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Abstract

In this work, we adopt an information theoretic approach - the
Information Bottleneck method - to extract the relevant spectro-
temporal modulations for the task of speech / non-speech dis-
crimination - non-speech events include music, noise and an-
imal vocalizations. A compact representation (a “cluster pro-
totype”) is built for each class consisting of the maximallyin-
formative features with respect to the classification task.We
assess the similarity of a sound to each representative cluster
using the spectro-temporal modulation index (STMI) adapted
to handle the contribution of different frequency bands. A sim-
ple threshold check is then used for discriminating speech from
non-speech events. Conducted experiments have shown that the
proposed method has low complexity and high accuracy of dis-
crimination in low SNR conditions compared to recently pro-
posed methods for the same task.
Index Terms: audio classification, speech discrimination, au-
ditory model

1. Introduction
Robust automatic audio classification and segmentation in real
world conditions is a research area of great interest with ap-
plications in many areas of speech technology like speech and
speaker recognition, and in multimedia processing for auto-
matic labeling and extraction of semantic information.

Speech is characterized by joint spectro-temporal energy
modulations; oscillations in power across spectral and temporal
axes in the spectrogram. Of particular relevance to speech intel-
ligibility are the slow temporal modulations (few Hz) that cor-
respond to the phonetic and syllabic rates of speech [1]. Spec-
trogram modulations at multiple resolutions give a highly re-
dundant representation of sound. This might be an advantage
in the presence of noise and uncertainty, provided that we se-
lect a reduced set of these features which still captures enough
information about the recognition task.

Tishby et al. have proposed theInformation Bottleneck
Method (IB) for the automatic detection and selection of the
task - relevant features of speech signals [2, 3]. The IB method
enables to construct a compact representation for each class that
maintains information about the target through clusters obtained
with the IB procedure. In [3] a general speech-oriented imple-
mentation of IB has been presented, using Mel frequency cep-
stral coefficients (MFCC). According to the recognition task,
phoneme or speaker recognition, a small subset of MFCCs was
selected which preserved high mutual information about thetar-
get [3].

In this work we estimate the power distribution in the mod-
ulation spectrum of speech signals and other sounds at differ-
ent frequency ranges. The auditory model of Shamma et al

[4] is the basis for these estimations. The model has been suc-
cessfully applied in the assessment of speech intelligibility [5]
and the discrimination of speech from non-speech [6], among
others. Through the sequential information bottleneck proce-
dure (sIB), we obtain a “cluster prototype” for each class con-
sisting of the modulation frequencies that differ most between
speech and other sounds. We assess the similarity of sounds to
speech cluster representative using the spectro-temporalmodu-
lation index (STMI) [5] extended to handle the contributionof
different frequencies. A simple threshold check is used fordis-
criminating between speech and non-speech events. The system
is compared to the system in [6] which is based on the same
auditory features but uses a multilinear dimensionality reduc-
tion technique - Higher Order Singular Value Decomposition
(HOSVD) [7] - and Support Vector Machines (SVMs) for clas-
sification. We evaluate systems performance in voice activity
detection under varying noise conditions, using F-measure. In
low levels of additive noise, our system is almost equivalent
to the system of [6], whereas in low SNR conditions the pro-
posed method exhibits superior performance. Moreover, when
we take into account the similarity of audio signals to both clus-
ter “prototypes” (speech and non-speech), we achieve a remark-
able improvement in accuracy under severe noisy conditions
(SNR≤ 0dB). For evaluation purposes, we have also imple-
mented another segment-based system based on MFCCs and
Zero Crossing Rates (ZCRs); these features are also extracted
on a frame basis and their mean values in each segment are
given as input to an SVM classifier. This system is used as a
reference system to show the robustness of the auditory features
to various noise conditions.

