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Abstract

In audio content analysis, the discrimination of speech and non-speech is the first processing
step before speaker segmentation and recognition, or speech transcription. Speech/non-speech
segmentation algorithms usually consist of a frame based scoring phase using MFCC features,
combined with a smoothing phase. In this paper, a content based speech discrimination algorithm
is designed to exploit long-term information inherent in modulation spectrum. In order to address
the varying degrees of redundancy and discriminative power of the acoustic and modulation
frequency subspaces, we first employ a generalization of SVD to tensors (Higher Order SVD)
to reduce dimensions. Projection of modulation spectral features on the principal axes with the
higher energy in each subspace results in a compact set of features with minimum redundancy.
We further estimate the relevance of these projections to speech discrimination based on mutual
information to the target class. This system is built upon a segment based SVM classifier in
order to recognize the presence of voice activity in audio signal. Detection experiments using
Greek and U.S. English broadcast news data composed of many speakers in various acoustic
conditions suggest that the system provides complementary information to state-of-the-art mel-
cepstral features.

Key words: speech discrimination, modulation spectrum, mutual information, higher order
singular value decomposition

1. Introduction

The increasingly larger volumes of audio that are amassing nowadays, require a pre-processing
in order to remove information-less content before storing. Usually the first stage of processing
partitions the signal into primary components such as speech, and non-speech before speaker
segmentation and recognition, or speech transcription.

Reviewing relevant past work, many approaches in the literature have examined various fea-
tures and classifiers. In telephone speech adaptive methods such as short-term energy-based
methods, first measure the energy of each frame in the file and then set the speech detection
threshold relative to the maximum energy level. A simple energy level detector that is very ef-
ficient in high signal-to-noise ratio (SNR) conditions would fail in lower SNR or when music
and noise are present (which also contain substantial energy). In [28] a real-time speech/music
classification system was presented based on zero-crossing rate and short-term energy over a
2.4 sec segment of broadcast FM radio. Scheirer and Slaney [29] proposed another real-time
speech/music discriminator using thirteen features in time, frequency and cepstrum domain for
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modeling speech and music and different classification schemes over 2.4 sec segments. Methods
based on such low level perceptual features are considered less efficient when a window smaller
than 2.4 sec is used, or when more audio classes such as environmental sounds are taken into
account [16].

Mel-frequency cepstral coefficients (MFCC) - the most commonly used features in speech and
speaker recognition systems - have been successfully applied in audio indexing task [1, 4, 16].
For applications in which the audio is also transcribed, these features are available at no addi-
tional computational cost for direct audio search. Each audio frame can be represented with
either just the “static” cepstra or also augmenting the representation with the first and second
order time derivatives to capture dynamic features in the audio stream. It has been extensively
documented that it is difficult to accurately discriminate speech from nonspeech given a single
frame [1, 16, 22]. Speech/non-speech segmentation algorithms usually consist of a frame based
scoring phase using MFCC features, combined with a smoothing phase. The general approach
used for audio segmentation is based on Maximum Likelihood (ML) classification of a frame
with Gaussian mixture models (GMMs) using MFCC features [4]. The smoothing of likeli-
hoods, when using the GMM framework, assumes that the feature vectors of neighboring frames
are independent given a certain class; this smoothing is commonly applied by the GMM-based al-
gorithms either for speech-nonspeech and audio classification or for speaker recognition [4, 26].
In [12], SVM classifier was used based on cepstral features; median smoothing of SVM output
scores over 1 sec segments improved frame-based classification accuracy by ∼ 30%. The per-
formance of SVM-based system on different domains was more consistent or even better than
GMMs based on the same cepstral features [12].

In [16, 32, 1], the classification entity is a sequence of frames (a segment) rather than a sin-
gle frame. In [16, 32], segments were parameterized by the mean value and standard deviation
of frame-based features over a much longer window.Audio classification was performed using
SVMs in [16], and GMMs in [32]. In [1], a segment based classifier was built unifying both
frame based scoring phase and the smoothing phase. Audio segments were modeled as super-
vectors through a segment based generative model and each class (speech, silence, music) was
modeled by a distribution over the supervector space. Classification of speech/non-speech classes
proceeded then using either GMMs or SVMs [1].

