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Abs t rac t .  A connection management protocol establishes a connection 
between two hosts across a wide-area network to allow reliable message 
delivery. Following previous work of Kleinberg et al. (Proceedings of the 
3rd Israel Symposium on the Theory of Computing and Systems, pp. 
258-267, January 1995), we study the precise impact of the behavior 
of processors' clocks with respect to real time on the performance of 
connection management protocols, under common assumptions on the 
pattern of failures of the network and the host nodes. 
Two basic timing paradigms for docks are considered: clocks that ex- 
hibit certain kind of a drift from the rate of real time, and clocks that 
display a pattern of synchronization to real time; within each paradigm, 
several timing conditions on the clocks are assumed, giving rise to cor- 
responding timing models. We consider networks that can duplicate and 
reorder messages, and nodes that can crash. We are interested in simul- 
taneously optimizing the following performance parameters: the message 
delivery time, which is the time required to deliver a message, and the 
quiescence time, which is the time that elapses between periods of qui- 
escence, in which a processor returns to an initial state and deletes all 
earlier connection records. We establish trade-offs between message de- 
livery time and quiescence time, in the form of tight lower and upper 
bounds, for each combination of timing models and failure types. Sev- 
era] special cases of our trade-off results significantly improve upon or 
extend previous ones shown by Kleinberg et al. 

1 I n t r o d u c t i o n  

Transport layer protocols, such as the T C P / I P  Internet Suite, provide a reliable 
connection between two remote hosts, a sender and a receiver, across a wide-area 
network (see, e.g. [8, Chapter 6]). The sender wishes to establish a connection to 
the receiver, transmit information, and later release the connection. A connection 
management protocol handles the establishment and release of the connection. 
In turn, protocols built over the transport layer form the basis for ftp, telnet, 
remote procedure calls, and a number of other communication primitives that  
rely on reliable connections. In a large network, each sender typically maintains 
a number of parallel sessions; moreover, there can be a number of different 
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incarnations of a session with a single receiver, as the connection is opened, 
closed and opened again. In the presence of network faults such as message 
reordering or duplication, it is necessary to maintain records at each receiver 
keeping track of which packets have been received, acted on, and so forth. As 
the number of parallel sessions increases, however, memory limitations do not 
allow processing nodes to keep history records for very long. So, each processor 
must periodically quiesce by deleting past connection records. 

Message delivery time determines the latency of packet transmission; thus, 
for applications with short incarnations, such as remote procedure calls, it is 
particularly important to keep message delivery time as low as possible. On the 
other hand, quiescence time determines the amount of information that needs to 
be stored at each node; for applications involving steady stream-like traffic with 
a priori known resource requirements, it is even necessary to keep quiescence 
time as small as possible, so that available buffer space at each individual node 
is not exhausted. A large number of protocols have been proposed to optimize 
either message delivery time or quiescence time (see, e.g. [1, 4, 7]). On the one 
extreme, timer-based protocols (see, e.g., [4]) achieve low message delivery time, 
while on the other extreme, the three-packet handshake protocol (see, e.g., [1]) 
guarantees low quiescence time. 

We assume, throughout, that the network can fail by duplicating and re- 
ordering messages. We also consider node failures, where the receiver, but not 
the sender, may fail by crashing. We assume, however, that the receiver may not 
maintain in stable storage the time of its last crash, since, otherwise, by a trivial 
reduction to the case of message duplications (see [3, Section 6.2]), the receiver 
may deliver any message sent after its last crash. We consider two basic timing 
models. In the drifting clocks model, the clocks of the sender and the receiver 
run at a rate that may vary with time but always remains between 1/p and p 
times the rate of real time, for some fixed (and known) constant p > 1. In the 
approzimately synchronized clocks model, or approximate clocks model for short, 
each of the clocks is always within e of real time, for some fixed (and known) 
constant e > 0. We follow [3] to express our time bounds in terms of two main 
parameters describing packet delays. The first of these parameters refers to a 
specific execution e of the system and is the maximum packet delay in ezecution 
e, denoted d~; that is, d~ is the supremum of the times that elapse between the 
sending and the receipt of a packet in execution e. The second parameter of 
interest is the mazimum packet lifetime, denoted/~, which is the longest amount 
of time, over all executions, that any copy of a packet may remain undelivered 
in the network; notice tha t / i  is the maximum de over all executions e. While we 
may sometimes assume that/~ is known, in contrast, neither S nor R may know 
d~ a priori in execution e. 

