
Trade-Off Results for Connection Management

Marios Mavronicolas* g~ Nikos Papade~kis

Department of Computer Science, University of Cyprus, Nicosia 1678, Cyprus

Abs t rac t . A connection management protocol establishes a connection
between two hosts across a wide-area network to allow reliable message
delivery. Following previous work of Kleinberg et al. (Proceedings of the
3rd Israel Symposium on the Theory of Computing and Systems, pp.
258-267, January 1995), we study the precise impact of the behavior
of processors' clocks with respect to real time on the performance of
connection management protocols, under common assumptions on the
pattern of failures of the network and the host nodes.
Two basic timing paradigms for docks are considered: clocks that ex-
hibit certain kind of a drift from the rate of real time, and clocks that
display a pattern of synchronization to real time; within each paradigm,
several timing conditions on the clocks are assumed, giving rise to cor-
responding timing models. We consider networks that can duplicate and
reorder messages, and nodes that can crash. We are interested in simul-
taneously optimizing the following performance parameters: the message
delivery time, which is the time required to deliver a message, and the
quiescence time, which is the time that elapses between periods of qui-
escence, in which a processor returns to an initial state and deletes all
earlier connection records. We establish trade-offs between message de-
livery time and quiescence time, in the form of tight lower and upper
bounds, for each combination of timing models and failure types. Sev-
era] special cases of our trade-off results significantly improve upon or
extend previous ones shown by Kleinberg et al.

1 I n t r o d u c t i o n

Transport layer protocols, such as the T C P / I P Internet Suite, provide a reliable
connection between two remote hosts, a sender and a receiver, across a wide-area
network (see, e.g. [8, Chapter 6]). The sender wishes to establish a connection to
the receiver, transmit information, and later release the connection. A connection
management protocol handles the establishment and release of the connection.
In turn, protocols built over the transport layer form the basis for ftp, telnet,
remote procedure calls, and a number of other communication primitives that
rely on reliable connections. In a large network, each sender typically maintains
a number of parallel sessions; moreover, there can be a number of different

* Partially supported by funds for the promotion of research at University of Cyprus
(research projects "Distributed Processing: Multiprocessors, Networks, and Verifica-
tion," and "Distributed, Parailet and Concurrent Computations").

341

incarnations of a session with a single receiver, as the connection is opened,
closed and opened again. In the presence of network faults such as message
reordering or duplication, it is necessary to maintain records at each receiver
keeping track of which packets have been received, acted on, and so forth. As
the number of parallel sessions increases, however, memory limitations do not
allow processing nodes to keep history records for very long. So, each processor
must periodically quiesce by deleting past connection records.

Message delivery time determines the latency of packet transmission; thus,
for applications with short incarnations, such as remote procedure calls, it is
particularly important to keep message delivery time as low as possible. On the
other hand, quiescence time determines the amount of information that needs to
be stored at each node; for applications involving steady stream-like traffic with
a priori known resource requirements, it is even necessary to keep quiescence
time as small as possible, so that available buffer space at each individual node
is not exhausted. A large number of protocols have been proposed to optimize
either message delivery time or quiescence time (see, e.g. [1, 4, 7]). On the one
extreme, timer-based protocols (see, e.g., [4]) achieve low message delivery time,
while on the other extreme, the three-packet handshake protocol (see, e.g., [1])
guarantees low quiescence time.

We assume, throughout, that the network can fail by duplicating and re-
ordering messages. We also consider node failures, where the receiver, but not
the sender, may fail by crashing. We assume, however, that the receiver may not
maintain in stable storage the time of its last crash, since, otherwise, by a trivial
reduction to the case of message duplications (see [3, Section 6.2]), the receiver
may deliver any message sent after its last crash. We consider two basic timing
models. In the drifting clocks model, the clocks of the sender and the receiver
run at a rate that may vary with time but always remains between 1/p and p
times the rate of real time, for some fixed (and known) constant p > 1. In the
approzimately synchronized clocks model, or approximate clocks model for short,
each of the clocks is always within e of real time, for some fixed (and known)
constant e > 0. We follow [3] to express our time bounds in terms of two main
parameters describing packet delays. The first of these parameters refers to a
specific execution e of the system and is the maximum packet delay in ezecution
e, denoted d~; that is, d~ is the supremum of the times that elapse between the
sending and the receipt of a packet in execution e. The second parameter of
interest is the mazimum packet lifetime, denoted/~, which is the longest amount
of time, over all executions, that any copy of a packet may remain undelivered
in the network; notice tha t / i is the maximum de over all executions e. While we
may sometimes assume that/~ is known, in contrast, neither S nor R may know
d~ a priori in execution e.

