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Abstract
We describe a dimensionality reduction method for modulation
spectral features, which keeps the time-varying information of
interest to the classification task. Due to the varying degrees of
redundancy and discriminative power of the acoustic and mod-
ulation frequency subspaces, we first employ a generalization
of SVD to tensors (Higher Order SVD) to reduce dimensions.
Projection of modulation spectral features on the principal axes
with the higher energy in each subspace results in a compact
feature set. We further estimate the relevance of these projec-
tions to speech discrimination based on mutual informationto
the target class. Reconstruction of modulation spectrograms
from the “best” 22 features back to the initial dimensions, shows
that modulation spectral features close to syllable and phoneme
rates as well as pitch values of speakers are preserved.
Index Terms: modulation spectrum, multilinear algebra, fea-
ture selection, mutual information, speech discrimination

1. Introduction
Dynamic information provided by the modulation spectrum
capture fast and slower time-varying quantities such as pitch,
phonetic and syllabic rates of speech, tempo of music, etc [1].
The use of modulation spectral features for pattern classifica-
tion is prevented by their dimensionality. Methods addressing
this problem have proposed reducing acoustic frequencies using
critical band filtering, and modulation frequencies using acon-
tinuous wavelet transform instead of a Fourier transform [2].

A different approach to dimensionality reduction of mod-
ulation spectral features was presented in [3]. We employed
a 3rd order generalization of singular value decomposition
(HOSVD)[4] and projected features on the singular vectors of
acoustic and modulation frequency subspaces with the higher
energy. HOSVD has been also previously applied in auditory-
based features with multiple scales of time and spectral resolu-
tion [5].

If HOSVD addresses the varying degrees of redundancy of
the acoustic and modulation frequency subspaces, mutual in-
formation (MI) estimation can be used to assess their discrim-
inative power. By first projecting the high-dimensional data to
a lower order manifold, we can approximate the statistical de-
pendence of these projections to the target class (speech ver-
sus non-speech, i.e., noise, music, speech babble) with reduced
computational effort .

In [3] we showed that these reduced features exhibited
comparable classification performance to that of “perceptual”
MFCCs [6]. Fusion of both features further decreased the
classification error by∼ 20% which supports the hypothesis
that they provide non-redundant information to that encoded by

MFCCs. Standard MFCCs represent the spectral envelope vari-
ation during a small window - hence, their mean value and stan-
dard deviation over a much longer window is commonly used
in audio classification [7]. “Perceptual” MFCCs approximate
more basic concepts from psychophysics of human hearing be-
sides the critical-band resolution, such as the unequal sensitiv-
ity at different frequencies, and the power law relation between
the intensity of sound and its perceived loudness. Both opera-
tions reduce the spectral-amplitude variation of the critical band
spectrum [6].

In this work we investigate the information content of these
tranformed features which justifies their improved performance.
We first refer to the modulation frequency analysis framework
most commonly used [1]. The multilinear dimensionality re-
duction method and the mutual information-based feature se-
lection are presented in Section 3. In Section 4 we discuss the
practical implementation of mutual information estimation. In
Section 5 we compare the reduced rank approximation with the
reconstruction of modulation spectrogram from the “best” 22
features to show the joint acoustic and modulation frequencies
of interest to speech discrimination. Finally in Section 6 we
present our conclusions.

2. Modulation Frequency Analysis
For a discrete signalx(n), a short-time Fourier transform
(STFT)Xk(m) is initially employed

Xk(m) =
∞

X

n=−∞

h(mM − n)x(n)W kn
K , (1)

k = 0, . . . , K − 1,

whereWK = e−j(2π/K) andh(n) is the acoustic frequency
analysis window. The mean of each subband amplitude enve-
lope - defined as|Xk(m)| - is subtracted to remove static infor-
mation. Next, a Fourier transform detects the frequency content
of |Xk(m)| :

Xl(k, i) =

∞
X

m=−∞

g(lL − m)|Xk(m)|W im
I , (2)

i = 0, . . . , I − 1,

whereg(m) is the modulation frequency analysis window;k
and i are referred to as the “acoustic” and “modulation” fre-
quency, respectively. Tapered windowsh(n) andg(m) are used
to reduce the sidelobes of both frequency estimates.

