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Abstract

In this work, we adopt an information theoretic approache- th
Information Bottleneck method - to extract the relevantcsme
temporal modulations for the task of speech / non-speech dis
crimination - non-speech events include music, noise and an
imal vocalizations. A compact representation (a “cluster p
totype”) is built for each class consisting of the maximahy
formative features with respect to the classification tagke
assess the similarity of a sound to each representativéeclus
using the spectro-temporal modulation index (STMI) adépte
to handle the contribution of different frequency bands.irA-s

ple threshold check is then used for discriminating speemin f
non-speech events. Conducted experiments have showhéhat t
proposed method has low complexity and high accuracy of dis-
crimination in low SNR conditions compared to recently pro-
posed methods for the same task.

Index Terms. audio classification, speech discrimination, au-
ditory model

1. Introduction

Robust automatic audio classification and segmentatioaah r
world conditions is a research area of great interest with ap
plications in many areas of speech technology like speedh an
speaker recognition, and in multimedia processing for -auto
matic labeling and extraction of semantic information.

Speech is characterized by joint spectro-temporal energy
modulations; oscillations in power across spectral angteai
axes in the spectrogram. Of particular relevance to spegeh i
ligibility are the slow temporal modulations (few Hz) thaire
respond to the phonetic and syllabic rates of speech [1]c-Spe
trogram modulations at multiple resolutions give a highdy r
dundant representation of sound. This might be an advantage
in the presence of noise and uncertainty, provided that we se
lect a reduced set of these features which still capturesgimo
information about the recognition task.

Tishby et al. have proposed thaformation Bottleneck
Method (IB) for the automatic detection and selection of the
task - relevant features of speech signals [2, 3]. The IB atkth
enables to construct a compact representation for eachtbkats
maintains information about the target through clustetaiobd
with the IB procedure. In [3] a general speech-oriented @npl
mentation of IB has been presented, using Mel frequency cep-
stral coefficients (MFCC). According to the recognitionkias
phoneme or speaker recognition, a small subset of MFCCs was
selected which preserved high mutual information aboutahe
get [3].

In this work we estimate the power distribution in the mod-
ulation spectrum of speech signals and other sounds at-diffe
ent frequency ranges. The auditory model of Shamma et al
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[4] is the basis for these estimations. The model has been suc
cessfully applied in the assessment of speech intelliiB]

and the discrimination of speech from non-speech [6], among
others. Through the sequential information bottleneclc@ro
dure (sIB), we obtain a “cluster prototype” for each class-co
sisting of the modulation frequencies that differ most hestov
speech and other sounds. We assess the similarity of soainds t
speech cluster representative using the spectro-temmacil-
lation index (STMI) [5] extended to handle the contributioin
different frequencies. A simple threshold check is usedifsr
criminating between speech and non-speech events. Thrsyst
is compared to the system in [6] which is based on the same
auditory features but uses a multilinear dimensionaligure

tion technique - Higher Order Singular Value Decomposition
(HOSVD) [7] - and Support Vector Machines (SVMs) for clas-
sification. We evaluate systems performance in voice agtivi
detection under varying noise conditions, using F-meashmre
low levels of additive noise, our system is almost equivialen
to the system of [6], whereas in low SNR conditions the pro-
posed method exhibits superior performance. Moreovernwhe
we take into account the similarity of audio signals to bdtis€

ter “prototypes” (speech and non-speech), we achieve akema
able improvement in accuracy under severe noisy conditions
(SNR< 0dB). For evaluation purposes, we have also imple-
mented another segment-based system based on MFCCs and
Zero Crossing Rates (ZCRs); these features are also edract
on a frame basis and their mean values in each segment are
given as input to an SVM classifier. This system is used as a
reference system to show the robustness of the auditonyrésat

to various noise conditions.

The paper is organized as follows. The auditory model of
Shamma et al [4] is presented in brief in Section 2. In Se@ion
we describe the information theoretic principle, the setjaé
information bottleneck procedure applied to auditory dieas
and the modified STMI. In Section 4 we compare the perfor-
mance of the proposed system, the system in [6] and the ref-
erence system (MFCCs and ZCRs) on voice activity detection
using F-measure at various SNR conditions. Conclusions are
provided in Section 5.