We start with the case where there are network failures but not node failures.
Our starting point is an ingenious connection management protocol designed by
Kleinberg et al [3, Section 5] for the approximate clocks model in the presence
of network failures. Roughly speaking, this protocol relies on a conservative
estimation, made by the receiver, of the maximum delay in any specific execution;

342

these estimates are achieved through a "time-slicing" technique requiring both
the sender and the receiver to use their (approximate) clocks in order to send
to each other one time-stamped packet per each "time-slice'. In turn, these
estimates enable the receiver to determine when to deliver or quiesce. We make
a key observation that the safety condition satisfied by this protocol, namely
that it does not deliver a message twice, holds independently of the particular
timing assumptions made for the approximately synchronized clocks model. 2
This leads us to consiider this protocol as a candidate of a generic connection
management protocol which guarantees at-most-once message delivery in the
presence of network failures for any model in which clocks are available to the
sender and the receiver. Such a generic protocol would enjoy nice portability
properties across models in which the available clocks satisfy different timing
assumptions, but also work correctly for models in which the timing properties
of the clocks are even unknown, or not amenable to a clean formalization.

There is, however~ an additional, natural performance requirement on a
generic connection management protocol. Since different applications may have
different needs regarding which one of message delivery time and quiesce time
to minimize while still retaining the other bounded, a connection management
protocol is competitive in performance only if it appropriately allows such trade-
offs between its message delivery time and quiescence time. Unfortunately, as
we explain, the connection management protocol of Kleinberg et al. [3, Sec-
tion 5] fails to allow such quantitative trade-offs. For the approximate clocks
model, this protocol achieves upper bounds of (1 + 2/J)d~ + (4 + 4/J)e + c and
(~ + 2)d~ + (2d + 6)e + c on message delivery time and quiescence time, respec-
tively, for any constant c > 0, where ~ _ 1 is a "trade-off" parameter (cf. [3,
Theorem 5]). Increasing ~ lowers the upper bound on message delivery time but
raises the upper bound on quiescence time; on the other hand, decreasing ~ raises
the upper bound on message delivery time but lowers the upper bound on qui-
escence time. Notice that the upper bound on message delivery time increases
as ~ decreases down to 1 but still remains bounded above by a finite quantity,
namely 3de -k 8¢ ÷ c; unfortunately, the same does not hold on the way the upper
bound on quiescence time increases as ~ increases: the limit of the upper bound
on quiescence time, as ~ becomes large, is infinity. Thus, the connection man-
agement protocol of Kleinberg et al. [3, Section 5] renders itself "impractical,"
due to unbounded increase in the amount of connection records that needs to be
kept at each node, for applications requiring the latency of packet transmission
to become arbitrarily low. Call a connection management protocol bounded if the
upper bounds it achieves on message delivery time and quiescence time are both
bounded functions of the involved trade-off parameters. The work of Kleinberg
et al. [3] leaves open the question of whether there exists or not a generic and
bounded connection management protocol. We resolve this question by a judi-

2 An inspection of the proof of [3, Theorem 5] reveals that the timing assumptions in
the approximate clocks model are explicitly used in the analysis of the performance
of this protocol, namely in deriving upper bounds on the message delivery time and
quiescence time it achieves, but not in its correctness proof.

343

cious adjustment of the timing conditions which the receiver uses to determine
when to deliver or quiesce in the generic protocol of Kleinberg et al [3]; the result
is another generic connection management protocol which is also bounded for
the approximately synchronized clocks model (see discussion next).

Assume first that clocks are drifting. We establish a trade-off between mes-
sage delivery time and quiescence time that must hold for some execution of
any connection management protocol. More specifically, we show that for any
fixed constant J, 0 < J < 2, either a lower bound of (3 - Jp)de on message
delivery time holds, or a lower bound of p2(p _ (3 - J)de) on quiesce time holds
for some execution e of any arbitrary connection management protocol. Klein-
berg et al. [3, Theorem 4] show that for any connection management protocol
there exists an execution e with dr < /~/3 for which either a lower bound of
3de on message delivery time holds or a lower bound of p~(# - 3d~) on quiesce
time holds. Our result extends and improves upon [3, Theorem 4] in a signifi-
cant way: it is a substantial refinement of [3, Theorem 4] by incorporating the
trade-off parameter 5; note that [3, Theorem 4] is the special case of our result
with J = 0.