A modulation spectrogram representation then, displays
modulation spectral energy|Xl(k, i)| in the joint acous-
tic/modulation frequency plane. Length of the analysis window



h(n) controls the trade-off between resolutions in the acoustic
and modulation frequency axes. The degree of overlap between
successive windows sets the upper limit of the subband sam-
pling rate during the modulation transform. We have chosen a
shorth(n) so that frequency subbands are wide and maximum
observable modulation frequency permits to resolve the pitch of
an adult speaker (∼ 250 Hz) [10].

3. Multilinear Analysis of Modulation
Frequency Features

Every signal segment in the training database is represented in
the acoustic-modulation frequency space as a two-dimensional
matrix. By stacking all training matrices we obtain a third
order tensor. Matrix representation of a third order tensor
A ∈ RI1×I2×I3 is particularly useful for computations: we
can simply stack all column (row,. . .) vectors of the tensor one
after another. “Unfolding” of the(I1 × I2 × I3)-tensorA then
gives a(I1×I2I3)-matrixA(1), a(I2×I3I1)-matrixA(2), and
a (I3 × I1I2)-matrix A(3). In a Ic × IaIb unfolding, indexia
is assumed to vary more slowly thanib [4].

3.1. The higher order singular value decomposition

A multilinear generalization of SVD to tensors referred to as
Higher Order SVD (HOSVD) [4] enables the decomposition of
the data tensorA to its mode−n singular vectors:

A = S ×1 Ufrequency ×2 Umodf req ×3 Usamples (3)

whereUfrequency andUmodf req are unitary matrices with the
singular vectors of the corresponding subspaces:Ufrequency is
the matrix of left singular vectors of the matrix unfoldingA(1)

and Umodf req is the matrix of left singular vectors ofA(2).

Non-vanishing singular valuesσ(1)
i1

, σ
(2)
i2

of A(1) and A(2)

depict the column (1−mode) and row (2−mode) rank ofA.
(Here, we simply ignore samples subspace matrix,Usamples).

TensorS is the core tensor with the same dimensions asA
and S ×n U denotes then−mode product ofS ∈ RI1×I2×I3

by the matrixU ∈ RJn×In . ; e.g., forn = 2 multiplication of
S by U produces an(I1 × J2 × I3)-tensor with entries:

(S ×2 U)i1j2i3 ≡
X

i2

si1i2i3uj2i2 . (4)

Ordering ofn−mode singular valuesσ(n)
in

implies that the
“energy” of tensorA is concentrated in the singular vectors
U

(n)
i with the lowest values ofi. Let Â a rank-(R1, R2) ap-

proximation ofA obtained by discarding the smallestn-mode
singular valuesσ(n)

Rn+1, . . . , σ
(n)
In

. The least-squares error is
bounded as:

‖A − Â‖2 ≤

I1
X

i1=R1+1

σ
(1)2

i1
+

I2
X

i2=R2+1

σ
(2)2

i2
(5)

Joint acoustic& modulation frequenciesB ∈ RI1×I2 ex-
tracted from audio signals are normalized by the standard devia-
tion over the training set& projected on the truncated orthonor-
mal axes,̂Ufreq, Ûmod:

Z = B ×1 ÛT
freq ×2 ÛT

mod = ÛT
freq.B.Ûmod (6)

Z is an (R1 × R2)−matrix, whereR1, R2 is the number of
retained principal components (PCs) in each mode. We can

projectZ back into the fullI1 × I2-dimensional space to get
the rank-(R1, R2) approximation ofB:

B̂ = Z ×1 Ûfreq ×2 Ûmod = Ûfreq .Z.ÛT
mod (7)

Next, we detect the “relevant” projections of features
among those contributing more than a threshold to the “energy”
of A. The contributionαn,i of theith basis vectorU (n)

i in the
n-mode space ofA is related to its eigenvalueσ(n)

i :

αn,i =
σ

(n)
i

PIn

i=1 σ
(n)
i

(8)

4. Feature Selection based on MI
The maximal relevance(MaxRel) feature selection criterion
simply selects the features most relevant to the target class c.
Relevance is usually defined as the mutual informationI(xj ; c)
between featurexj and classc. Through a sequential search
which does not require estimation of multivariate densities, the
top m features in the descent ordering ofI(xj; c) are selected
[8].