2. Computational Auditory Model

Early stages of the model estimate an enhanced spectrum of
sounds, while at later stages spectrum analysis occurst Fas
and slow modulation patterns are detected by arrays offilter
centered at different frequencies, with Spectro-TempBRed
sponse Functions (STRFs) resembling the receptive fields of
auditory midbrain neurons [5]. These filters have the form of
a spectro-temporal Gabor function, selective for speciée f
quency sweeps, bandwidth, etc., performing actually aimult
resolution wavelet analysis of the spectrogram [4]. Thetand



based features are collected from an audio signal in a figene-
frame scheme. For each time frame, the auditory repregamtat
is calculated on a range of frequencies, scales (of speesat
lution) and rates (temporal resolution). In this study, sheles
are set tos = [0.5,1,2,4, 8] cyc/oct, the rates (positive and
negative) tor = [1, 2,4, 8,16, 32] Hz. The extracted informa-
tion is averaged over a fixed time window of 500 ms. The di-
mensionality of the 3-dimensional arrays, or third-oradgrsiors
that incur, covers 128 logarithmic frequency band$ scales

x 12 rates.

3. Information Bottleneck, I B, M ethod

In Rate Distortion theory a quantitative measure for thdityua
of a compact representation is provided bgisortion func-
tion. In general, definition of this function depends on the ap-
plication: in speech processing, the relevant acousttortign
measure is rather unknown, since it is a complex function of
perceptual and linguistic variables [3]. IB method progica
information theoretic formulation and solution to the &aff
between compactness and quality of a signal’s representati
[2, 8, 3]. In the supervised learning framework, features ar
regarded as relevant if they provide information about a tar
get. In the case of speech processing systems, the tayging
of the audio signal (as speech / non speech, identity of gpeak
or phonemes) guides selection of features during trainimg
relevance of information in the representation of an auidjoa
denoted byX, is defined as the amount of information it holds
about the other variabl€. Given an estimate of their joint dis-
tributionp(z, y), the amount of relevant information iX about

Y can be measured through Shannon’s mutual information :

Y) =Y p(x,y)log % @)

where the discrete random variablese X andy € Y are
distributed according te(x) andp(y), respectively. Further,
let # € X be the compressed representation:pf: is trans-
formed toi by a (stochastic) mapping(i|z). We seek anX
that compresseX through minimization of (X; X) under the
constraint that the relevant information i aboutY’, I(X;Y),
stays above a certain level. This constrained optimizaiiob-
lem can be expressed via Lagrange multipliers as mininoizati
of thelB variational functional:

Z {p(@le)} = 1(X; X) - BI(X;Y) )

where 3 is the (positive) Lagrange multiplier controlling the
tradeoff between compression and relevance. Varioudiitera
algorithms have been proposed that converge to a reduces rep
sentationX givenp(z,y) ands. We have chosen ttsequential
optimization algorithm (sIB) [8] since we want a fixed number
of hard clusters as output.

The input consists of the joint distributiop(z,y), the
tradeoff parametef and the number of clustes! = |X]|.
During initialization, each elementc X is randomly assigned
to one of theM clustersX. Afterwards, the algorithm applies
sequential update steps where it cycles through al X and
tries to assign them to a different clustere X in order to
minimize the loss of mutual information on the relevant vari
ableY. Optimization is controlled through the Jensen-Shannon
divergence, i.e., the likelihood thdt:} and the clustef: cur-
rently being merged have a common source [8]. Each update
step increases the value of the functional

Lrnaz = 1(X;Y) — B7H(X; X). 3)

which is equivalent to minimization ofZ {p(z|z)} in (2).
Following every single assignment update, both distringi

p(y|Z) andp(z) are updated. This detail makes sIB to be re-
lated somehow to the incremental variant of the Expectation
Maximization (EM) algorithm for maximum likelihood (se€][8
for details).

The algorithm terminates when the partition does not

change during one iteration. This is guaranteed bec&fise.
is always upper bounded by some finite value. To reduce sensi-
tivity to locally optimal solutions, we repeat the whole pess
with different initial random partitions [8].