The paper is organized as follows. The auditory model of
Shamma et al [4] is presented in brief in Section 2. In Section3
we describe the information theoretic principle, the sequential
information bottleneck procedure applied to auditory features
and the modified STMI. In Section 4 we compare the perfor-
mance of the proposed system, the system in [6] and the ref-
erence system (MFCCs and ZCRs) on voice activity detection
using F-measure at various SNR conditions. Conclusions are
provided in Section 5.

2. Computational Auditory Model
Early stages of the model estimate an enhanced spectrum of
sounds, while at later stages spectrum analysis occurs. Fast
and slow modulation patterns are detected by arrays of filters
centered at different frequencies, with Spectro-TemporalRe-
sponse Functions (STRFs) resembling the receptive fields of
auditory midbrain neurons [5]. These filters have the form of
a spectro-temporal Gabor function, selective for specific fre-
quency sweeps, bandwidth, etc., performing actually a multi-
resolution wavelet analysis of the spectrogram [4]. The auditory



based features are collected from an audio signal in a frame-per-
frame scheme. For each time frame, the auditory representation
is calculated on a range of frequencies, scales (of spectralreso-
lution) and rates (temporal resolution). In this study, thescales
are set tos = [0.5, 1, 2, 4, 8] cyc/oct, the rates (positive and
negative) tor = [1, 2, 4, 8, 16, 32] Hz. The extracted informa-
tion is averaged over a fixed time window of 500 ms. The di-
mensionality of the 3-dimensional arrays, or third-order tensors
that incur, covers 128 logarithmic frequency bands× 5 scales
× 12 rates.

3. Information Bottleneck, IB, Method
In Rate Distortion theory a quantitative measure for the quality
of a compact representation is provided by adistortion func-
tion. In general, definition of this function depends on the ap-
plication: in speech processing, the relevant acoustic distortion
measure is rather unknown, since it is a complex function of
perceptual and linguistic variables [3]. IB method provides an
information theoretic formulation and solution to the tradeoff
between compactness and quality of a signal’s representation
[2, 8, 3]. In the supervised learning framework, features are
regarded as relevant if they provide information about a tar-
get. In the case of speech processing systems, the taggingY
of the audio signal (as speech / non speech, identity of speakers
or phonemes) guides selection of features during training.The
relevance of information in the representation of an audio signal
denoted byX, is defined as the amount of information it holds
about the other variableY . Given an estimate of their joint dis-
tributionp(x, y), the amount of relevant information inX about
Y can be measured through Shannon’s mutual information :

I(X; Y ) =
X

x,y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where the discrete random variablesx ∈ X andy ∈ Y are
distributed according top(x) andp(y), respectively. Further,
let x̃ ∈ X̃ be the compressed representation ofx; x is trans-
formed tox̃ by a (stochastic) mappingp(x̃|x). We seek anX̃
that compressesX through minimization ofI(X̃; X) under the
constraint that the relevant information iñX aboutY , I(X̃; Y ),
stays above a certain level. This constrained optimizationprob-
lem can be expressed via Lagrange multipliers as minimization
of theIB variational functional:

L {p(x̃|x)} = I(X̃; X) − βI(X̃; Y ) (2)

whereβ is the (positive) Lagrange multiplier controlling the
tradeoff between compression and relevance. Various iterative
algorithms have been proposed that converge to a reduced repre-
sentationX̃ givenp(x, y) andβ. We have chosen thesequential
optimization algorithm (sIB) [8] since we want a fixed number
of hard clusters as output.

The input consists of the joint distributionp(x, y), the
tradeoff parameterβ and the number of clustersM = |X̃ |.
During initialization, each elementx ∈ X is randomly assigned
to one of theM clustersX̃ . Afterwards, the algorithm applies
sequential update steps where it cycles through allx ∈ X and
tries to assign them to a different clusterx̃ ∈ X̃ in order to
minimize the loss of mutual information on the relevant vari-
ableY . Optimization is controlled through the Jensen-Shannon
divergence, i.e., the likelihood that{x} and the cluster̃x cur-
rently being merged have a common source [8]. Each update
step increases the value of the functional

Lmax = I(X̃; Y ) − β
−1

I(X̃; X). (3)

which is equivalent to minimization ofL {p(x̃|x)} in (2).
Following every single assignment update, both distributions
p(y|x̃) andp(x̃) are updated. This detail makes sIB to be re-
lated somehow to the incremental variant of the Expectation
Maximization (EM) algorithm for maximum likelihood (see [8]
for details).