In this work we first compare and then combine the speech discrimination ability of cepstral
features to that of modulation spectral features [8, 2]. Dynamic information provided by the
modulation spectrum captures fast and slower time-varying quantities such as pitch, phonetic and
syllabic rates of speech, tempo of music, etc [8, 2]. In [24], it was suggested that these high level
modulation features could be combined with standard mel-cepstral features to enhance speaker
recognition performance. Hence these features could be available at no additional computational
cost for direct audio search (as MFCC).

Still, the use of modulation spectral features for pattern classification is prevented by their
dimensionality. Methods addressing this problem have proposed critical band filtering to reduce
acoustic frequencies, and a continuous wavelet transform instead of a Fourier transform [33], or
a discrete cosine transform [13] for modulation frequencies. In [24], dimensionality reduction
was performed either by averaging across modulation filters or across acoustic frequency bands.

We adopt a different approach towards dimensionality reduction of this two-dimensional rep-
resentation. We employ a higher order generalization of singular value decomposition (HOSVD)
to tensors [7], and retain the singular vectors of acoustic and modulation frequency subspaces
with the higher energy. Joint acoustic and modulation frequencies are projected on the retained
singular vectors in each subspace to obtain the multilinear principal components (PCs) of the
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sound samples. In this way the varying degrees of redundancy of the acoustic and modulation
frequency subspaces are efficiently addressed. This technique has been successfully applied in
auditory-based features with multiple scales of time and spectral resolution in [22].

Truncation of singular vectors based on their energy addresses features redundancy; to assess
their discriminative power, we need an estimate of their mutual information (MI) to the target
class (speech versus non-speech, i.e., noise, music, speech babble) [6]. By first projecting the
high-dimensional data to a lower order manifold, we can approximate the statistical dependence
of these projections to the class variable with reduced computational effort. We spot near-optimal
PCs for classification among those contributing more than an energy threshold through an incre-
mental search method based on mutual information [23].

In Section 2, we overview a modulation frequency analysis framework which is commonly
used [2]. The multilinear dimensionality reduction method and the mutual information-based
feature selection are presented in Section 3. In the same Section we also discuss the practical
implementation of mutual information estimation based on the joint probability density function
for two variables and its marginals. In Section 4, we describe the experimental setup, the database
and the results using the proposed features, mel cepstral features and the concatenation of both
feature sets. Finally, in Section 5 we present our conclusions.

2. Modulation Frequency Analysis

The most common modulation frequency analysis framework [8, 2] for a discrete signal x(n),
initially computes via the discrete Fourier transform (DFT) the discrete short-time Fourier trans-
form (DSTFT) Xk(m), m denoting the frame number and k the DFT frequency sample:

Xk(m) =

∞∑
n=−∞

h(mM − n)x(n)Wkn
K , (1)

k = 0, . . . ,K − 1,

where WK = e− j(2π/K), h(n) the (acoustic) frequency analysis window and M the hopsize (in
number of samples). Subband envelope detection - defined as the magnitude |Xk(m)| or square
magnitude |Xk(m)|2 of the subband - and their frequency analysis (with DFT) are performed next,
to yield the modulation spectrum with a uniform modulation frequency decomposition:

Xl(k, i) =

∞∑
m=−∞

g(lL − m)|Xk(m)|W im
I , (2)

i = 0, . . . , I − 1,

where WI = e− j(2π/I), g(m) is the modulation frequency analysis window and L the corresponding
hopsize (in number of samples); k and i are referred to as the “Fourier” (or acoustic) and “modu-
lation” frequency, respectively. Tapered windows h(n) and g(m) are used to reduce the sidelobes
of both frequency estimates.