We next turn to the case of approximately synchronized clocks. We present
both lower and upper bounds. We start with lower bounds. Kleinberg et al. [3,
Section 5] consider the special case of perfect clocks (i.e., approximately syn-
chronized clocks with e = 0); in particular, Kleinberg et al. show that a certain
trade-off between message delivery time and quiesce time must hold for some
execution of any connection management protocol. In more detail, Kleinberg et
al. [3, Theorem 6] show, assuming e = 0, that for any connection management
protocol, for any constant j t where 0 < 5' < 2, there exists some execution e
for which either a lower bound of (1 + J')d~ on message delivery time holds, or
a lower bound of rain{p, 2ddJ ' } on quiesce time holds; notice that the latter
lower bound never exceeds /~, Kleinberg et al. remark [3, Section 5]: "For gen-
eral ¢ > 0, we do not know how to obtain a correspondingly tight lower bound,
and leave this as an open question." We resolve this open problem of Kleinberg
et al. by presenting a corresponding trade-off result for the case of general e.
More specifically, we show that for any fixed constant J > 1, either a lower
bound of (3 - 2/J)d~ + ¢ on message delivery time holds, or a lower bound of
(J / (J - 1))de + ¢ on quiesce time holds for some execution e of any arbitrary
connection management protocol.

For purpose of direct comparison to the previous result of Kteinberg et al. [3,
Theorem 6], which holds for the special case where e = 0, set 5' = 2(1 - l / J)
where j > 1; under this substitution, the lower bounds on message delivery
time and quiescence time in that result can be expressed as (3 - 2/J)d~ and
min{#, (~/(&- 1))de}, respectively. We remark that these expressions are almost
identical to those obtained by setting ¢ = 0 in the corresponding lower bounds
we have shown. Clearly, our results imply that the timing uncertainty ¢ in the
approximately synchronized clocks model incurs an additive overhead that is
proportional to e on each of the message delivery time and the quiescence time.
Our trade-off result improves upon the corresponding result of Kleinberg et al. [3,

344

Theorem 6] in two significant ways. First, it extends [3, Theorem 6] to the case of
general ¢ > 0. Second, when specialized for the case where e -- 0, the lower bound
of (6/(6 - 1))de on quiesce time improves upon the corresponding lower bound
of min{#, (61(~- 1))d~}, shown in [3, Theorem 6], since min{/~, (~ 1 (6 - 1))d~} <
/~, while it can be verified that (&/($ - 1))de exceeds # if 6 is chosen so that
6 < -

We continue with upper bounds. We use the timing assumptions made in the
approximately synchronized clocks model to carry out a careful timing analysis of
our generic connection management protocol. This analysis reveals upper bounds
on message delivery time and quiesce time which not only incorporate the trade-
off parameter 6, but also improve upon the corresponding upper bounds achieved
by the corresponding protocol in [3, Theorem 5]. More specifically, we show upper
bounds of (3 - l/~)de + (4 - l /$)2e + c a n d (3 + l/~)de + (4 + 1/~)2e + c o n message
delivery time and quiesce time, respectively, for any constant c > 0, where 6 > 1
is a "trade-off" parameter. Notice that each of these upper bounds converges
to the finite quantity 3de + 8e + c as 6 approaches infinity; this implies that
specializing our generic connection management protocol to the approximately
synchronized clocks model yields a bounded protocol for this case. In contrast,
the generic connection management protocol of Kleinberg et al. [3, Section 5]
achieves upper bounds of (1 + 2~6)de + (4 + 4/6)¢ + c and (6 + 2)d, + (26 + 6)¢ + c
on message delivery time and quiesce time, respectively; these bounds imply that
the protocol of Kleinberg et al. for the approximately synchronized clocks model
is not bounded.