The algorithm terminates when the partition does not
change during one iteration. This is guaranteed becauseLmax

is always upper bounded by some finite value. To reduce sensi-
tivity to locally optimal solutions, we repeat the whole process
with different initial random partitions [8].

3.1. Application to Cortical Features

The feature tensorZ represents a discrete set ofcontinuous fea-
tures zi1,i2,i3 = Zi1,i2,i3 ∈ R

+S×R×F
. Let the location of a

response be denoted byxi, where i = 1, . . . , S×R×F, such
that zi1,i2,i3 = zxi

. The3−dimensional modulation spectrum
( scale - rate - frequency) is divided then intoS × R × F bins
centered at(Ωi1 , ωi2 , fi3). Given a training list ofN feature
tensorsZ(k) k = 1, . . . , N , we can sort theS×R×F = 7680
bins by unsupervised “information gain” (i.e., with respect to
their frequency of occurrence in all N training samples) and
keep the top 2000 bins. Since we also have their corresponding
targetsy(k), k = 1, . . . , N, y = 1, 2 (nonspeech and speech
tags, respectively), we can build a count matrixK(x, y) where
K(i, j) denotes the frequency of occurrence of thexi discrete
subdivision of the modulation spectrum in the presence of the
yj target value. Normalization of this count matrix yields an
estimate of the joint distributionp(x, y), which is all the IB
framework requires.

We have clustered the featuresX into 5 groups, one com-
posed of features most relevant toy1, the second of features
relevant toy2, whereas the other clusters consist of features less
relevant to either class. Since this setting implies a significant
degree of compression, we can ignore the trade-off parameter β
settingβ−1 = 0 in (3) and concentrate on solutions that maxi-
mize the relevant information term only. Let̃X denote a com-
pressed representation (a reduced feature set) andp(x̃|x) the
(deterministic) mapping obtained by sIB algorithm. We ”dis-
card” the clusters̃Xj whose contribution :

CI(X̃;Y )(X̃j) =
X

y

p(x̃j, y) log
p(x̃j , y)

p(x̃j)p(y)
(4)

to I(X̃; Y ) is minimal. To find out the identity of the remaining
clusters, we compute:

p(x̃, y) =
X

x

p(x, y)p(x̃|x) (5)

p(x̃) =
X

y

p(x̃, y) (6)

p(y|x̃) =
p(x̃, y)

p(x̃)
(7)

The cluster that maximizes the likelihoodp(y1|x̃) contains the
most relevant features fory1; the other fory2. We denote,
hence, the first cluster as̃X1 and the latter as̃X2.

The typical pattern (3-dimensional distribution) of features
relevant fory1 is given byp(x|x̃ = x̃1), while for y2 is given
by p(x|x̃ = x̃2). According to Bayes rule, these are defined as:

p(x|x̃ = x̃j) =
p(x̃ = x̃j |x)p(x)

p(x̃ = x̃j)
, j = 1, 2 (8)



Figure 1:p(x|x̃ = x̃2) for speech.

Cluster X̃1 holds 3.14% andX̃2 holds 6.47% of the 7680
bins. The remaining 90.39% of elements are considered ir-
relevant. Therefore during testing we don’t need to estimate
the responses at these locations of the modulation spectrum(in
contrast to the HOSVD approach [6]). This implies an impor-
tant reduction in computational load, still keeping the maxi-
mally informative features with respect to the task of speech-
nonspeech discrimination. Figure 1 presents an example of
the relevant modulation spectrum of speech sounds. Strongest
speech-relevant modulations appear between2 − 4 cyc/octave
(scale),−1 and2 Hz (rate), and inside the300 − 600 Hz fre-
quency range.