3.1. Application to Cortical Features

The feature tensog represents a discrete setohtinuous fea-

tUFES 2i) iy is = Ziyin.is € RTZ 7 Let the location of a
response be denoted by, where i =1,...,SxRxF, such
that z;, i,,i;, = 2, The3—dimensional modulation spectrum

( scale - rate - frequency) is divided then infox R x F bins
centered at($2;, ,ws,, fi;). Given a training list of N feature
tensorsZ® k =1,..., N, wecansortth& x Rx F = 7680
bins by unsupervised “information gain” (i.e., with respez
their frequency of occurrence in all N training samples) and
keep the top 2000 bins. Since we also have their correspgndin
targetsy®), k=1,...,N, y = 1,2 (nonspeech and speech
tags, respectively), we can build a count matiiXx, y) where
K(i,j) denotes the frequency of occurrence of thediscrete
subdivision of the modulation spectrum in the presence ef th
y; target value. Normalization of this count matrix yields an
estimate of the joint distributiop(z,y), which is all the IB
framework requires.

We have clustered the featur&sinto 5 groups, one com-
posed of features most relevant 4o, the second of features
relevant tayz, whereas the other clusters consist of features less
relevant to either class. Since this setting implies a Siganit
degree of compression, we can ignore the trade-off parariete
setting3~" = 0 in (3) and concentrate on solutions that maxi-
mize the relevant information term only. L&t denote a com-
pressed representation (a reduced feature setpéfid) the
(deterministic) mapping obtained by sIB algorithm. We *dis
card” the clusters{; whose contribution :

CI(X Y) X ZP (Z5,y) log I()(i]) ?)) 4)

to I(X;Y) is minimal. To find out the identity of the remaining
clusters, we compute:

p(@y) = > pla,y)p@l) ()
p(@ = > pEy) (6)
i) = 22 ©

The cluster that maximizes the likelihopdy. |Z) contains the
most relevant features fay:; the other fory.. We denote,
hence, the first cluster @; and the latter ax(s.

The typical pattern (3-dimensional distribution) of fats
relevant fory, is given byp(z|Z = Z1), while for y- is given
by p(z|Z = Z2). According to Bayes rule, these are defined as:

| plE =& [)p(a)

(el = 3;) = B
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Figure 1:p(x|Z = %) for speech.

Cluster X; holds 3.14% andX» holds 6.47% of the 7680
bins. The remaining 90.39% of elements are considered ir-
relevant. Therefore during testing we don’'t need to estmat
the responses at these locations of the modulation speg¢inum
contrast to the HOSVD approach [6]). This implies an impor-
tant reduction in computational load, still keeping the max
mally informative features with respect to the task of speec
nonspeech discrimination. Figure 1 presents an example of
the relevant modulation spectrum of speech sounds. Stsonge
speech-relevant modulations appear betwen4 cyc/octave
(scale),—1 and2 Hz (rate), and inside th800 — 600 Hz fre-
guency range.

The speech-relevant "cluster prototype(’z|z = Z2) per-
mits the classification of audio signals based on their simil
ity to that cluster and a threshold check. We can assess the
similarity between the cortical-like representations ofirsds
Z(Q,w, f) andp(z|z = Z2) using the spectro-temporal modu-
lation index (STMI) [5], defined below between correspoigdin
Q,wand f channels:

1

. 2
2(0Q,0,6) —p(e|i=12)
1+( o=@, ) xz)

pS(Q7w>f) =

9)

whereo z (2, w, f) is the standard deviation of the auditory rep-
resentation extracted over a fixed time-frame (500 ms) dt eac
channel, whereag(Q2, w, f) is the corresponding mean value.
Finally we derive the average pf (€2, w, f) over the chan-
nels(Q,w, f) € Xo, i.e., over whichp(z|z = Z2) # 0

1
p(Z) = |X— Z

(Q,w,f)EX2

pS(Q7w7f)' (10)

We also compare the similarity of a sound to both typical pat-
ternsp(z|z = Z1) andp(z|Z = Z2), p1 andp2 respectively, by
taking their ratio:

p2
R(Z)=12
(2) o

(11)

We calculate the STMI4) and corresponding ratidR) for
all training examples and noise conditions. Figure 2 shes t
histograms of and R computed on speech (continuous curve)
and non-speech examples (dashed curve). The histograms for
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Figure 2:Histogram of STMIs p (a) and ratios of STMIs R (b)
computed on nonspeech (dashed) and speech examples (contin-
uous curve).

two distinct clusters with a small degree of overlap in theeca

of p, whereas decision threshold depends on the SNR condition
especially for low SNR (0dB, -10dB). In the caseftlistribu-

tion the overlap is increased, however the decision thtdsko
less sensitive to the variation of SNR. This trend is refigdte

the results in the benchmark test presented below.