We next turn to the case where there are both network and node failures.
Assume first that clocks are drifting. We establish a lower bound on message
delivery time that must hold for some execution. More specifically, we show that
for any arbitrary connection management protocol, there exists an execution e
of it with de < #/ (3p + 1) for which a lower bound of 3pde holds. We next turn
to the case of approximately synchronized clocks. We present two lower bounds
on message delivery time which trade-off strength and generality. First, we show
that for any connection management protocol, there exists an execution e of it
with de > ¢ for which a lower bound of de + 2¢ holds. Second, we show that a
stronger assumption on the execution e suffices to show a larger lower bound on
message delivery time. More specifically, we show that if, in addition to de ~ ¢, it
is also assumed that de < (# - 6¢)/5, then a lower bound of 3de + 2¢ on message
delivery time holds. Due to space limitations, many of our definitions and proofs
are only sketched in this extended abstract.

2 D e f i n i t i o n s a n d B a c k g r o u n d

Our definitions of the system architecture closely follow those in [3]. The sys-
tem we model consists of two nodes S (sender) and R (receiver), a host at each
node, and an unreliable network connecting the two nodes. The sender wishes to
transmit a message to the receiver: the receiver is required to eventually deliver
the message, but never deliver it for a second time. We model the system as a

345

collection of I /O automata [5]. The automata Us and UR represent the users,
one at each node; Us wishes to transmit a message to UR. The au tomata S and
R represent the network interfaces for Us and UR, respectively. The network is
also modeled as an automaton. The automaton Us provides inputs to S, con-
sisting of messages to be delivered; in correspondence, R provides inputs to UR
representing delivered messages. We model S and R as timed I /O au tomata [6],
augmented with appropriate liveness properties [2]. Each state of S or R con-
tains a special clock component, and a special internal component. Denote
the domain of real time. A clock is a monotone non-decreasing and unbounded,
piece-wise continuous function of real time ~/: ~ -+ ~; each of S and R can allow
any specified amount of time to pass on its clock, and perform certain actions
when the clock reaches a specified value. We consider two main clock types:
clocks that may "drift" away from real time, and clocks that are approximately
synchronized. Fix any constant p >_ 1. A p.drifting clock, or drifting clock for
short, is a clock 7 : ~ -+ ~ such that for all real times t l , t2 E ~ with t l < t~,
1/p <_ (7(~2) - 7(~1))/(t2 - tl) <_ p. Roughly speaking, a p-drifting clock "runs"
at a rate between 1/p and p times that of real time. Since p >_ 1, it follows that
if t2 > tl , then 3'(t2) - 7(tl) > 0 ; thus, a p-drifting clock is strictly increasing.
Throughout, fix any constant e > 0. An e-synchronized clock, or approximately
synchronized clock for short, is a clock 7 : ~ --¢ ~ such that for each real t ime
t 6 ~ , IV(t) - t l < e Roughly speaking, an e-synchronized clock is always within
e of real time.

Initially, the internal components of S and R are equal to "initial" values Qo,s
and Q0,n, respectively: no local action is enabled in an initial state. Quiescence
is modeled as a transition of the internal component of the state R to Q0,R;
this transition does not affect the clock component of the state of R. Crash is
modeled identically to quiescence. S and R communicate through packets sent
across the network. Events sends and sendR denote packet sending events at
S and R, respectively; similarly, events receives and receiver denote packet
receive events. We assume a function ¢, which maps each receives event (resp.,
receiver event) to a sendR event (resp., sends event) for the same packet. For a
network that can duplicate packets, ¢ need not be one-to-one; that is, receives
or receiver may occur more than once for any single packet sent once. However,
we will assume that each single packet can be duplicated only a finite number
of times. We similarly consider message transmit events and message delivery
events occurring at Us and UR as higher primitives. We are concerned with
the delivery of a single message; thus, we assume that Us provides the message
as a single input to S, at the beginning of an execution. Thus, for any given
execution, the inputs to S consist of an initial input u* from Us, followed by a
sequence of packets r l , r2 , . . , from R; the inputs to R consist of a sequence of
packets Sl ,S2, . . . from S. If the network can duplicate and reorder packets, the
correctness condition for any connection management protocol is as follows. For
every execution e beginning with the input of a message from Us to S, there is
exactly one event in e in which R delivers the message to R, and at least one
event following this delivery event in which R quiesces. Assume that these events

346

occur at times D(e) and Q(e), respectively.
A trade-oZconnection management protocol P is a connection management

protocol for which there exists a parameter ~ >_ 0 such that for any timed
execution e of ~' both D(e) and q(e) are bounded above by (non-constant)
functions of Z, one of which is an ascending function of Z and the other is a
descending function of ~. A bounded connection management protocol is a trade-
off connection management protocol for which the one of the functions bounding
D(e) and q(e) that is an ascending function of ~ converges to a finite upper
bound as ~ approaches infinity.

