1V..VG,

(b) For eachjfrom1tondo
o letG; = fi(t1)) A ooee A fu(tn)
o lett =min(ty, ..., t,)
e replace G; with G;(t)

(©) t' =max(t; : G; is true)

(d) replace G(t) with G(t,t')

5.2 Dynamic ans Static Rule Execution

As we noted in the previous section, if the proposition
Gy, (t) containsinformation which permit us to understand
that the fluent f, istrue for atimeinterval greater than one
time unit, then it not necessary to execute the static rule
Gy, (t) D fp at every imemoment. The generated rulesare
evaluated as follows:

1. After the execution of one action execute the dynamic
rule which referencesthis action.

2. At each time moment do
(a) If no action takes place at this moment do
i. Execute al static rules except these which
have as conclusion fluents which are true for
time greater than one time unit.

ii. if afluent f(t) becomestrue after an execu-
tion of a static rule, then set —f(0) to true.

iii. Repeat until no change occurs.
(b) If at thistime moment an action takes place do
i. Executedll static rules.
ii. if afluent f(1) becomestrue after an execu-
tion of a static rule, then set —f(0) to true.
iii. Repeat until no changes occur.
I nthe af orementioned exampl ewith the public empl oyee,
the static rule now changesto:

illegal(p,t) A (t > 0) D suspend(p,t).
This means that the rule need not be evaluated at each

time moment. We have proved the following result:3
Theorem 1 At each time unit, the algorithms terminate in

a finite number of steps and return a consistent situation.
5.3 Actionswith Effectsin Future Situations

The ramification problem becomes more complex when
the direct and indirect effects of an action arise after some
time moments and not necessarily at the immediate next.
For instance, assume that if someone drinks acohol, she
becomesdrunk after 30 minutesand remainsdrunk for atime
interval of 5 hours. In this case, the above representation
of fluents cannot encapsulate the direct and indirect effects
of action drink_alcohol. We change the representation of
fluents as follows: each fluent f is represented as f(L),

3Proofs are ommitted due to lack of space

where L = [[t,t],...] is a list whose members are time
intervals [t, t'], meaning that the fluent is true at each such
timeinterval [¢,']. At eachtimemomentt", weignore (and
deletefromthelist) thetimeintervals([t, t']), whichreferin
the past (¢ > t'). Now the rules (dynamic and static) need
to change in order to encapsul ate the above change.

The static rules are produced from the same algorithm
as before. At each time moment at which it is necessary
to execute a static rule, prior to the evaluation of the rule,
execute the following algorithm

1. Attime moment ¢, for thestaticrule G(¢,¢1) D f do
@ letG=G1V...VG,

(b) Foreachjfromltondo

o letGi = fi([L.DA oo A fu([])
i. for each fluent f;(L) take the first ele-
ment [t', "] of thelist L.
ii. ift > tthenG isfalseandthealgorithm
terminates.
iii. elset; =t —t.
o lettyin = min(ty, ..., tn)
e replace G; with G (t,t + timin)

When a static rule G(t,¢') D f(L) is evauated, the
element [t,¢'] is added in the list L and it is removed from
L', where L' isthelist of time intervalsthat the fluent — f is
true. More specific we add some subsets of [t, ¢ ] in the list
L, so that after that thelist L containstheinterval [t, ¢, and
weremove somesubsetsof [¢,¢'] (LN [[t,¢]] = [t, ¢ ]) from
thelist L' so that after this preceessthelist L' N[[t,¢]] = 0.

The same agorithm applies to dynamic rules as well.
The agorithm for evaluating the dynamic and static rules
does not change. We have proved the following result:
Theorem 2 The algorithm for evaluating the dynamic and
static rules always retun a legal situation when the direct
and indirect effectsrefer to future states.

Consider the example with the drunk driver. Assume
that thetime granularity isthat of an hour. The dynamicand
static rules are:

driver(p) A drink_alcohol(p,t) D
drunk([t + 0.5,¢ + 0.5 + 5])
drunk(L) D ~drive(L) .

As we can observe, with the above rules we can capture
all direct and indirect effect of the action drink _alcohol.
The rules are not evaluated at each time moment, but only
onetime after the execution of action drink _alcohol. This
is enough for ensuring that the indirect effects referring to
the future time interval s are captured correctly.

5.4 Actionswith Duration

So far, we have assumed that actions are instantaneous.
In the case of actions with duration, all effects must be de-
termined with referenceto the start, the end and the duration
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of action. If al direct and indirect effects can be described
by reference to the start and the end of the action, then we
can assumethat oneaction with durationis eguivalent to two
instanteous actions, one for the start and onefor the end. In
that case, the dynamic rules must be defined as for instanta-
neous actions. The previously presented algorithms can be
used to address the ramification problem without change.

In the case that the effects of an action depend on its
duration, the above solution cannot solve the ramification
problem. Consider the example that someone who drinks
alcohol for more than 10 consentive minutes is drunk, oth-
erwise ghe is not. Usually, the duration of an action is
unknown before the end. So we cannot describe the direct
andindirect effectsof anactionwith referencetoitsstart and
to its end. Hence, we must change the dynamic and static
rules. The fluent representation does not change. For each
action a, we define anew fluent f,(¢,z), = € {0,1}, such
that when 2 = 1 then t is the duration of action until now.
If x = 0 then the execution of the action has completed.
At the start of the execution of action a we set f,(0, 1) (as
direct effect) and at the end we set f,,(¢,0).