The modulation spectrogram representation then, displays modulation spectral energy
|Xl(k, i)| ∈ RI1×I2 in the joint acoustic/modulation frequency plane. Length of the analysis window
h(n) controls the trade-off between resolutions in the acoustic and modulation frequency axes.
The degree of overlap between successive windows sets the upper limit of the subband sampling
rate during the modulation transform.
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3. Description of the method

3.1. Multilinear Analysis of Modulation Frequency Features
Every signal segment in the training database is represented in the acoustic-modulation fre-

quency space as a two-dimensional matrix. By subtracting their mean value (computed over
the training set of I3 samples) and stacking all training matrices we obtain the data tensor
D ∈ RI1×I2×I3 . A generalization of SVD to tensors referred to as Higher Order SVD (HOSVD) [7]
enables the decomposition of tensorD to its n-mode singular vectors:

D = S ×1 U f req ×2 Umod ×3 Usamples (3)

where S is the core tensor with the same dimensions as D; S ×n U(n), n = 1, 2, 3, denotes the
n−mode product of S ∈ RI1×I2×I3 by the matrix U(n) ∈ RIn×In . For n = 2 for example, S ×2 U(2)

is an (I1 × I2 × I3) tensor given by(
S ×2 U(2)

)
i1i2i3

def
=

∑
i2

si1i2i3 ui2i2 . (4)

U f req ∈ RI1×I1 , Umod ∈ RI2×I2 are the unitary matrices of the corresponding subspaces of acoustic
and modulation frequencies; Usamples ∈ RI3×I3 is the samples subspace matrix. These (In × In)
matrices U(n), n = 1, 2, 3, contain the n-mode singular vectors (SVs):

U(n) =
[
U(n)

1 U(n)
2 . . . U(n)

In

]
. (5)

Each matrix U(n) can directly be obtained as the matrix of left singular vectors of the “matrix
unfolding” D(n) of D along the corresponding mode [7]. Tensor D can be unfolded to the
I1× I2I3 matrix D(1), the I2× I3I1 matrix D(2), or the I3× I1I2 matrix D(3). The n-mode singular
values correspond to the singular values found by the SVD of D(n).

We define the contribution αn, j of the jth n-mode singular vector U(n)
j as a function of its

singular value λn, j:

αn, j = λn, j /

In∑
j=1

λn, j or αn, j = λn, j /

√√√ In∑
j=1

λ2
n, j (6)

We set a threshold and retain only the Rn singular vectors with contribution exceeding that thresh-
old in modes n = 1, 2. We thus obtain the truncated matrices Û(1) ≡ Û f req ∈ RI1×R1 and
Û(2) ≡ Ûmod ∈ RI2×R2 . Joint acoustic & modulation frequencies B ≡ |Xl(k, i)| ∈ RI1×I2 extracted
from audio signals are normalized by their standard deviation over the training set and projected
on Û f req and Ûmod [7]:

Z = B ×1 ÛT
f req ×2 ÛT

mod = ÛT
f reqBÛmod (7)

Z is an (R1 × R2)−matrix, where R1, R2 is the number of retained SVs in the acoustic and mod-
ulation frequency subspace. We can project Z back into the full I1 × I2-dimensional space to get
the rank-(R1,R2) approximation of B [7]:

B̂ = Z ×1 Û f req ×2 Ûmod = Û f req.Z.ÛT
mod (8)

HOSVD addresses features redundancy by selecting mutually independent features; these are
not necessarily the most discriminative features. We proceed then to detect the near-optimal
projections of features among those contributing more than a threshold. Based on mutual in-
formation [6], we examine the relevance to the target class of the first R1 SVs in the acoustic
frequency subspace and the first R2 SVs in the modulation frequency subspace.
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3.2. Mutual Information Estimation

The mutual information between two random variables xi and x j is defined in terms of their
joint probability density function (pdf) Pi j(xi, x j) and the marginal pdf’s Pi(xi), P j(x j). Mutual
information (MI) I[Pi j] is a natural measure of the inter-dependency between those variables:

I[Pi j] =

∫
dxi

∫
dx jPi j(xi, x j) log2

[
Pi j(xi, x j)