Threshold setting implies a trade-off between the false ac-
ceptance rate{ AR) and false rejection rateF{RR) for each
class. In this case, we have set threshold at a fixed vathat
minimizes the total number of segments incorrectly assigoe
each class at the highest SNR level (40dB).

3.2. Database and feature extraction

Speech examples were taken from the TIMIT Acoustic-
Phonetic Continuous Speech Corpus. Music examples were
selected from the authors music collection. Animal voealiz
tions consist of bird sounds [9]. The noise examples consist
background speech babble in locations such as restauratts a
railway stations, machinery noise and noisy recording&léns
cars and planes. Training set consists of 500 speech and 560
non-speech segments of 500 ms each.
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Figure 3: F measure for System 1 (dotted-dashed line), Sys-
tem 2 (continuous line), System 2(a): (dashed line), anteBys

3: (dotted line) applied to the benchmark test (a) with adelit
white noise (b) with speech babble.

From each of these segments, a feature te&@sdolding
the cortical responses is extracted to train the systemshwhi
are based on the same auditory featur&gstem 1 reduces
their dimensionality using the HOSVD, and classifies thelfina
set of features with SVM [6]. System 2 (the proposed one)
defines relevant subsets of auditory features accordingto |
method. Classification is based on STMI and a decision thresh
old, whereasSystem 2(a) uses the ratio of STMIs. IBystem
3 mean values of MFCC and ZCR features are extracted and
classification is based on SVM.

Test set consists of 260 speech and 300 non-speech exam-
ples of varying length. Sentences and speakers in test égamp
are different from the training examples. Since we want td-ev
uate the robustness and applicability of the systems umedér r
istic conditions, we construct lzenchmark test: each signal is
30 seconds long, consisting of alternating speech - noohpee
test examples with random lengths (between 2 and 8 seconds).
We create 10 such signals for each non-speech class: music,
noise, or animal vocalization events, corrupted either dgi-a
tive white noise, or speech babble, at SNRs of 40, 30, 20,,10, 0
and -10 dB, resulting in 360 test signals. Features areatetle
in a fixed time-window of 500 ms and at a rate of 50 ms. Every
50 ms frame is classified as speech (or non-speech) if itdies i
the middle of a segment that was classified as speech (or non
speech, respectively).

4. Experimental Results

We evaluate systems performance in terms of the F-measure fo
each non-speech class (music, noise, or animal vocaliEtio
noise type and level. The F-measure is a common tool to assess
the performance of an information retrieval system based on
two quantitative measures, precision and recall. Both oreas
are evaluated here with respect to the speech class. THesresu
are presented in Figure 3.

Both systems 1 and 2 - which are based on the same audi-
tory features - exhibit equally good performance in high SNR
conditions. For white noise the proposed method preserdta b

ter generalization ability below 0 dB, whereas for speedibla

the results are better even below 10 dB. The system based on ra
tio of STMIs is somewhat inferior in high SNRs but is clearly
better in extremely noisy conditions (see also Fig. 2). Tée p
formance of the 3rd system, which is based on MFCC and ZCR
features, degrades remarkably when corrupted by additiiew
noise, whereas it exhibits a similar generalization gbititsys-

tem 1 in the case of additive speech babble.

5. Conclusions

We presented an information theoretic approach to selest a r
duced set of auditory features which are maximally infoimeat
with respect to the target - speech / nonspeech. A simplshihre
old check built upon these reduced representations yigds-a
formance close to, or better than state-of-the-art classifivith

a significantly reduced computational load. It would beries¢-

ing to apply the proposed method to the task of recognition of
other speech attributes, such as speech or speaker réaognit
and language recognition.
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