We start with the case where there are network failures but not node failures. 
Our starting point is an ingenious connection management protocol designed by 
Kleinberg et al [3, Section 5] for the approximate clocks model in the presence 
of network failures. Roughly speaking, this protocol relies on a conservative 
estimation, made by the receiver, of the maximum delay in any specific execution; 
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these estimates are achieved through a "time-slicing" technique requiring both 
the sender and the receiver to use their (approximate) clocks in order to send 
to each other one time-stamped packet per each "time-slice'. In turn, these 
estimates enable the receiver to determine when to deliver or quiesce. We make 
a key observation that the safety condition satisfied by this protocol, namely 
that it does not deliver a message twice, holds independently of the particular 
timing assumptions made for the approximately synchronized clocks model. 2 
This leads us to consiider this protocol as a candidate of a generic connection 
management protocol which guarantees at-most-once message delivery in the 
presence of network failures for any model in which clocks are available to the 
sender and the receiver. Such a generic protocol would enjoy nice portability 
properties across models in which the available clocks satisfy different timing 
assumptions, but also work correctly for models in which the timing properties 
of the clocks are even unknown, or not amenable to a clean formalization. 

There is, however~ an additional, natural performance requirement on a 
generic connection management protocol. Since different applications may have 
different needs regarding which one of message delivery time and quiesce time 
to minimize while still retaining the other bounded, a connection management 
protocol is competitive in performance only if it appropriately allows such trade- 
offs between its message delivery time and quiescence time. Unfortunately, as 
we explain, the connection management protocol of Kleinberg et al. [3, Sec- 
tion 5] fails to allow such quantitative trade-offs. For the approximate clocks 
model, this protocol achieves upper bounds of (1 + 2/J)d~ + (4 + 4/J)e + c and 
(~ + 2)d~ + (2d + 6)e + c on message delivery time and quiescence time, respec- 
tively, for any constant c > 0, where ~ _ 1 is a "trade-off" parameter (cf. [3, 
Theorem 5]). Increasing ~ lowers the upper bound on message delivery time but 
raises the upper bound on quiescence time; on the other hand, decreasing ~ raises 
the upper bound on message delivery time but lowers the upper bound on qui- 
escence time. Notice that the upper bound on message delivery time increases 
as ~ decreases down to 1 but still remains bounded above by a finite quantity, 
namely 3de -k 8¢ ÷ c; unfortunately, the same does not hold on the way the upper 
bound on quiescence time increases as ~ increases: the limit of the upper bound 
on quiescence time, as ~ becomes large, is infinity. Thus, the connection man- 
agement protocol of Kleinberg et al. [3, Section 5] renders itself "impractical," 
due to unbounded increase in the amount of connection records that needs to be 
kept at each node, for applications requiring the latency of packet transmission 
to become arbitrarily low. Call a connection management protocol bounded if the 
upper bounds it achieves on message delivery time and quiescence time are both 
bounded functions of the involved trade-off parameters. The work of Kleinberg 
et al. [3] leaves open the question of whether there exists or not a generic and 
bounded connection management protocol. We resolve this question by a judi- 

2 An inspection of the proof of [3, Theorem 5] reveals that the timing assumptions in 
the approximate clocks model are explicitly used in the analysis of the performance 
of this protocol, namely in deriving upper bounds on the message delivery time and 
quiescence time it achieves, but not in its correctness proof. 
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cious adjustment of the timing conditions which the receiver uses to determine 
when to deliver or quiesce in the generic protocol of Kleinberg et al [3]; the result 
is another generic connection management protocol which is also bounded for 
the approximately synchronized clocks model (see discussion next). 

Assume first that  clocks are drifting. We establish a trade-off between mes- 
sage delivery time and quiescence time that  must hold for some execution of 
any connection management protocol. More specifically, we show that  for any 
fixed constant J, 0 < J < 2, either a lower bound of (3 - Jp)de on message 
delivery time holds, or a lower bound of p2(p _ (3 - J)de) on quiesce time holds 
for some execution e of any arbitrary connection management protocol. Klein- 
berg et al. [3, Theorem 4] show that  for any connection management protocol 
there exists an execution e with dr < /~/3 for which either a lower bound of 
3de on message delivery time holds or a lower bound of p~(# - 3d~) on quiesce 
time holds. Our result extends and improves upon [3, Theorem 4] in a signifi- 
cant way: it is a substantial refinement of [3, Theorem 4] by incorporating the 
trade-off parameter 5; note that  [3, Theorem 4] is the special case of our result 
with J = 0. 