In the drifting clocks model, each of 7s and 7R is a p-drifting clock. In
the approximately synchronized clocks model, each of ~'s and ~/R is an approxi-
mately synchronized clock. The approximately synchronized clocks model mod-
els situations where external synchronization is available to the processors. The
definition of an e-synchronized clock immediately implies that in the approxi-
mately synchronized clocks model both [('rs(t2) - ~rs(tl)) - (t2 - tl)] _< 2e and
[(xR(t2) - ~R(t l)) - (t2 - t l) [< 2e. A th i rd i m m e d i a t e implication of the defini-
t ion of the approximately synchronized clocks model is that ['Ys (t) -0'R(t)[_< 2e.
The weakly synchronized clocks model is defined as a weaker version of the ap-
proximately synchronized clocks model in which these three implications hold,
while relaxing the requirement that the individual clocks be approximately syn-
chronized. For any specific execution e, de is the maximum amount of time, over
all packets, that can elapse between events receivep and sendp that are related
by ¢; that is, de is the longest packet delay in execution e. The maximum packet
lifetime k~ is defined as the maximum de over all executions e; thus, de is always
at most #, although it can be substantially less than # in "normal" executions.
We will be assuming, unless otherwise stated, that both S and R "know"/z.

3 N e t w o r k F a i l u r e s : A G e n e r i c P r o t o c o l

In this section, we present a generic protocol 7) for connection management,
which is based on time stamps. 3 ° solves connection management in the pres-
ence of network failures for any model for which processors have monotonically
increasing clocks; as we will show later, 7) guarantees finite bounds for both
message delivery time and quiescence time for the approximately synchronized
clocks model and its weaker variants, and the mutually drifting clocks model.
The protocol 7) is a variation of one proposed by Kleinberg et al. [3, Theorem
5], and our analysis closely follows the one in [3, section 5]. Throughout, fix any
constant c > 0 and let (f be any parameter such that (f _> 1. Define a constant
c ~ = c'(~) = 6c/(7~ + 2). The protocol adopts a "time-slicing" technique. Each
of S and R uses its local clock to "slice" time into intervals of length c ~. At
the end of each "slice", Each of S and R sends a "time-stamped" packet to the
other; the "time stamp" is the local sending time. A discrete R-time t is a local
time at R which is a positive integral multiple of c~; discrete S-time is defined
correspondingly.

The threshold of R at discrete R-time t [3, Theorem 5] is defined to be the

347

largest ~' for which R has received all S-packets with t ime s tamp at most ~; that
is, R has not yet received the S-packet with t ime s tamp tt +c~). The threshold of
S at discrete S-time t is defined analogously. The first packet sent by S contains
both the message and the current local time. Subsequent S-packets consist of
the current local t ime and the current threshold of S. Initially, S has received
no packets from R and hence reports a trivial threshold; after it receives its
first R-packet, it report a non-trivial threshold. N-packets consist simply of the
current local t ime to enable S to compute its threshold. The first R-packet is
sent when R first receives the initial S-packet. Assume that S sends its initial
packet at discrete S-time 0. Let r0 denote the discrete R-time at which R first
receives the initial S-packets, and hence at which it sent out its first packet to S.
R maintains an estimate of the current value of dr by computing the maximum
lag 1 (~) of any packets observed up to t ime ~; this is equal d + M (0, where M(~)
is the maximum over the following three finite sets: (1) the set of all r - s,
where the threshold of R at discrete R-time r is equal to s; (2) the set of all
s t - r t, where the threshold value in the S-packets time- s tamped s ~ is equal to
rl; (3) the set of all s ~ - r 0 , where the S-packet t ime-stamped s ~ reports a trivial
threshold. (Note that the M (~) is an ascending function). Clearly, the third rule
implies that I (~°) > [r0[.