The fluent f, helps us determine the indirect effects of
an action which depends on the duration of action a. All
direct effects of an action do not depend on the duration of
the action’s execution. We must change the static rules in
order to encapsul ate thefluents f,. Thefollowing algorithm
incorporatesthis change.

1. For each staticrule G(t,¢') D f do
@ letG =G V...VG,

(b) For each action a which can affect the fluent f if
executed for more than one time instant do
i. et G =GV (fo,(t,z) A(t>D))
ii. stG=G"
(o leteG=G1V...VGy
(d) For eachjfrom1tomdo
o letG; = fi (tl) VAN fn(tn)
o lett = min(ty,...,t,)
(e) sett" =max(t; : G; is true)
(f) replace G(t,t") with G(t,¢"")
The above algorithm "adds" at each static rule the effects
which depend on the duration of an action. The algorithm

for evaluating the dynamic and static rules does not need to
change. The following result has been shown to hold:

Theorem 3 The algorithm always return a legal situation
in case that the effect of an action depends on its duration.

Consider again the example of the drunk driver. Assume
that adriver isdrunk if ’he drinks alcohol for morethan 10
minutes. We definethefluent f4,ink_aiconor asWeexplained

above. Now the granularity of time is the minute. The
dynamic and static rules are;
driver(p) A fdrink_alcohol(t; 1) A (t > 10) D

drunk([now, now + 5])

driv@r(p) A enddrink_alcohol (t) A fdrink:_alcohol(tla 1) A

(t' > 10) D drunk([t,t + 5])

drunk(L) D —drive(L),

where endy, . . ..., 1S the end of action

drink_alcohol. — The algorithm checks a static rule
Gy D fiff the fluent f is fase. Thus, the first rule will
be executed for each time moment that the fluent drunk is
fase. This meansthat if adriver drinksfor 5 hours and 30
minutes, the rule executed each time minute before the 10
minutes. In the last execution the driver was drunk for 5
hours (thus the fluent drunk becomes true for the next five
hours). Hence, the rule will be executed again after 5 hours
(5 hours and 10 minutes from the start of action drink).

6 Concurrent execution of instantaneous ac-
tions

In this section, we examine the case that two or more
instantaneous actions can execute concurrently. The direct
and indirect effects of an action do not start necessarily
from the next time moment. This means that two or more
actions cannot necessarily be executed concurrently if the
preconditions holds. It must be determined that the direct
and indirect effects of these actions are consistent not only
in the next time moment but in the future, as well.

For example a person cannot work in the public and in
the private sector at the same time. Suppose the actions
hire_in_public and hire_in_company are defined:

hire_in_public(p,t) D public_worker(p, [t + 10, co])

hire_in_company(p, t) D private_employee(p, [t + 10, c0])

This means that the employment started ten time mo-

ments after the action took place. The integrity constraints
public_worker(p, L) D —private_employee(p, L)

private_employee(p, L) D —publicworker(p, L)
denote that the actions hiresin_public and
hire_in_company cannot execute concurrentily. The
following algorithm addresses the ramification problem.
1. Before an action’s execution check the preconditions.
If some precondition does not hold, reject the action.

2. After the execution of concurrent actions execute the
dynamic rules which refer to those actions.

3. Execute the algorithm of the evaluation of static rules
(see below)

4. If the algorithm of the evaluation of static rulesreturns
inconsistency, then regject the last action, el se continue.

5. Until some other action executes use the situations
which have been estimated by the algorithm of the
execution of static rules.
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Thefollowing isthe algorithm for the execution of static
rules. Thisalgorithm cannot change the direct effects of the
actions.

1. After theexecutionof theruleG s D f(L1),if =f(Ls)
andL1 N Lo 75 {} then
(&) if Ly N Lo doesnot belong in the direct effects of
oneactionset L, = Ly \ (L1 N Ly) and execute
therule Ky D = f(...).

(b) elsereturninconsistency
2. Repeat step 1 until L., and L, do not change or until
they take previous values. In the second case return
inconsistency.

3. Repeat the step 1 and 2 for all rules.

4. Repeat thestep 1,2 and 3for al time momentsat which

there are references.
In the above example assume that we try to

execute concurrentily the actions hire_in_public and
hire_in_company. Note that inconsistency does not exist
inthe next time moment but after 10 minutes. Thealgorithm
of the execution of static rules detects an inconsistency.

7 Summary and Future Research

Theramification problemintemporal databasesisacom-
plex and many-faceted problem. We have described a so-
[ution to this problem for the cases that the effects of an
instantaneous action (direct and indirect) refer to the current
and future situations. Also we have described a solution for
these cases when the actions have durations.

Further research includes the study of the problem for
concurrent actions with duration and non-deterministic ac-
tions, aswell asthe problem of changing time granularities.
Another direction is the study of the problem in the case of
actions changing our beliefs about the past. In this case,
effects may be periodically recursive and one needs to be
ableto determinewhat is alowed to change in the past and
what isn’t. The related qualification problem, which refers
to determininig the preconditions which must hold prior to
the execution of an action, is a topic of current research.
We are studying the extension of the proposed framework
for solving the qualification problem by defining static rules
specifying when actions become disqualified.
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