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ABSTRACT the feature dimensions. It is crucial, then, to reduce dimen
sionality in such a way that the remaining set of featurdis sti

In this work, we adopt an information theoretic approachCaptures enough information about a class.

- the Information Bottleneck method - to extract the relévan
modulation frequencies across both dimensions of a spectro L ) .
gram, for speech / non-speech discrimination (music, ahima, A generalization of the Singular Value Decomposi-
vocalizations, environmental noises). A compact repriesen ton (SVD) to higher - order tensorsjigher Order SVD
tion is built for each sound ensemble, consisting of the max1OSVD) [€], has been applied to the auditory features in
imally informative features. We demonstrate the effectivel®]: HOSVD allows to remove redundancies from each sub-
ness of a simple thresholding classifier which is based on thgPace separately, permitting to choose the number of dimen-
similarity of a sound to each characteristic modulationspe SIOnSs to keep per subspace. Application of HOSVD to ten-
trum. When we assess the performance of the classificatiiprs iS quite similar to principal component analysis (PCA)
system at various SNR conditions using F-measure, resulfd vectors. These techniques yield the dimensions which bes
are equally good to a recently proposed method based on tHéPresent the data, but might be suboptimal for data classifi

same features but having significantly greater complexity. Ccation [9]. An alternative method of dimensionality reduc-
tion is thelnformation Bottleneck Metho@B) proposed by

Tishby et al[10]. The IB method enables to construct a com-
1. INTRODUCTION pact representation for each class, maintaining its mdest re

Robust automatic audio classification and segmentation i¥ant features. Ir[11], a general speech-oriented impléaen
real world conditions is a research area of great interetst wi tion of 1B has been presented, using Mel frequency cepstral
applications in many areas of speech technology like speedpefficients (MFCC). According to the recognition task, a
and speaker recognition, and in multimedia processing fopmall subset of MFCCs was selected which preserved high
automatic labeling and extraction of semantic informationMutual information about the target variatilel[11].
It has been arguedl[1] that the statistical analysis of aatur
sounds - including animal vocalizations and speech - could In this paper, we estimate the power distribution in the
reveal the neural basis of acoustical perception. Insights modulation spectrum of speech signals, and compare it to the
the auditory processing could be exploited in the speech andodulation statistics of other sounds. The auditory motlel o
audio engineering applications listed above. Shamma et al]4] is the basis for these estimations. Using IB
Itis worth to note that all natural sounds are characterizethethod, we show that an efficient dimensionality reduction
by slow spectral and temporal modulatios [1]. However]js achieved while modulation frequencies which distinguis
auditory neurons seem to be able to discriminate relevarsipeech from other sounds are preserved (and estimated). A
from irrelevant sound ensembles, by tuning to the auditorgimple thresholding classifier is proposed, which is based o
features that differ most across theim [2]. Speech is charathe similarity of sounds to the compact modulation spectra.
terized by joint spectro-temporal energy modulationsijlesc Its performance is compared to the systenidf [6] which uses
lations in power across spectral and temporal axes in spetlOSVD [8] before classification with Support vector ma-
trogram reflect formant peaks and their transitions, spectr chines (SVMs). According to F-measure, our system is al-
edges, and fast amplitude modulations at onsets-offsdts. @ost equivalent to the system &l [6], in spite of its signifi-
particular relevance to speech intelligibility are thesstem-  cantly lower complexity. For evaluation purposes, we have
poral modulations (few Hz) which correspond to the phoneti@lso implemented another system based on MFCCs, Zero
and syllabic rates of speedH [3]. Crossing Rates (ZCRs) and SVMs classifiers. This served
Spectrogram modulations at multiple resolutions can b@s a reference system to show the robustness of auditory fea-
estimated using the auditory model of Shamma €flal [4]. Théures to various noise conditions.
model has been successfully applied in the assessment of
speech intelligibility [5], the discrimination of speectoin The auditory model of Shamma et Al [4] is presented in
non-speech(]6], and other simulations of psychoacousticddrief in Sectiol 2. In Sectiohl 3 we describe the informa-
phenomenal]7]. These auditory representations of soundi®n theoretic principle, the sequential information beteck
are highly redundant, which might yield an advantage in thgrocedure applied to auditory features and the threshgldin
presence of noise and uncertainty since this adds robsstneslassifier. In Sectiofl4 we compare the performance of the
However, thecurse of dimensionalitgtates that the number proposed system, the systemlih [6] and the reference system
of training examples required to achieve a fixed upper bounMFCCs and ZCRs) on a benchmark set using F-measure at
on a classifier generalization error, grows exponentiaithw various SNR conditions.