We are now ready to present the algorithm. R delivers at the first discrete R-
time ~l when ~1 > ,~3 - 1/~)/(d) and quiesces at the first discrete R-time ~" when
~(') > (3 + 1/6)/(~) It then sends a done message to S; S quiesces immediately
upon receiving this done message. If at any t ime S report a non trivial threshold
that is less than r0 (i.e. one can conclude that R is hearing replays), R aborts
the connection without delivering and sends an error message to S. For any t ime
~, define r(~) to be the discrete R-time at which the maximum value for/(t) was
attained; that is, r(~) is largest r _< ~ for which the / (r) = / (~) By the three rules,
de > ~/~l(r) - " y s l (r - / (0 + 2c'). We continue to show that 7 ~ is a connection
management protocol. We need to prove that R does not deliver any message
for a second time. First we argue that R will not quiesce until it has received
an S-packet with non-trivial threshold. Let ~b denote the S-packet with minimal
t ime-stamp that reports a non-trivial threshold, and consider discrete R-t ime r
at which R has not yet received ~b. Let r - u 1 be the t ime-stamp of the most recent
S-packets, and set v --- r - ul - r0. Because r - ul is the t ime-stamp of the most
recent S-packets we have that r - U l > r0. Since M(0 is an ascending function, it
follows that M (r) >_ M (r-ux) _> M (r°) Together with the three rules, this implies
tha t l(r) >_ ul, l(r) > r0, t (~) >_ u. Thus, r = ro + Ul + u _< 3t (r) < (3 + 1/6)1 (r),
so R will not yet quiesce. Now let I* (reap. M*) denote the maximum value of
t(t) (reap. M (t)) over all discrete R-times g up to quiescence, and sl denote the
t ime-stamp of S-packet ~b. Indeed, the t ime-stamped sl - c ~ reports a trivial
threshold, so by the third rule for estimating the lag, M* >_ sl - c I - to, it
follows 1" > Sl - r0. Because l(~) is an ascending function, l* _> i(~o) > to, and
a manipulation yields that Sl < 21". Finally, suppose T > g" and a replay of
the original message arrives at t ime T. We will show that if T ~ >_ T is some
time at which R has not received a second replay of S-packet ~b, then it will

348

not required to deliver. Since ¢ has not been received at T I, by the first rule
for estimating the lag, l (T') > T ' - sl > T ~ - 2l*. Since R quiesces by R-
t ime T and l* denote the maximum value l (~) over all discrete R-times t up to
quiescence, we have that (3 + _< T , so that l* < + 1)) T . Thus ,

/ (T ') > T ~ _ 2l* _> T ' - 3~+13--L T -> T~ 3~+12~ T ~ = ~3~+1 T~, which implies that

T ' < ~+1 "I(T') < (3 - ½) l (T') , Thus R does not deliver at t ime Tq As we have
say T is the R-time which R receives the first replay of ¢ report and T ~ > T is
a R-times in which R has not receives a second replay of ¢ yet. It follows that
R will receive a replay of ¢ before it delivers. But ¢ reports a threshold (= r0)
smaller than T,which is the discrete R-time at which R first started sending
packets to S following quiescence. By the protocol, R will abort the connection
in this case. Thus R is not required to deliver until it receives a replay of ¢.
Thus, R never delivers the message a second time, which implies:

T h e o r e m 1. 79 is a connection management protocol.

4 Network Failures: Drifting Clocks

We establish a trade-off between message delivery t ime and quiesce t ime that
must hold for some execution of any connection management protocol.

T h e o r e m 2. Consider the drifting clocks model~ under network failures. Then,
for any connection management protocol 7 9, for any constant ~ such that 0 <

< 2, there exists a timed execution e of 79 such that either D(e) > (3 - ~p)de,
or q (e) > p 2 (, _ (3 -

S k e t c h o f proof." Assume, by way of contradiction, that there exists a con-
nection management protocol 79 for the drifting clocks model in the presence of
network failures, and a constant 5, 0 < ~ < 2, such that for every t imed execu-
tion e of 79, both D(e) < (3 - ~p)de, and Q(e) < p 2 (# _ (3 -~)d~) . We construct
a t imed execution of 79 in which a message is delivered twice. We construct a
sequence of t imed executions e, f , e I, and f ' , so that R delivers a message twice
in f l . f t is the "concatenation" of e t and f . In e and f , the clocks of R and S
are "slow'~ while in e ~, the clocks of R and S are "fast". We start with e, which
terminates immediately after R quiesces. By modifying R's clock, we "perturb"
e to obtain f , which S cannot distinguish from e; still, f terminates immediately
after R quiesces. We continue to construct e t, which S cannot distinguish from
e to S, while R still delivers in e' but does not quiescence. Finally, we construct
f~ as the "concatenation" of e ~ and f ; in ft , R first delivers and quiescences,
before it receives replays of all packets in a way that R "sees" them arriving as
in f . This leads R to deliver again, which contradicts the correctness of 79. •