The speech-relevant ”cluster prototype”p(x|x̃ = x̃2) per-
mits the classification of audio signals based on their similar-
ity to that cluster and a threshold check. We can assess the
similarity between the cortical-like representations of sounds
Z(Ω, ω, f) andp(x|x̃ = x̃2) using the spectro-temporal modu-
lation index (STMI) [5], defined below between corresponding
Ω, ω and f channels:

ρs(Ω, ω, f) =

v

u

u

t

1

1 +
“

Z(Ω,ω,f)−p(x|x̃=x̃2)
σZ(Ω,ω,f)

”2
(9)

whereσZ(Ω, ω, f) is the standard deviation of the auditory rep-
resentation extracted over a fixed time-frame (500 ms) at each
channel, whereasZ(Ω, ω, f) is the corresponding mean value.

Finally we derive the average ofρs(Ω, ω, f) over the chan-
nels(Ω, ω, f) ∈ X̃2, i.e., over whichp(x|x̃ = x̃2) 6= 0 :

ρ(Z) =
1

|X̃2|

X

(Ω,ω,f)∈X̃2

ρs(Ω, ω, f). (10)

We also compare the similarity of a sound to both typical pat-
ternsp(x|x̃ = x̃1) andp(x|x̃ = x̃2), ρ1 andρ2 respectively, by
taking their ratio:

R(Z) =
ρ2

ρ1
(11)

We calculate the STMI (ρ) and corresponding ratio (R) for
all training examples and noise conditions. Figure 2 shows the
histograms ofρ andR computed on speech (continuous curve)
and non-speech examples (dashed curve). The histograms form
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Figure 2:Histogram of STMIs ρ (a) and ratios of STMIs R (b)
computed on nonspeech (dashed) and speech examples (contin-
uous curve).

two distinct clusters with a small degree of overlap in the case
of ρ, whereas decision threshold depends on the SNR condition
especially for low SNR (0dB, -10dB). In the case ofR distribu-
tion the overlap is increased, however the decision threshold is
less sensitive to the variation of SNR. This trend is reflected in
the results in the benchmark test presented below.

Threshold setting implies a trade-off between the false ac-
ceptance rate (FAR) and false rejection rate (FRR) for each
class. In this case, we have set threshold at a fixed valueθ that
minimizes the total number of segments incorrectly assigned to
each class at the highest SNR level (40dB).

3.2. Database and feature extraction

Speech examples were taken from the TIMIT Acoustic-
Phonetic Continuous Speech Corpus. Music examples were
selected from the authors music collection. Animal vocaliza-
tions consist of bird sounds [9]. The noise examples consistof
background speech babble in locations such as restaurants and
railway stations, machinery noise and noisy recordings inside
cars and planes. Training set consists of 500 speech and 560
non-speech segments of 500 ms each.
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Figure 3: F measure for System 1 (dotted-dashed line), Sys-
tem 2 (continuous line), System 2(a): (dashed line), and System
3: (dotted line) applied to the benchmark test (a) with additive
white noise (b) with speech babble.

From each of these segments, a feature tensorZ holding
the cortical responses is extracted to train the systems which
are based on the same auditory features:System 1 reduces
their dimensionality using the HOSVD, and classifies the final
set of features with SVM [6].System 2 (the proposed one)
defines relevant subsets of auditory features according to IB
method. Classification is based on STMI and a decision thresh-
old, whereasSystem 2(a) uses the ratio of STMIs. InSystem
3 mean values of MFCC and ZCR features are extracted and
classification is based on SVM.