We next turn to the case of approximately synchronized clocks. We present 
both lower and upper bounds. We start with lower bounds. Kleinberg et al. [3, 
Section 5] consider the special case of perfect clocks (i.e., approximately syn- 
chronized clocks with e = 0); in particular, Kleinberg et al. show that  a certain 
trade-off between message delivery time and quiesce time must hold for some 
execution of any connection management protocol. In more detail, Kleinberg et 
al. [3, Theorem 6] show, assuming e = 0, that  for any connection management 
protocol, for any constant j t  where 0 < 5' < 2, there exists some execution e 
for which either a lower bound of (1 + J')d~ on message delivery time holds, or 
a lower bound of rain{p, 2ddJ '  } on quiesce time holds; notice that  the latter 
lower bound never exceeds /~, Kleinberg et al. remark [3, Section 5]: "For gen- 
eral ¢ > 0, we do not know how to obtain a correspondingly tight lower bound, 
and leave this as an open question." We resolve this open problem of Kleinberg 
et al. by presenting a corresponding trade-off result for the case of general e. 
More specifically, we show that  for any fixed constant J > 1, either a lower 
bound of (3 - 2/J)d~ + ¢ on message delivery time holds, or a lower bound of 
(J / (J  - 1))de + ¢ on quiesce time holds for some execution e of any arbitrary 
connection management protocol. 

For purpose of direct comparison to the previous result of Kteinberg et al. [3, 
Theorem 6], which holds for the special case where e = 0, set 5' = 2(1 - l / J )  
where j > 1; under this substitution, the lower bounds on message delivery 
time and quiescence time in that  result can be expressed as (3 - 2/J)d~ and 
min{#, (~/(&- 1))de}, respectively. We remark that  these expressions are almost 
identical to those obtained by setting ¢ = 0 in the corresponding lower bounds 
we have shown. Clearly, our results imply that  the timing uncertainty ¢ in the 
approximately synchronized clocks model incurs an additive overhead that  is 
proportional to e on each of the message delivery time and the quiescence time. 
Our trade-off result improves upon the corresponding result of Kleinberg et al. [3, 
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Theorem 6] in two significant ways. First, it extends [3, Theorem 6] to the case of 
general ¢ > 0. Second, when specialized for the case where e -- 0, the lower bound 
of (6/(6 - 1))de on quiesce time improves upon the corresponding lower bound 
of min{#, (61(~-  1))d~}, shown in [3, Theorem 6], since min{/~, ( ~ 1 ( 6 -  1))d~} < 
/~, while it can be verified that  (&/($ - 1))de exceeds # if 6 is chosen so that  
6 < - 

We continue with upper bounds. We use the timing assumptions made in the 
approximately synchronized clocks model to carry out a careful timing analysis of 
our generic connection management protocol. This analysis reveals upper bounds 
on message delivery time and quiesce time which not only incorporate the trade- 
off parameter 6, but also improve upon the corresponding upper bounds achieved 
by the corresponding protocol in [3, Theorem 5]. More specifically, we show upper 
bounds of ( 3 -  l/~)de + ( 4 -  l /$)2e + c a n d  (3 + l/~)de + (4 + 1/~)2e + c o n  message 
delivery time and quiesce time, respectively, for any constant c > 0, where 6 > 1 
is a "trade-off" parameter. Notice that  each of these upper bounds converges 
to the finite quantity 3de + 8e + c as 6 approaches infinity; this implies that  
specializing our generic connection management protocol to the approximately 
synchronized clocks model yields a bounded protocol for this case. In contrast, 
the generic connection management protocol of Kleinberg et al. [3, Section 5] 
achieves upper bounds of (1 + 2~6)de + (4 + 4/6)¢ + c and (6 + 2)d, + (26 + 6)¢ + c 
on message delivery time and quiesce time, respectively; these bounds imply that  
the protocol of Kleinberg et al. for the approximately synchronized clocks model 
is not bounded. 

We next turn to the case where there are both network and node failures. 
Assume first that  clocks are drifting. We establish a lower bound on message 
delivery time that  must hold for some execution. More specifically, we show that  
for any arbitrary connection management protocol, there exists an execution e 
of it with de < #/ (3p  + 1) for which a lower bound of 3pde holds. We next turn 
to the case of approximately synchronized clocks. We present two lower bounds 
on message delivery time which trade-off strength and generality. First, we show 
that  for any connection management protocol, there exists an execution e of it 
with de > ¢ for which a lower bound of de + 2¢ holds. Second, we show that  a 
stronger assumption on the execution e suffices to show a larger lower bound on 
message delivery time. More specifically, we show that  if, in addition to de ~ ¢, it 
is also assumed that  de < (# - 6¢)/5, then a lower bound of 3de + 2¢ on message 
delivery time holds. Due to space limitations, many of our definitions and proofs 
are only sketched in this extended abstract. 