4.1. Mutual Information Estimation

The mutual information between two random variablesxi and
xj is defined as the KL-divergence between their joint proba-
bility density function (pdf)Pij(xi, xj) and the marginal pdf’s
Pi(xi), Pj(xj).

EstimatingI [Pij ] from a finite sample requires regulariza-
tion of Pij(xi, xj). We have simply quantized the continu-
ous alphabet of acoustic features by definingb discrete bins
along each axis. We make an adaptive quantization (variablebin
length) so that the bins are equally populated and the coordinate
invariance of the MI is preserved [9]. Quantization qualitatively
has a similar effect to that of adding noise. There is an interac-
tion between the precision of features quantization and thesam-
ple size dependence of the MI estimates. We study first how the
MI between two variables varies as a function of this resolution
in order to select the quantizer step size. Entropies are systemat-
ically underestimated and mutual information is overestimated
according to:

Iest(b, N) = I∞(b) + A(b)/N + C(b, N) (9)

whereI∞ is the extrapolation to infinite sample size and the
termA(b) increases withb [9]. There is a critical value,b∗, be-
yond which the termC(b, N) in (9) become important. We de-
fineb∗ according to a procedure described in [9]: when data are
shuffled, mutual informationIshuffle

∞ (b) should be near zero
for b < b∗ while it increases forb > b∗. On the other hand,
I∞(b) increases withb and converges to the true mutual infor-
mation nearb∗.

5. Experiments on Speech Discrimination
We tested the method described in section 3 on audio data
collected from Greek TV programs (TV++) and music CDs.
Speech data consists of broadcast news and TV shows recorded
in studios, outdoors, or transmitted over telephone lines.Non-
speech data consists of music (25 %), outdoors noise (moving
cars, crowd noise, etc), claps, and speech babble. All audio
data are mono channel, 16 bit per sample, with 16 kHz sam-
pling frequency. Signals have been partitioned into 30 minutes
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Figure 1:|Xl(k, i)| rank−(9, 7) approximation for500 ms of
a speech and two non-speech signals (music).

for training, 30 minutes for validation, and 60 minutes for test-
ing. Each file has been partitioned into 500 ms segments for
long-term feature analysis. We extract evenly spaced overlap-
ping segments every 250 ms producing 7200 samples for train-
ing and validation, and 14400 samples for testing.

The modulation spectrogram has been calculated using
Modulation Toolbox [10]. For every 500 ms block, modulation
spectrum features were generated using a 128 point spectrogram
with a Gaussian window. One uniform modulation frequency
vector was produced in each one of the 65 subbands. Due to
a window shift of 32 samples, each modulation frequency vec-
tor consists of 125 elements up to 250 Hz. All features were
normalized by their corresponding standard deviation estimated
from the entire training set to reduce their dynamic range. They
were projected on the truncated orthonormal axesU ′

freq, and
U ′

modf req according to eq. (6).
Each singular matrix was truncated by setting a predeter-

mined threshold so as to retain only the desired number of prin-
cipal axes in each mode (eq. 8). Figure 1 presents examples
of rank-(9, 7) approximations of modulation spectra of500 ms
of speech and non-speech (music) signals where we kept singu-
lar vectors contributing more than1.75% to respective subspace
(eq. 8). These were the projections producing the lower classifi-
cation error [3]. Reconstruction to initial dimensions highlights
the modulation spectral features with greatest energy: modula-
tions corresponding to pitch (∼ 140 Hz) and syllabic and pho-
netic rates (< 40 Hz) in speech; pitch-like energies in1st music
signal and energy oscillations in higher frequency bands inthe
2nd music signal.

In order to estimate MI we first project each sampleB ∈
RI1×I2 on the manifold of rank-(R1, R2) tensors using equa-
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Figure 2: PDF in a logarithmic scale of MI values obtained
when the training dataset is projected onto the first50 × 25
PCs, before (⋆) and after reshuffling (△).
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Figure 3: Mutual information between projections of features
on the first 50 × 25 PCs and the speech/non-speech class
variable- only the 33 “best” features with MI> 0.04 bits are
shown.

tion 6. We have setR1 = 50 and R2 = 25 corresponding
to singular vectors with contribution greater than1% (eq. 8).
As Figure 2 shows, mutual information between features in the
truncated subspaces ofA is almost zero for most of them - that
is, redundancy between them is minimal as we should expect
because of the HOSVD process. MI after shuffling data (△) is
of course zero. Also experiments with the training set showed
that only 33 out of the 1250 projected features (2.64%) have
mutual information to the target class more than0.04 bits. Fig-
ure 3 presents these MI estimates: the subspace spanned by the
first 3 acoustic frequency PCs and the first 13 modulation fre-
quency PCs appear to be the most relevant. We point out that
singular values criterion would keep more acoustic frequency
PCs than modulation PCs.