2. COMPUTATIONAL AUDITORY MODEL theIB variational functional

Early stages of the model estimate an enhanced spectrum of
sounds, while at later stages spectrum analysis occurs: fas
and slow modulation patterns are detected by arrays of fil- . .
ters centered at different frequencies, with Spectro-Temlp WherepB, the positive Lagrange multiplier, controls the trade-
Response Functions (STRFs) resembling the receptive fiel@f Pétween compression and relevance. The solution to this
of auditory midbrain neurons][5]. These have the form ofcOnstrained optimization problem has yielded various iter
a spectro-temporal Gabor function, selective for speaiéie f ative algorithms that converge to a reduced representation
quency sweeps, bandwidth, etc., performing actually aimult X; 9vVenp(x,y) andf [12]. We choose theequential opti-
resolution wavelet analysis of the spectrogréim [4].” The auMization algorithn(sIB), as we want a fixed number of hard
ditory based features are collected from an audio signal if/USters as output. We use the "IBA-1.0: Matlab Code for
a frame-per-frame scheme. For each time frame, the aucgjformanon Bottleneck Clustering Algorithms” (N. Slonjm
tory representation is calculated on a range of frequencie8tP://www.cs.huji.ac.ilfhnoamm, 2003).

scales (of spectral resolution) and rates (temporal réiealu The input consists of the joint distributiop(x,y), the

In this study, the scales are setste- [0.5,1,2,4,8] cyc/oct, ~tradeoff parameteB and the number of clusterd = |X|.

the rates (positive and negative)rte= [1,2,4,8,16,32] Hz. During _|n|t|aI|zat|on, the algor.|thm creates a random part
The extracted information is averaged over time, thereforéon X, i.e. each elemente X is randomly assigned to one
resulting in a 3-dimensional array, or third-order tendore of_theM clustersX. Afterwards, the_algonthm enters an iter-
dimensionality of this set covers 128 logarithmic frequenc ation loop. At each iteration step, it cycles throughxed] X
bandsx 5 scalesx 12 rates. We have used the "NSL Tools” @nd tries to assign them to a different clustein order to
MATLAB package (courtesy of the Neural Systems Labo-increasethe IB functional:

ratory, University of Maryland, College Park, downloadabl - .

from http://www.isr.umd.edu/CAAR/pubs.html). Zmax=1(X;Y) = B (X;X). 3)

Z{pEx)} =1(X;X) = BI(X;Y) (2)

3. INFORMATION BOTTLENECK METHOD This is equivalent to minimization of the functional defined
in equatiorR2, and it is used for consistency withl[12]. The
algorithm terminates when the partition does not change dur
ing one iteration. This is guaranteed becad$gis always
upper bounded by some finite value. To prevent the conver-
dence of the algorithm to a local maximum (i.e., a subopti-
mal solution), we perform several runs with different iaiti
drandom partitiond[12].

In Rate Distortion theory a quantitative measure for thd-qua
ity of a compact representation is provided byliatortion
function In general, definition of this function depends on
the application: in speech processing, the relevant acou
tic distortion measure is rather unknown, since it is a com
plex function of perceptual and linguistic variablesi[11B.
method provides an information theoretic formulation an
solution to the tradeoff between compactness and qualiy of L :
signal’s representatiofi [LO,11Z.]11]. In the supervisechiea 1 APPlicationto Cortical Features

ing framework, features are regarded as relevant if they prorhe feature tensog” represents a discrete setauintinuous
vide information about a target. IB method assumes that thif%aturesz; ia = % i, € R¥FR*S since each response
additional variabley (the target) is available. In the case of Zisiy IS coliected over a time frame, it can be interpreted
speech processing systems, the available taggimighe au- 55 the average count of an inherent binary event (in the case
dio signal (as speech / non speech, speakers or phonemegs), neyron, this would be a spike). We therefore consider

guides the selection of features during training. The releg,ep response at a location indexed(hyi», is), as a binary
vance of information in the representation of an audio Signage a1y re whose number of occurences in a time interval is rep-
denoted by, is defined as the amount of information it holds (o gented bz, i, i