Pi(xi)P j(x j)

]
(9)

MI is invariable to any invertible transformation of the individual variables [6].
It is well-known that MI estimation from observed data is non-trivial when (all or some of) the

variables involved are continuous-valued. Estimating I[Pi j] from a finite sample requires regu-
larization of Pi j(xi, x j). The simplest regularization is to define b discrete bins along each axis.
We make an adaptive quantization (variable bin length) so that the bins are equally populated
and the coordinate invariance of the MI is preserved [31]. The precision of features quantiza-
tion also affects the sample size dependence of MI estimates [6]. Entropies are systematically
underestimated and mutual information is overestimated according to:

Iest(b,N) = I∞(b) + A(b)/N + C(b,N) (10)

where I∞ is the extrapolation to infinite sample size and the term A(b) increases with b [31].
There is a critical value, b∗, beyond which the term C(b,N) in (10) become important. We have
defined b∗ according to a procedure described in [31]: when data are shuffled, mutual information
I shu f f le
∞ (b) should be near zero for b < b∗ while it increases for b > b∗. I∞(b) on the other hand

increases with b and converges to the true mutual information near b∗.

3.3. Max-Relevance and Min-Redundancy

The maximal relevance (MaxRel) feature selection criterion simply selects the features most
relevant to the target class c. Relevance is usually defined as the mutual information I(x j; c)
between feature x j and class c. Through a sequential search which does not require estimation
of multivariate densities, the top m features in the descent ordering of I(x j; c) are selected [23].
“Minimal-redundancy-maximal-relevance” (mRMR) criterion, on the other hand, spots near-
optimal features for classification optimizing the following condition:

max
x j∈X−S m−1

I(x j; c) −
1

m − 1

∑
xi∈S m−1

I(x j; xi)

 (11)

where I(x j; xi) is the mutual information between features x j and xi, i.e., redundancy, and S m−1 is
the initially given set of m−1 features. The mth feature selected from the set X−S m−1 maximizes
relevance and reduces redundancy. The computational complexity of both incremental search
methods is O(|S |M) [23].

In our case the HOSVD technique has already addressed redundancy reduction; mutual in-
formation I(x j; xi) between pairs of “packed” features is significantly smaller than MI be-
tween original features. Hence we used MaxRel method to select n sequential feature sets
S 1 ⊂ . . . ⊂ S k ⊂ . . . ⊂ S n and computed the respective equal error rate (EER) using SVM
classifier and the validation data set.
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3.4. System evaluation
Classification of segments was performed using support vector machines. SVMs find the

optimal boundary that separates two classes maximizing the margin between separating boundary
and closest samples to it (support vectors) [11]. We have used SVMlight [11] with a Radial-
Basis-Functions kernel.

We evaluate system performance on the validation and the test set using the Detection Error
Trade-off curve (DET) [21]. The DET curves depict the false rejection rate (or miss probability)
of the speech detector versus its false acceptance rate (or false alarm probability). DET curves
are quite similar to the Receiver Operating Characteristic (ROC) curves, except that the detection
error probabilities are plotted on a nonlinear scale. This scale transforms the error probabilities
by mapping them to the corresponding Gaussian deviates. Thus DET curves are straight lines
when the underlying distributions are Gaussian. This makes DET plots more intelligible than
ROC plots [21]. We have used the matlab files that NIST has made available for producing DET
curves with the matlab software package [21].

Since the costs of miss and false alarm probabilities are considered equally important, the
minimum value of the detection cost function, DCFopt, is:

DCFopt = min
(
Pmiss ∗ Pspeech + P f alse ∗ Pnon−speech

)
. (12)

where Pspeech and Pnon−speech are the prior probabilities of speech and non-speech class respec-
tively. We also report the equal-error rate (EER) - the point of DET curve where the false alarm
probability equals the miss probability.