2 D e f i n i t i o n s  a n d  B a c k g r o u n d  

Our definitions of the system architecture closely follow those in [3]. The sys- 
tem we model consists of two nodes S (sender) and R (receiver), a host at each 
node, and an unreliable network connecting the two nodes. The sender wishes to 
transmit a message to the receiver: the receiver is required to eventually deliver 
the message, but never deliver it for a second time. We model the system as a 
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collection of I /O  automata  [5]. The automata  Us and UR represent the users, 
one at each node; Us wishes to transmit a message to UR. The au tomata  S and 
R represent the network interfaces for Us and UR, respectively. The network is 
also modeled as an automaton. The automaton Us provides inputs to S, con- 
sisting of messages to be delivered; in correspondence, R provides inputs to UR 
representing delivered messages. We model S and R as timed I /O au tomata  [6], 
augmented with appropriate liveness properties [2]. Each state of S or R con- 
tains a special clock component, and a special internal component. Denote 
the domain of real time. A clock is a monotone non-decreasing and unbounded, 
piece-wise continuous function of real time ~/: ~ -+ ~; each of S and R can allow 
any specified amount  of time to pass on its clock, and perform certain actions 
when the clock reaches a specified value. We consider two main clock types: 
clocks that  may "drift" away from real time, and clocks that  are approximately 
synchronized. Fix any constant p >_ 1. A p.drifting clock, or drifting clock for 
short, is a clock 7 : ~ -+ ~ such that  for all real times t l , t2 E ~ with t l  < t~, 
1/p <_ (7(~2) - 7(~1))/(t2 - tl) <_ p. Roughly speaking, a p-drifting clock "runs" 
at a rate between 1/p and p times that  of real time. Since p >_ 1, it follows that  
if t2 > tl ,  then 3'(t2) - 7(tl)  > 0 ;  thus, a p-drifting clock is strictly increasing. 
Throughout, fix any constant e > 0. An e-synchronized clock, or approximately 
synchronized clock for short, is a clock 7 : ~ --¢ ~ such that  for each real t ime 
t 6 ~ ,  IV(t) - t l  < e Roughly speaking, an e-synchronized clock is always within 
e of real time. 

Initially, the internal components of S and R are equal to "initial" values Qo,s 
and Q0,n, respectively: no local action is enabled in an initial state. Quiescence 
is modeled as a transition of the internal component of the state R to Q0,R; 
this transition does not affect the clock component of the state of R. Crash is 
modeled identically to quiescence. S and R communicate through packets sent 
across the network. Events sends and sendR denote packet sending events at 
S and R, respectively; similarly, events receives and receiver denote packet 
receive events. We assume a function ¢, which maps each receives event (resp., 
receiver event) to a sendR event (resp., sends event) for the same packet. For a 
network that  can duplicate packets, ¢ need not be one-to-one; that  is, receives 
or receiver may occur more than once for any single packet sent once. However, 
we will assume that  each single packet can be duplicated only a finite number 
of times. We similarly consider message transmit events and message delivery 
events occurring at Us and UR as higher primitives. We are concerned with 
the delivery of a single message; thus, we assume that  Us provides the message 
as a single input to S, at the beginning of an execution. Thus, for any given 
execution, the inputs to S consist of an initial input u* from Us, followed by a 
sequence of packets r l ,  r2 , . . ,  from R; the inputs to R consist of a sequence of 
packets Sl ,S2, . . .  from S. If the network can duplicate and reorder packets, the 
correctness condition for any connection management protocol is as follows. For 
every execution e beginning with the input of a message from Us to S, there is 
exactly one event in e in which R delivers the message to R, and at least one 
event following this delivery event in which R quiesces. Assume that  these events 
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occur at times D(e) and Q(e), respectively. 
A trade-oZconnection management protocol P is a connection management 

protocol for which there exists a parameter ~ >_ 0 such that for any timed 
execution e of ~' both D(e) and q(e)  are bounded above by (non-constant) 
functions of Z, one of which is an ascending function of Z and the other is a 
descending function of ~. A bounded connection management protocol is a trade- 
off connection management protocol for which the one of the functions bounding 
D(e) and q(e)  that is an ascending function of ~ converges to a finite upper 
bound as ~ approaches infinity. 