Test set consists of 260 speech and 300 non-speech exam-
ples of varying length. Sentences and speakers in test examples
are different from the training examples. Since we want to eval-
uate the robustness and applicability of the systems under real-
istic conditions, we construct abenchmark test: each signal is
30 seconds long, consisting of alternating speech - nonspeech
test examples with random lengths (between 2 and 8 seconds).
We create 10 such signals for each non-speech class: music,
noise, or animal vocalization events, corrupted either by addi-
tive white noise, or speech babble, at SNRs of 40, 30, 20, 10, 0,
and -10 dB, resulting in 360 test signals. Features are collected
in a fixed time-window of 500 ms and at a rate of 50 ms. Every
50 ms frame is classified as speech (or non-speech) if it lies in
the middle of a segment that was classified as speech (or non
speech, respectively).

4. Experimental Results
We evaluate systems performance in terms of the F-measure for
each non-speech class (music, noise, or animal vocalizations),
noise type and level. The F-measure is a common tool to assess
the performance of an information retrieval system based on
two quantitative measures, precision and recall. Both measures
are evaluated here with respect to the speech class. The results
are presented in Figure 3.

Both systems 1 and 2 - which are based on the same audi-
tory features - exhibit equally good performance in high SNR
conditions. For white noise the proposed method presents a bet-

ter generalization ability below 0 dB, whereas for speech babble
the results are better even below 10 dB. The system based on ra-
tio of STMIs is somewhat inferior in high SNRs but is clearly
better in extremely noisy conditions (see also Fig. 2). The per-
formance of the 3rd system, which is based on MFCC and ZCR
features, degrades remarkably when corrupted by additive white
noise, whereas it exhibits a similar generalization ability to sys-
tem 1 in the case of additive speech babble.

5. Conclusions
We presented an information theoretic approach to select a re-
duced set of auditory features which are maximally informative
with respect to the target - speech / nonspeech. A simple thresh-
old check built upon these reduced representations yields aper-
formance close to, or better than state-of-the-art classifiers, with
a significantly reduced computational load. It would be interest-
ing to apply the proposed method to the task of recognition of
other speech attributes, such as speech or speaker recognition,
and language recognition.

6. Acknowledgements
This work was partially funded by GSRT grant 05AKMON106
and SIMILAR Network of Excellence.

7. References
[1] Quatieri, T.F., Discrete-Time Speech Signal Processing,

Prentice-Hall Signal Processing series, 2002.

[2] N. Tishby, F. Pereira, and W. Bialek, “The information bot-
tleneck method,” in Proc. 37-th Annual Allerton Confer-
ence on Communication, Control and Computing, 1999,
pp. 368–377.

[3] R.M. Hecht and N. Tishby, “Extraction of relevant speech
features using the Information Bottleneck method, ” inPro-
ceedings of Interspeech, Lisbon, Portugal, 2005.

[4] K. Wang and S.A. Shamma, ”Spectral shape analysis in the
central auditory system”, IEEE Trans. Speech and Audio
Proc., 3: 382–396, 1995.

[5] Elhilali, M., Chi, T. and Shamma, S.A., ”A spectro-
temporal modulation index (STMI) for assessment of
speech intelligibility”, Speech communication, vol.
41:331–348, 2003.

[6] Mesgarani, N., Slaney, M., and Shamma S.A., ”Discrimina-
tion of speech from nonspeech based on multiscale spectro-
temporal modulations”, IEEE Trans. Audio, Speech and
Language Proc., 14:920–930, 2006.

[7] De Lathauwer, L., De Moor, B. and Vandewalle, J., ”A
multilinear singular value decomposition”, SIAM J. Matrix
Anal. Appl., vol. 21, pp. 1253–1278, 2000.

[8] N. Slonim,The Information Bottleneck: Theory and Appli-
cations. PhD thesis: School of Engineering and Computer
Science, Hebrew University, 2002.

[9] R. Specht,Animal Sound Recordings, Avisoft Bioacoustics.
www.avisoft.com, 2006.