The lower bounds on message delivery time and quiescence t ime shown in
Theorem 2 are simultaneously non-negative, and, hence, non-trivial, if (and only
if) both 3 - ~p >__ 0 and # - (3 - d)d~ >__ 0. Eliminating ~ and assuming p > 1

349

yields de < ~ ~3 as a necessary condition for any timed execution e for which
the trade-off lower bounds shown in Theorem 2 are non-trivial; Kleinberg et
al. [3, Theorem 4] argue that de < /~ /3 is a corresponding necessary condition.
Since ~ ~3 > ~3, for p > 1, this implies that the trade-off lower bound shown in
Theorem 2 is non-trivial for a wider range of t imed executions than the trade-off
lower bound shown in [3, Theorem 4].

5 Network Failures: Approximate Clocks

We start by showing:

T h e o r e m 3. Consider the approximately synchronized clocks model, in the pres-
ence of network failures. Fix any parameter ~ > 1. Then, for any connec-
tion management protocol 7), there exists an execution e of 7) for which either
D(e) > (3 - ~)de + e, or Q(e) > ~-y de + e.

Ske t ch o f proof : Assume, by way of contradiction, that there exists a connec-
tion management protocol 7) for the approximately synchronized clocks model
under network failures, and a constant $ > 1 such that for every execution e of
7), both D(e) < (3 - 2/~)de + ¢, and Q(e) < ~/(~ - 1)de + ~. We construct an
execution of 7) in which a message is delivered twice. We construct a sequence of
executions e, f , e I so that R delivers a message twice in e I. We start with execu-
tion e which terminates with R's quiescence following its delivery. We continue
to construct f which is indistinquishable from e to S, while R only delivers. The
incurred delays on packets are larger in f than in e. Finally, we construct e' as
the "concatenation" of e and f . In e', R first delivers and immediately quiesces,
and it next receives replays of all packets in such a way that R "sees" all pack-
ets arriving as in f . By construction of f , R delivers again, constradicting the
correctness of 7). •

We continue with upper bounds. We use the timing assumptions made in the
approximately synchronized clocks model to carry out a careful t iming analysis
of our generic connection management protocol and show:

T h e o r e m 4. Consider the approximately synchronized clocks model in the pres-
ence of network failures. Then, for any constants ~ > 1 and e > O, there exists a
connection management protocol 7) such that for every timed execution e of 7),
D(e) < (3 - 1 1 ~) d e + (4 - ~) 2 e + c , and Q(e) < (3+ ~)de + (4 + ½)2e +c.

The bounds shown in Theorem 4 still hold if the timing model is relaxed to
the weakly synchronized clocks model, to imply a bounded and generic connec-
tion management protocol for this model, too.

6 Network and Node Failures

In this section, we present our lower bounds under both network and node fail-
ures. We start with the drifting clocks model. We show:

350

T h e o r e m 5. Consider the drifting clocks model, in the presence of network and
node failures. Then, for any connection management protocol ~P, there ezists an
execution e of 7 ~ with d, < #/3 for which D(e) >_ 3pde.

S k e t c h o f p r o o f : Assume, by way of contradiction, that there exists a con-
nection management protocol :P such that for every execution e with d~ < #/3,
D(e) < 3pde. We construct an execution of :P in which a message is delivered
twice. We construct a sequence of executions e, e~ f , and f~ so that R delivers
a message twice in f l . In all of these executions, clocks run at a rate of 1/p
times that of real time. We start with any execution e which terminates with
R delivering a message and immediately crashing. We "perturb" e to obtain
e f which is indistinguishable from e to either S or R, while all messages from
R to S take t ime # in et; so, R still delivers and immediately crashes by the
end of e ~. We continue to construct f which is indistinguishable from e j to S,
while R only delivers in f but does not crash; the construction uses the fact
that communication from R to S is slow in e ~. Finally, we construct f~ as the
"concatenation" of e ~ and f ; in f l , R first delivers and crashes and next receives
replays of all packets in such a way that R "sees" all packets arriving as in f .
By the construction of f , R delivers agMn, contradicting the correctness of P . •

We continue with our two lower bounds for the approximately synchronized
clocks model; these lower bounds trade-off strength and generality. We start with
the more general but less strong lower bound.

T h e o r e m 6. Consider the approzimately synchronized clocks model, under both
network and node failures. Then, for any connection management protocol P,
there exists a timed execution e of 7) with de >_ ~ for which D(e) > de Jr 2e.