Further, we determined potentially redundant features
among the 33 most relevant ones with a wrapper using the back-
ward feature selection scheme according to [8]: by setting our
initial feature set toS33, we exclude one feature at a time from
the current feature setSk and estimate the respective error rate
ek−1; the feature that leads to the greatest error reductionek−1

which is not worse thanek, is removed. The procedure termi-
nates when we have considered every feature in the row without
no gain in classification error.

For SVM classifier [11] and the validation dataset, the
wrapper obtained the lowest error (minimum detection cost
function for equal costs of miss and false alarm):

DCFopt = min(Pmiss + Pfalse)/2 (10)

by selecting 22 out of the 31 features (referred to as MaxRel+ in
Table 1). We also used mean and standard deviation of standard
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Figure 4: 22 features approximation for the same speech and
music signals as in Fig. 1. Energy at modulations correspond-
ing to pitch (∼ 140 Hz) and syllabic and phonetic rates (< 40
Hz) remain prominent in speech.

MFCCs and perceptual MFCCs∗ for segment parameterization,
each resulting in a 26-element feature vector. Table 1 presents
theDCFopt values for the systems tested using SVM and the
same data set. For comparison, we also report the bestDCFopt

when using the first(R1, R2) projections, which was6.49% for
the[9×7] PCs. The last column refers to the fusion of MFCCs∗

with MaxRel+ features which further reducedDCFopt down to
3.99%, i.e., a∼ 20% relative improvement.

Table 1:DCFopt, Pmissopt andPfalseopt on test set

(9, 7) MFCCs MFCCs∗ MaxRel+ fusion

DCF 6.49 9.54 5.03 5.10 3.99
Pmiss 6.31 6.24 4.53 4.47 3.06
Pfalse 6.67 12.84 5.53 5.72 4.92

Figure 4 depicts the 22 features approximation for the same
speech and music signals as in Fig. 1. Energy at modulations
corresponding to pitch (∼ 140 Hz) and syllabic and phonetic
rates (< 40 Hz) remain prominent in speech. Pitch-like energy
in 1st music signal is also preserved. The2nd music signal
with most of its energy concentrated in higher frequency bands,
is severely blurred under this approximate representation.

6. Discussion
Previous studies have shown the importance of joint acoustic
and modulation frequency concept in signal analysis and syn-
thesis, as well as single-channel talker separation and coding

applications ([1, 2]). We presented a dimensionality reduction
method for modulation spectral features which could be tailored
to various classification tasks. HOSVD efficiently addresses the
differing degrees of redundancy in acoustic and modulationfre-
quency subspaces. By projecting features on a lower dimen-
sional subspace, we significantly reduce computational load of
MI estimation. On the other hand, the HOSVD step has already
significantly reduced features redundancy (see Fig. 2). Detec-
tion of remaining redundant features among the most relevant
ones can be easily accomplished then using a wrapper [8].

The set of 22 features that result, performs much better
than the standard MFCCs features while they perform equally
well with the perceptually enhanced MFCCs∗ features. More-
over their fusion further lowers speech discrimination error by
∼ 20% (Table 1). It is worthwhile noting here that the com-
bination of modulation spectrum with cepstral representation is
analogous to a two-dimensional spectro-temporal transform [5].
Comparing Figures (1) and ( 4), we notice that reconstruction of
audio signals from the “best” 22 features produces a biased (as
opposed to a least-squares error) representation: modulations
that characterize speech at the lower acoustic frequency bands,
corresponding to syllable and phonemic rates and the pitch of
different speakers, are enhanced. Modulations which are only
localized at the higher frequency bands, are diminished. Subse-
quently, the classification task has been greatly simplified.
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