1,12,13*

about the other variabMé. If we have an estimate of their Let the location of a response be denoted fy
joint distribution p(x,y), a natural measure for the amount, . i FxRxS suchthatz, . = z. The
f relevant information inX aboutY is given by Shannon’s ; it : Llails —
0 : h given by . 3—dimensional modulation spectrum (frequency - rate -
mutual information between these two variables: scale) is divided then intcF x R x S bins centered at
_ P(X,y) (fi,,Ti,»S,). Given a training list ofN feature tensorg®
H(X;Y) =3 p(x.y)log p(X)p(y) @) and their corresponding targey&), k=1,...,N, y=1,2
*y (the nonspeech and speech tags, respectively), we can now

where the discrete random variables X andy € Y are build a count matrl)_<K(x,_y) which mqllgqtes the frequency
distributed according t@(x), and p(y), respectively. Fur- of occupancy of tha!" discrete subdivision of the modula-
ther, letX'e X be another random variable which denotestion spectrum in the presence of a certain target vaitie
the compressed representationxpfx is transformed tax ~ Normalizing this count matrix such that its elements sum to
by a (stochastic) mapping(Xx). Our aim is to find anX 1, provides an estimate of the joint distributipfx, y), which
that compresseX through minimization of (X; X), i.e. the is all the IB framework requires. We assume thaits large
mutual information between the compressed and the origin&nough such that the estimatepk, y) is reliable, although
variable. At the same time, the compression of the resulting has been reported that satisfactory results were acthieve
representatioX should be minimalinder the constrainthat ~ even in cases of extreme undersampling [12].
the relevant information iX aboutY, I (X;Y) stays above a For the purpose of discrimination, the target variable
certain level. This constrained optimization problem can b has only two possible valueg, = 1 (nonspeech) ang = 2
expressed via Lagrange multipliers, with the minimizatbn (speech). We choose to cluster the featitesto 3 groups,



one composed of features relevantyio the second of fea-
tures relevant tg, whereas the third cluster includes fea-
tures less relevant to a specific class. Since this setting al T R N B T
ready implies a degree of compression, we decided to set PN U El S SRS L S SN N SS SOE 08
B! =0 and concentrate on solutions that maximize the rel- R i B W o T N S i S N el 07
evantinformation term only. Let us denote a compressed rep- g e
resentation (a reduced feature set)dgnd the deterministic
mapping obtained by sIB algorithm pgX|x). We discard the
clusterX; whose contribution :

Rate [Hz]

Ci ) (X)) = % P(X},y) Iog% (4) > N o
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to I (X;Y) is minimal, because its features are mostly irrele-
vant in this case. Therefore, we don’t even have to estimate (a)

the responses at these locations of the modulation spectrum

(in contrast to the HOSVD approadh [6]). This implies an

important reduction in computational load, still keepihg t i

maximally informative features with respect to the task of NS S S S 09
speech-nonspeech discrimination. To find out the idenfity o T B N B 08
the remaining two clusters, we compute: 16 e e 57

PRY) = > pxy)p(Xx) (5)
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p(YIX) = = 7 o
( | p( ) 4 5 .
The cluster that maximizes the likelihoqay;|X) contains Scale [cycles/octave] 08 Frequency [Hz]
the most relevant features fgy; the other fory,. We denote,
hence, the first cluster a§ and the latter aX,. The typical (b)
pattern (3-dimensional distribution) of features releviam
y1 is given byp(x|X = %), while fory is given byp(x|X= " Figure 1:p(x|X = %) for non-speech (a) ana(x|X = %) for
%2). According to Bayes rule, these are defined as: speech (b). Clustef; holds 24.7% ani, holds 37.5% of all
. o responses. The remaining 37.8% are discarded as irrelevant
pixx =) = PEZXWP) -5 (g
pX=X;)

Rate [Hz]
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. ._the histograms oR computed on speech and non-speech ex-
Figure[d presents an example of the relevant modulatio g P P P

spectrum of each sound ensemble, speech and non—spee%ﬁ]ples' It is worth to note that the histograms form two dis-

On average, strongest speech-relevant modulations are t@ ct_clusters fo_r every SNR, Wi-th a small degree of overlap.
ween 1 8 E:yc/octave (scale)-1 and 2 Hz (rate), and in bviously, decision thresholdl is highly dependent on the

the 300 600 Hz f Knowled £ ouch SNR condition under which the features are extracted. This
N [nzirequency range. finowiedge of such com-q especially true for low SNR conditions (0dB, -10dB).
pact modulation patterns allows us to classify new incoming

sounds based on the similarity of their cortical-like reeme- .
tation (the feature tensc¥) to the typical patterp(x|X=%,)  >-2 Databaseand featureextraction

or p(X|X=%z). We assess the similarity (or correlation) of Speech examples were taken from the TIMIT Acoustic-
Z to both patterns by their inner (tensor) product (a com-phonetic Continuous Speech Corpus. Music examples were
pact one dimensional feature). We propose the ratio of thesgjected from the authors’ music collection. Animal vocal-