4. Experiments

4.1. Data Collection
We first tested the methods described in section 3 on audio data recorded from broadcasts of

Greek TV programs (ERT3). The database was manually segmented and labeled at CSD. The
labeled dataset used in these experiments consists of 6 hours; it is available upon request from
the first author.

Audio data are all mono channel and 16 bit per sample, with 16 kHz sampling frequency.
Speech data consists of broadcast news and TV shows recorded in different conditions such as
studios or outdoors, under quiet conditions or with background noise; also, some of the speech
data have been transmitted over telephone channels. Non-speech data consists of music (mainly
audio signals at the beginning and the end of TV shows, or music accompanying talks of political
candidates), outdoors noise from moving cars, beeps, crowd, claps, or very noisy unintelligible
speech due to many speakers talking simultaneously (speech babble). We used 7 broadcast shows
for training, with minimum duration of ∼ 6 min, and maximum duration of ∼ 1 hour (1 and a
half hour in total). Fifteen shows were used for testing with minimum duration of ∼ 6 min and
maximum duration of ∼ 1 hour (∼ 4 and a half hours in total). Each file was partitioned into 500
ms segments for long-term feature analysis. We extracted evenly spaced overlapping segments
every 250 ms for speech and every 50 ms for non-speech (in order to maximize non-speech data).

We also conducted experiments on the NIST RT-03 evaluation data distributed by LDC
(LDC2007S10). The dataset we used consisted of six audio files with 30 minutes duration each,
recorded in February 2001 from U.S. radio or TV broadcast news shows, from ABC, CNN,
NBC, PRI, and VOA. For parameter tuning, we performed 5-fold cross-validation experiments
on a subset of ∼ 1 hour of this data; system performance was evaluated on the rest of data.
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4.2. Feature Extraction and Classification
The modulation spectrogram was calculated using Modulation Toolbox [3]. For every 500

ms block modulation spectrum features were generated using a 128 point spectrogram with a
Gaussian window. The envelope in each subband was detected by a magnitude square operator.
To reduce the interference of large dc components of the subband envelope, the mean was sub-
tracted before modulation frequency estimation. One uniform modulation frequency vector was
produced in each one of the 65 subbands. Due to a window shift of 32 samples, each modula-
tion frequency vector consisted of 125 elements up to 250 Hz. Feature calculation runtime is
O(N log2 N), since the estimation of modulation spectral features consists of two FFTs.

The mean value was computed over the training set and subtracted from all matrices; stacking
of the training matrices produced the data tensorD ∈ R65×125×7200. The singular matrices U(1) ≡

U f req ∈ R65×65 and U(2) ≡ Umod ∈ R125×125 were directly obtained by SVD of the “matrix
unfoldings” D(1) and D(2) of D respectively. By retaining the singular vectors that exceeded
a contribution threshold of 1% in each mode (eq. 6), resulted in the truncated singular matrices
Û f req ∈ R65×24 and Ûmod ∈ R125×29. Features were projected on Û f req and Ûmod according to
eq. (8) resulting in matrices Z ∈ R24×29; these were subsequently reshaped into vectors before
MI estimation, feature selection and SVM classification. All features were normalized by their
corresponding standard deviation estimated from the entire training set to reduce their dynamic
range before classification (their mean value has already been set to zero before projecting them
to the truncated singular matrices).

HOSVD is the most costly process in our system but it is performed only once. HOSVD
consists of the SVD of two data matrices N×k each composed of N k-dimensional vectors; com-
putational complexity of SVD transform is O(Nk2). N is either the acoustic frequency dimension
or the modulation frequency dimension; respectively, k is the product of the modulation or the
acoustic frequency dimension multiplied by the size of the training dataset.

Figure (1) presents the contribution of the first 25 singular vectors U(1)
j and U(2)

j , j =

1, . . . , 25 , in the acoustic and modulation frequency subspaces, respectively. Ordering of the
n−mode singular values λn, j implies that the “energy” of modulation spectral representation is
concentrated in the lower j-indices. In addition, Figure (1) shows that variance in the acous-
tic frequency subspace slightly exceeds that in the modulation frequency subspace; rather more
acoustic frequency SVs should be retained for “best rank approximation” of a modulation spec-
tral representation.