In the drifting clocks model, each of 7s and 7R is a p-drifting clock. In 
the approximately synchronized clocks model, each of ~'s and ~/R is an approxi- 
mately synchronized clock. The approximately synchronized clocks model mod- 
els situations where external synchronization is available to the processors. The 
definition of an e-synchronized clock immediately implies that in the approxi- 
mately synchronized clocks model both [('rs(t2) - ~rs(tl)) - (t2 - tl)] _< 2e and 
[(xR(t2) - ~R( t l ) )  - (t2 - t l ) [  < 2e. A th i rd  i m m e d i a t e  implication of the defini- 
t ion of the approximately synchronized clocks model is that ['Ys (t) -0'R(t)[ _< 2e. 
The weakly synchronized clocks model is defined as a weaker version of the ap- 
proximately synchronized clocks model in which these three implications hold, 
while relaxing the requirement that the individual clocks be approximately syn- 
chronized. For any specific execution e, de is the maximum amount of time, over 
all packets, that can elapse between events receivep and sendp that are related 
by ¢; that is, de is the longest packet delay in execution e. The maximum packet 
lifetime k~ is defined as the maximum de over all executions e; thus, de is always 
at most #, although it can be substantially less than # in "normal" executions. 
We will be assuming, unless otherwise stated, that both S and R "know"/z. 

3 N e t w o r k  F a i l u r e s :  A G e n e r i c  P r o t o c o l  

In this section, we present a generic protocol 7 ) for connection management, 
which is based on time stamps. 3 ° solves connection management in the pres- 
ence of network failures for any model for which processors have monotonically 
increasing clocks; as we will show later, 7 ) guarantees finite bounds for both 
message delivery time and quiescence time for the approximately synchronized 
clocks model and its weaker variants, and the mutually drifting clocks model. 
The protocol 7 ) is a variation of one proposed by Kleinberg et al. [3, Theorem 
5], and our analysis closely follows the one in [3, section 5]. Throughout, fix any 
constant c > 0 and let (f be any parameter such that (f _> 1. Define a constant 
c ~ = c'(~) = 6c/(7~ + 2). The protocol adopts a "time-slicing" technique. Each 
of S and R uses its local clock to "slice" time into intervals of length c ~. At 
the end of each "slice", Each of S and R sends a "time-stamped" packet to the 
other; the "time stamp" is the local sending time. A discrete R-time t is a local 
time at R which is a positive integral multiple of c~; discrete S-time is defined 
correspondingly. 

The threshold of R at discrete R-time t [3, Theorem 5] is defined to be the 
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largest ~' for which R has received all S-packets with t ime s tamp at  most  ~; that  
is, R has not yet received the S-packet with t ime s tamp tt +c~). The threshold of 
S at discrete S-time t is defined analogously. The first packet sent by S contains 
both the message and the current local time. Subsequent S-packets consist of 
the current local t ime and the current threshold of S. Initially, S has received 
no packets from R and hence reports a trivial threshold; after it receives its 
first R-packet, it report  a non-trivial threshold. N-packets consist simply of the 
current local t ime to enable S to compute its threshold. The first R-packet is 
sent when R first receives the initial S-packet. Assume that  S sends its initial 
packet at discrete S-time 0. Let r0 denote the discrete R-time at which R first 
receives the initial S-packets, and hence at which it sent out its first packet to S. 
R maintains an estimate of the current value of dr by computing the maximum 
lag 1 (~) of any packets observed up to t ime ~; this is equal d + M (0, where M(~) 
is the maximum over the following three finite sets: (1) the set of all r - s, 
where the threshold of R at discrete R-time r is equal to s; (2) the set of all 
s t - r t, where the threshold value in the S-packets time- s tamped s ~ is equal to 
rl; (3) the set of all s ~ - r 0 ,  where the S-packet t ime-stamped s ~ reports a trivial 
threshold. (Note that  the M (~) is an ascending function). Clearly, the third rule 
implies that  I (~°) > [r0[. 