similarity measures, denoted @devant response ratio izations consist of bird sounds_J13]. The noise examples
- . (taken from Noisex) consist of background speech babble in
R(Z) = <Z,p(X&X= %K) > > 9) locations such as restaurants and railway stations, meghin

noise and noisy recordings inside cars and planes. Training
set consists of 500 speech and 560 non-speech samples. One
whereZ is the normalized feature vector. Large valuefof single frame of 500 ms is extracted from each example, start-
give strong indications toward target, small values toward ing at a certain sample offset in order to skip initial pesod

y1. For the purpose of classification a threshdd hasto of silence.

be defined such that any sound whose corresponding relevant From each of these frames, a feature tengoholding
response rati® is abovei is classified as speech, otherwisethe cortical responses is extracted to train the systemahwhi

as nonspeech. We calculate the relevant responseR#&bio  are based on the same auditory features: System 1 reduces
all training examples and noise conditions. Figure 2 showheir dimensionality using the HOSVD, and classifies the fi-

<Z,p(XR=%1) >
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Figure 2: Histogram of relevant response ratios computed o
nonspeech (gray/green) and speech examples (black/red).

nal set of features with SVM_[6]. System 2 (the proposed .
one) defines relevant subsets of auditory features acaprdin (a) (b)

to IB method, and classifies them with the Relevant Response

Ratio and a fixed threshold. Likewise, one feature vector ) )

z holding MFCC and ZCR features is extracted from eact-igure 3: F measure of systems applied to all signal types of
of these frames to train thé®3system. This system subse- the benchmark test : (a) with additive white noise (b) with
quently uses SVM classification. We train each system in &P€€ch babble.

specific SNR condition chosen such that the expected classi-

fication performance is high for a broad range of test condi-

tions: thisis 10 dB for systems 1 and 2, and 40 dB for system 5. CONCLUSIONS

3.

Test set consists of 260 speech and 300 non-speech &slassical methods of dimensionality reduction seek the opt
amples. Sentences and speakers in test examples are diff§}2! Projections to represent the data in a low - dimensional
ent from the training examples. Since we want to evaluat§Pace. Dimensions are discarded based on the relative mag-
the robustness and applicability of the systems undersreali Nitude of the corresponding singular values, even if these p
tic conditions, we constructlenchmark testonsisting of a  ticular dimensions could give a clue for classification.Hist
variety of labeled sound signals. Each signal is 30 second®@Per, an information theoretic approach enables the-selec
long, and consists of alternating speech - nonspeech test ion Of & reduced set of auditory features which are maxi-
amples with random length (between 2 and 8 seconds). waally informative in respect to the target - speech or non-
create 30 such signals, consisting of alternating speedh a$P€ech in this case. A simple thresholding technique is pro-
music, noise, or animal vocalization events. Each of them i§0S€d, built upon these reduced representations. It yields
corrupted either by additive white noise, or speech balale, & performance close to state-of-the-art classifiers, ssch a

SNRs of 40, 30, 20, 10, 0, and -10 dB, resulting in 360 tesBVMs, with a significantly reduced computational load. An
signals. o T ' obvious refinement of the system would be the inclusion of a

noise energy measure in order to adapt the decision thieshol
to the observed SNR (according to Figure 2).
4. EXPERIMENTAL RESULTS Since we wanted to evaluate the process of feature selec-

We evaluate systems performance in terms of the F-measufi@n Per se, we preferred not to use more complex classifiers

for each non-speech ensemble (music, noise, or animal v this task. In future work, we could test an unsupervised

calizations), noise type and level. The F-measure is a contuStering method for the classification of test examples, u
mon tool to’ assess the performance of an information relNg the same sequential optimization routine of the sIB algo

trieval system based on two quantitative measures, poecisi rithm [12]. The method could also be tailored to the recog-
P and recallR. The results are presented in Figlle 3. Bothnition of other speech attributes, such as speech or speaker

systems 1 and 2 - which are based on the same auditory feggc0gnition, based upon other featuies [11] in additioméo t
tures - exhibit equally good performance, with generatirat  SPECtro-temporal modulations.

ability to various noise conditions for both types of noise.

The performance of the 3rd system, which is based on MFCC 6. ACKNOWLEDGEMENTS

and ZCR features, degrades remarkably when corrupted by

additive white noise, whereas it exhibits a better germaali This work was partially funded by GSRT grant 05AK-
tion ability in the case of additive speech babble. MONZ106 and SIMILAR Network of Excellence.
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