For the data discretization involved in MI estimation, the number of discrete bins along each
axis was set to b∗ = 8 according to the procedure described in [31]. Figure 2 compares the
relevance of features in the original and reduced representation. The number of relevant features
in the original representation is large, posing a serious drawback to any classifier: 1147 out of
the 8125 features (14.12%) have mutual information to the target class more than 0.04 bits. As
Figure 2a depicts, the most relevant among the original features are mainly distributed along
the modulation frequency axis: they span the ranges of the lower syllabic and phonetic rates of
speech (∼ 4 − 30 Hz) as well as the range of pitch of the majority of speakers, i.e., up to ∼ 200
Hz). They also appear confined to the lower acoustic frequency bands up to ∼ 2500 Hz.

The HOSVD redundancy reduction method has reduced dimensions in each subspace sepa-
rately. Therefore, the differential relevance of the two subspaces is preserved in the compressed
representation as MI estimation reveals. Figure (2b) presents MI estimates between each of
the first 25 singular vectors and the speech/non-speech class variable for the training set. The
subspace spanned by the first two acoustic frequency singular vectors (SVs) and the first 15 mod-
ulation frequency SVs appear to be the most relevant to speech-non-speech discrimination with
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Figure 1: Contribution αn, j of the first 25 singular vectors (SVs) U(1)
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Figure 2: Relevance of the original and compressed modulation spectral features: (a) Mutual information (MI) between
the acoustic and modulation frequencies (65×125 dimensions) and the speech/non-speech class variable. (b) MI between
the first 25 singular vectors in each subspace and the speech/non-speech class variable.

much lower peaks elsewhere. According to MI criterion, then, variance in modulation frequency
subspace is more relevant to the classification task. In addition, the number of relevant features is
significantly reduced in the compressed representation: only 27 out of the 696 “packed” features
(3.94%) have mutual information to the target class more than 0.04 bits. Still the maximum value
of relevance to the classification task is increased.

In Figure 3 we compare the SVM classifier EER on the validation data set when using features
selected either in terms of contribution or relevance. According to the maximum contribution
criterion, we retained singular vectors with contributions varying between 0.5% up to 6% (eq. 6).
The dimensionality of the reduced features varied between 18×18 = 324 dimensions up to 3×3 =

9 dimensions, respectively. EER was lowest for the configuration of 13 × 12 = 156 dimensions;
increase in dimensionality beyond 156 features induced poor generalization whereas for less than
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Figure 4: (a) Rank−(13, 12) approximation (eq. 8) of |Xl(k, i)| for 500 ms of a speech signal. (b) 21 features approxi-
mation for the same speech signal. Energy at modulations corresponding to pitch (∼ 120 Hz) and syllabic and phonetic
rates (< 40 Hz) remain prominent.

9×6 = 54 features, the performance became progressively worse. Under the maximum relevance
selection criterion, just 21 features yielded the best classification performance in terms of EER.

Figures 4, 5, 6 depict the rank−(13, 12) approximation of modulation spectra (eq. 8) as well
as their reconstruction from the 21 most relevant features for speech, music and noise signals,
respectively. Energy at modulations that characterize speech at the lower acoustic frequency
bands, corresponding to syllable and phonemic rates (< 40 Hz) and the pitch of speaker, remain
prominent in both representations of speech (Fig. 4). In Fig. 5, the energy at modulations cor-
responding to harmonics characterize the music signal (at the beginning of a TV show). The
approximate representations of the noise signal (claps and crowd noise outdoors) in Fig. 6, de-
pict most of its energy localized in higher frequency bands, and concentrated in lower modulation
frequencies.
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Figure 5: (a) Rank−(13, 12) approximation of |Xl(k, i)| for 500 ms of a music signal. (b) 21 features approximation for
the same music signal; the characteristic patterns are not lost.
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Figure 6: (a) Rank−(13, 12) approximation of |Xl(k, i)| for 500 ms of a noise signal (claps and crowd noise outdoors).
(b) 21 features approximation for the same signal.