We are now ready to present the algorithm. R delivers at the first discrete R- 
time ~l when ~1 > ,~3 - 1/~)/(d) and quiesces at the first discrete R-time ~" when 
~(') > (3 + 1/6)/(~ ) It then sends a done message to S; S quiesces immediately 
upon receiving this done message. If at any t ime S report a non trivial threshold 
that  is less than r0 (i.e. one can conclude that  R is hearing replays), R aborts 
the connection without delivering and sends an error message to S. For any t ime 
~, define r(~) to be the discrete R-time at which the maximum value for/( t )  was 
attained; that  is, r(~) is largest r _< ~ for which the / ( r )  = / ( ~ )  By the three rules, 
de > ~/~l(r) - " y s l ( r  - / ( 0  + 2c'). We continue to show that  7 ~ is a connection 
management protocol. We need to prove that  R does not deliver any message 
for a second time. First we argue that  R will not quiesce until it has received 
an S-packet with non-trivial threshold. Let ~b denote the S-packet with minimal 
t ime-stamp that  reports a non-trivial threshold, and consider discrete R-t ime r 
at which R has not yet received ~b. Let r - u 1  be the t ime-stamp of the most recent 
S-packets, and set v --- r - ul - r0. Because r - ul is the t ime-stamp of the most 
recent S-packets we have that  r - U l  > r0. Since M(0  is an ascending function, it 
follows that  M (r) >_ M (r-ux) _> M (r°) Together with the three rules, this implies 
tha t  l(r) >_ ul,  l(r) > r0, t (~) >_ u. Thus, r = ro + Ul + u _< 3t (r) < (3 + 1/6)1 (r), 
so R will not yet quiesce. Now let I* (reap. M*) denote the maximum value of 
t(t) (reap. M (t)) over all discrete R-times g up to quiescence, and sl denote the 
t ime-stamp of S-packet ~b. Indeed, the t ime-stamped sl - c ~ reports a trivial 
threshold, so by the third rule for estimating the lag, M* >_ sl - c I - to, it 
follows 1" > Sl - r0. Because l(~) is an ascending function, l* _> i(~o) > to, and 
a manipulation yields that  Sl < 21". Finally, suppose T > g" and a replay of 
the original message arrives at t ime T.  We will show that  if T ~ >_ T is some 
time at which R has not received a second replay of S-packet ~b, then it will 
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not required to deliver. Since ¢ has not been received at T I, by the first rule 
for estimating the lag, l (T')  > T '  - sl > T ~ - 2l*. Since R quiesces by R- 
t ime T and l* denote the maximum value l (~) over all discrete R-times t up to 
quiescence,  we have  that  (3 + _< T ,  so that  l* < + 1)) T .  Thus ,  

/ (T ')  > T ~ _ 2l* _> T '  - 3~+13--L T -> T~ 3~+12~ T ~ = ~3~+1 T~, which implies that  

T '  < ~+1  "I(T') < (3 - ½) l (T') ,  Thus R does not deliver at t ime Tq  As we have 
say T is the R-time which R receives the first replay of ¢ report and T ~ > T is 
a R-times in which R has not receives a second replay of ¢ yet. It follows that  
R will receive a replay of ¢ before it delivers. But ¢ reports a threshold (=  r0) 
smaller than T,which is the discrete R-time at which R first started sending 
packets to S following quiescence. By the protocol, R will abort  the connection 
in this case. Thus R is not required to deliver until it receives a replay of ¢.  
Thus, R never delivers the message a second time, which implies: 

T h e o r e m  1. 79 is a connection management protocol. 

4 Network Failures: Drifting Clocks 

We establish a trade-off between message delivery t ime and quiesce t ime that  
must hold for some execution of any connection management protocol. 

T h e o r e m  2. Consider the drifting clocks model~ under network failures. Then, 
for any connection management protocol 7 9, for any constant ~ such that 0 < 

< 2, there exists a timed execution e of 79 such that either D(e) > (3 - ~p)de, 
or q ( e )  > p 2 ( ,  _ (3 - 

S k e t c h  o f  proof." Assume, by way of contradiction, that  there exists a con- 
nection management  protocol 79 for the drifting clocks model in the presence of 
network failures, and a constant 5, 0 < ~ < 2, such that  for every t imed execu- 
tion e of 79, both D(e) < ( 3 -  ~p)de, and Q(e) < p 2 (# _  (3 -~)d~) .  We construct 
a t imed execution of 79 in which a message is delivered twice. We construct a 
sequence of t imed executions e, f ,  e I, and f ' ,  so that  R delivers a message twice 
in f l .  f t  is the "concatenation" of e t and f .  In e and f ,  the clocks of R and S 
are "slow'~ while in e ~, the clocks of R and S are "fast". We start  with e, which 
terminates immediately after R quiesces. By modifying R's clock, we "perturb" 
e to obtain f ,  which S cannot distinguish from e; still, f terminates immediately 
after R quiesces. We continue to construct e t, which S cannot distinguish from 
e to S, while R still delivers in e' but  does not quiescence. Finally, we construct 
f~ as the "concatenation" of e ~ and f ;  in ft ,  R first delivers and quiescences, 
before it receives replays of all packets in a way that  R "sees" them arriving as 
in f .  This leads R to deliver again, which contradicts the correctness of 79. • 

The lower bounds on message delivery time and quiescence t ime shown in 
Theorem 2 are simultaneously non-negative, and, hence, non-trivial, if (and only 
if) both 3 - ~p >__ 0 and # - (3 - d)d~ >__ 0. Eliminating ~ and assuming p > 1 
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yields de < ~ ~3 as a necessary condition for any timed execution e for which 
the trade-off lower bounds shown in Theorem 2 are non-trivial; Kleinberg et 
al. [3, Theorem 4] argue that  de < /~ /3  is a corresponding necessary condition. 
Since ~ ~3 > ~3, for p > 1, this implies that  the trade-off lower bound shown in 
Theorem 2 is non-trivial for a wider range of t imed executions than  the trade-off 
lower bound shown in [3, Theorem 4]. 