S k e t c h o f p r o o f i Assume, by way of contradiction, tha t there exists a con-
nection management protocol ~ such that for any execution e with de > 6,
D(e) < de + 2e. We construct an execution o f ~ in which a message is delivered
twice. We construct a sequence of executions e, e r, and fl , so that R delivers a
message twice in f l . In all of these executions, the clock of R "lags" by e tha t of
S. We start with any execution e which terminate with R delivering a message
and immediately crashing. We "perturb" e to abtain e ~ which is indistinguishable
from e to either S, while M1 messages incur a delay larger than the corresponding
one in e. Finally, we continue to construct f~ as the "concatenation" of e and
e~; in fJ, R first delivers and crashes and next receives replays of all packets in
such a way that R "sees" all packets arriving as in e ~. By construction of e ~, R
delivers again, contradicting the correctness of :P. •

We continue to show a stronger but less general lower bound.

T h e o r e m 7. Consider the approximately synchronized clocks model, under both
network and node failures. Then, for any constant ~, 0 < ~ < ~, for any con-
nection management protocol ~ , there exists an execution e of ~ with de <
(/~ - 2~c)/5 for which D(e) ~ 3de + $c.

351

S k e t c h o f p roo f i Assume, by way of contradiction, that there exists a connec-
tion management protocol P such that for any execution e with de < (/~-2~e)/5,
D(e) < 3de +~¢. We construct an execution of:P in which a message is delivered
twice. We construct a sequence of executions e, e l, f and fr so that R delivers a
message twice in f~. In all of these executions, the clock of R "lags" by ~e/2 that
of S, for some constant ~, 0 < ~ < 2. We start with execution e which termi-
nates with R delivering a message and immediately crashing. We "perturb" e to
obtain e ~ which is indistinguishable from e to either S or R, while all messages
from R to S take t ime # in e~; so, R still delivers and immediately crashes by
the end of e ~. We continue to construct f which is indistinguishable from e ~ to
S, while R only delivers in f but does not crash; the construction uses the fact
that communication from R to S is slow in e ~. Finally, we construct f~ as the
"concatenation" of e t and f ; in f l , R first delivers and crashes and next receives
replays of all packets in such a way that R "sees" all packets arriving as in f .
By the construction of f , R delivers again, which contradicts the correctness of
T ~ . •

Clearly, as ~ increases, the lower bound of 3de + 8e is raised, but the upper
bound of (# - 2~c)/5 on de drops, thus narrowing the range of executions e
for which the lower bound on message delivery t ime is valid. Since the weakly
synchronized clocks model is no stronger than the approximately synchronized
clocks model, Theorems 6 and 7 immediately imply corresponding results for
tha t model too.

References

1. D. Belsnes, "Single-Message Communication," IEEE Transactions on Communica-
tions, Vol. 24, No. 2, February 1976.

2. R. Gawlick, R. Segala, J. Sogaard-Andersen and N. Lynch, "Liveness in Timed and
Untimed Systems," Proceedings of the 21st International Colloqium on Automata,
Languages and Programming, July 1994.

3. J. Kleinberg, H. Attiya and N. Lynch, "Trade-offs Between Message Delivery and
Quiesce Times in Connection Management Protocols," Proceedings of the 3rd Israel
Symposium on the Theory of Computing and Systems, pp. 258-267, January 1995.

4. B. Liskov, L. Shrira and J. Wroclawski, "Efficient At-Most-Once Messages Based
on Synchronized Clocks," ACM Transactions on Computer Systems, Vol. 9, No. 2,
pp. 125-142, 1991.

5. N. Lynch and M. Tuttle, "An Introduction to Input/Output Automata," CWI
Quarterly, Vol. 2, No. 3, pp. 219-246, September 1989.

6. N. Lynch and F. Vaandrager, "Forward and Backward Simulations for Timing-
Based Systems," in Real-Time: Theory in Practice, Lecture Notes in Computer
Science, Vol. 600 (J. W. de Bakker, C. Huizing, W. P. de Roever and G. Rozenberg,
eds.), pp. 397-446, Springer-Verlag, June 1991.

7. C. Sunshine and Y. Dalal, "Connection Management in Transport Protocols," Com-
puter Networks, Vol. 2, pp. 454-473, 1978.

8. A. Tanenbaum, Computer Networks, Prentice Halt, 1988.