5 Network Failures: Approximate Clocks 

We start by showing: 

T h e o r e m  3. Consider the approximately synchronized clocks model, in the pres- 
ence of network failures. Fix any parameter ~ > 1. Then, for any connec- 
tion management protocol 7), there exists an execution e of 7) for which either 
D(e) > (3 - ~)de + e, or Q(e) > ~-y de + e. 

Ske t ch  o f  proof :  Assume, by way of contradiction, that  there exists a connec- 
tion management protocol 7) for the approximately synchronized clocks model 
under network failures, and a constant $ > 1 such that  for every execution e of 
7), both D(e) < (3 - 2/~)de + ¢, and Q(e) < ~/(~ - 1)de + ~. We construct an 
execution of 7) in which a message is delivered twice. We construct a sequence of 
executions e, f ,  e I so that  R delivers a message twice in e I. We start with execu- 
tion e which terminates with R's quiescence following its delivery. We continue 
to construct f which is indistinquishable from e to S, while R only delivers. The 
incurred delays on packets are larger in f than in e. Finally, we construct e' as 
the "concatenation" of e and f .  In e', R first delivers and immediately quiesces, 
and it next receives replays of all packets in such a way that  R "sees" all pack- 
ets arriving as in f .  By construction of f ,  R delivers again, constradicting the 
correctness of 7). • 

We continue with upper bounds. We use the timing assumptions made in the 
approximately synchronized clocks model to carry out a careful t iming analysis 
of our generic connection management protocol and show: 

T h e o r e m  4. Consider the approximately synchronized clocks model in the pres- 
ence of network failures. Then, for any constants ~ > 1 and e > O, there exists a 
connection management protocol 7 ) such that for every timed execution e of 7), 
D(e) < ( 3 -  1 1 ~ ) d e + ( 4 - ~ ) 2 e + c ,  and Q(e) < (3+ ~)de + ( 4 +  ½)2e +c.  

The bounds shown in Theorem 4 still hold if the timing model is relaxed to 
the weakly synchronized clocks model, to imply a bounded and generic connec- 
tion management protocol for this model, too. 

6 Network and Node  Failures 

In this section, we present our lower bounds under both network and node fail- 
ures. We start with the drifting clocks model. We show: 
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T h e o r e m  5. Consider the drifting clocks model, in the presence of network and 
node failures. Then, for any connection management protocol ~P, there ezists an 
execution e of 7 ~ with d, < #/3 for which D(e) >_ 3pde. 

S k e t c h  o f  p r o o f :  Assume, by way of contradiction, that  there exists a con- 
nection management  protocol :P such that  for every execution e with d~ < #/3, 
D(e)  < 3pde. We construct an execution of :P in which a message is delivered 
twice. We construct a sequence of executions e, e~ f ,  and f~ so that  R delivers 
a message twice in f l .  In all of these executions, clocks run at a rate of 1/p 
times that  of real time. We start  with any execution e which terminates with 
R delivering a message and immediately crashing. We "perturb" e to obtain 
e f which is indistinguishable from e to either S or R, while all messages from 
R to S take t ime # in et; so, R still delivers and immediately crashes by the 
end of e ~. We continue to construct f which is indistinguishable from e j to S, 
while R only delivers in f but  does not crash; the construction uses the fact 
that  communication from R to S is slow in e ~. Finally, we construct f~ as the 
"concatenation" of e ~ and f ;  in f l ,  R first delivers and crashes and next receives 
replays of all packets in such a way that  R "sees" all packets arriving as in f .  
By the construction of f ,  R delivers agMn, contradicting the correctness of P .  • 

We continue with our two lower bounds for the approximately synchronized 
clocks model; these lower bounds trade-off strength and generality. We start  with 
the more general but  less strong lower bound. 

T h e o r e m  6. Consider the approzimately synchronized clocks model, under both 
network and node failures. Then, for any connection management protocol P,  
there exists a timed execution e of 7 ) with de >_ ~ for which D(e) > de Jr 2e. 

S k e t c h  o f  p r o o f i  Assume, by way of contradiction, tha t  there exists a con- 
nection management  protocol ~ such that  for any execution e with de > 6, 
D(e) < de + 2e. We construct an execution o f ~  in which a message is delivered 
twice. We construct a sequence of executions e, e r, and fl ,  so that  R delivers a 
message twice in f l .  In all of these executions, the clock of R "lags" by e tha t  of 
S. We start  with any execution e which terminate with R delivering a message 
and immediately crashing. We "perturb" e to abtain e ~ which is indistinguishable 
from e to either S, while M1 messages incur a delay larger than the corresponding 
one in e. Finally, we continue to construct f~ as the "concatenation" of e and 
e~; in fJ, R first delivers and crashes and next receives replays of all packets in 
such a way that  R "sees" all packets arriving as in e ~. By construction of e ~, R 
delivers again, contradicting the correctness of :P. • 

We continue to show a stronger but  less general lower bound. 

T h e o r e m  7. Consider the approximately synchronized clocks model, under both 
network and node failures. Then, for any constant ~, 0 < ~ < ~, for any con- 
nection management protocol ~ ,  there exists an execution e of ~ with de < 
(/~ - 2~c)/5 for which D(e) ~ 3de + $c. 
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S k e t c h  o f  p roo f i  Assume, by way of contradiction, that  there exists a connec- 
tion management  protocol P such that  for any execution e with de < (/~-2~e)/5,  
D(e)  < 3de +~¢. We construct an execution of:P in which a message is delivered 
twice. We construct a sequence of executions e, e l, f and fr  so that  R delivers a 
message twice in f~. In all of these executions, the clock of R "lags" by ~e/2 that  
of S, for some constant ~, 0 < ~ < 2. We start  with execution e which termi- 
nates with R delivering a message and immediately crashing. We "perturb" e to 
obtain e ~ which is indistinguishable from e to either S or R, while all messages 
from R to S take t ime # in e~; so, R still delivers and immediately crashes by 
the end of e ~. We continue to construct f which is indistinguishable from e ~ to 
S, while R only delivers in f but  does not crash; the construction uses the fact 
that  communication from R to S is slow in e ~. Finally, we construct f~ as the 
"concatenation" of e t and f ;  in f l ,  R first delivers and crashes and next receives 
replays of all packets in such a way that  R "sees" all packets arriving as in f .  
By the construction of f ,  R delivers again, which contradicts the correctness of 
T ~ . • 

Clearly, as ~ increases, the lower bound of 3de + 8e is raised, but  the upper 
bound of (# - 2~c)/5 on de drops, thus narrowing the range of executions e 
for which the lower bound on message delivery t ime is valid. Since the weakly 
synchronized clocks model is no stronger than the approximately synchronized 
clocks model, Theorems 6 and 7 immediately imply corresponding results for 
tha t  model too. 

References  

1. D. Belsnes, "Single-Message Communication," IEEE Transactions on Communica- 
tions, Vol. 24, No. 2, February 1976. 

2. R. Gawlick, R. Segala, J. Sogaard-Andersen and N. Lynch, "Liveness in Timed and 
Untimed Systems," Proceedings of the 21st International Colloqium on Automata, 
Languages and Programming, July 1994. 

3. J. Kleinberg, H. Attiya and N. Lynch, "Trade-offs Between Message Delivery and 
Quiesce Times in Connection Management Protocols," Proceedings of the 3rd Israel 
Symposium on the Theory of Computing and Systems, pp. 258-267, January 1995. 

4. B. Liskov, L. Shrira and J. Wroclawski, "Efficient At-Most-Once Messages Based 
on Synchronized Clocks," ACM Transactions on Computer Systems, Vol. 9, No. 2, 
pp. 125-142, 1991. 

5. N. Lynch and M. Tuttle, "An Introduction to Input/Output Automata," CWI 
Quarterly, Vol. 2, No. 3, pp. 219-246, September 1989. 

6. N. Lynch and F. Vaandrager, "Forward and Backward Simulations for Timing- 
Based Systems," in Real-Time: Theory in Practice, Lecture Notes in Computer 
Science, Vol. 600 (J. W. de Bakker, C. Huizing, W. P. de Roever and G. Rozenberg, 
eds.), pp. 397-446, Springer-Verlag, June 1991. 

7. C. Sunshine and Y. Dalal, "Connection Management in Transport Protocols," Com- 
puter Networks, Vol. 2, pp. 454-473, 1978. 

8. A. Tanenbaum, Computer Networks, Prentice Halt, 1988. 