4.3. Combining Modulation and Cepstral Features

Speech/Non-Speech discrimination systems for broadcast news are typically based on the mel-
frequency cepstral coefficients that are also routinely used in speech and speaker recognition sys-
tems. The features used in the baseline system consist of 12th-order Mel frequency cepstral co-
efficients (MFCCs), log-energy, along with their first and second differences to capture dynamic
features in the audio stream [4]. This makes a frame-based feature vector of 39 elements (13×3)
The features were extracted from 30 ms audio frames with a 10 ms frame rate, i.e. every 10 ms
the signal was multiplied using a Hamming window of 30 ms duration. Critical-band analysis of
the power spectrum with a set of triangular band-pass filters was performed as usual. For each
frame, equal-loudness pre-emphasis and cube-root intensity-loudness compression were applied
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Figure 7: Detection Error Trade-off (DET) curves for frame- and segment-based SVM classification using cepstral fea-
tures, and median smoothing of the frame-level scores; a small subset of training/validation set from the greek broadcast
news shows has been used.

according to Hermansky [9]. The general approach used is maximum-likelihood classification
with Gaussian mixture models (GMMs) trained on labeled training data. Still in [12] it was
reported that the performance of SVM on different domains was more consistent than GMMs
based on the same MFCC features. Therefore, in the subsequent experiments we will use the
MFCC-based features with SVM classifiers. This will make easier the comparison between the
suggested features and the MFCC-based features. Moreover, we will discuss the fusion of the
two sets of features.

In [12], it was found that smoothing the SVM output scores when frame-based features are
used, improves the final score in terms of EER (an improvement of about 30% was reported
in [12] as compared to the frame-based results prior to smoothing). In [16, 32], segment-based
MFCC features were considered. For segments of 500ms, the mean and the standard deviation
of 50 frame-based MFCC feature vectors were the segment-based features [16, 32] (i.e., a 78-
element feature vector).

We decided to compare the frame-based and segment-based SVM classifiers. We performed
2-fold cross-validation on a subset of the Greek training data set (two broadcast shows of total
duration 17 minutes, with 26 speakers). Figure 7 presents the DET curves for frame-based and
segment-based SVM classification results. Applying smoothing, using a median filter, on the
frame-based SVM classification results, the frame-based approach is highly improved (solid line
in Fig.7). Actually it provides on average equivalent result to the segment-based MFCC features.
The major disadvantage, however, of any of the frame-based MFCC features approach, is that the
computation time for the training and testing of SVM classifier, is much bigger as compared to
the segment-based MFCC features. Therefore, we will only consider the segment-based MFCC
features for comparison purposes with the suggested modulation spectral features.

Different approaches to information fusion exist [27]: information can be combined prior to
the application of any classifier (pre-classification fusion), or after the decisions of the classifier
have been obtained (post-classification fusion). Pre-classification fusion refers to feature level
fusion in the case of data from a single sensor (such as single channel audio data). When the
feature vectors are homogeneous, such as the MFCC features of successive frames of a speech
or non-speech audio segment, a single feature vector can be calculated from the mean and stan-
dard deviation of the individual feature vectors as in [16, 32]. When different feature extraction
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Figure 8: DET curves for segment-based SVM classification using cepstral features (MFCC+∆ + ∆∆), the 21 most
relevant features (MaxRel), and the concatenated feature vector (Fusion) for the same training and testing sets from
greek broadcast news shows.

algorithms are applied on the input data, the non-homogeneous feature vectors that incur can be
concatenated to produce a single feature vector [27]. On the other hand, post-classification fu-
sion can be accomplished either at the matching score level or at the decision level as explained
in [10]. According to [10], integration at the feature level is preferable since the features contain
richer information about the input data than the matching scores or output decisions of a classi-
fier/matcher. We simply concatenated the different feature vectors into a single representation of
the input pattern.

Table 1: ˆDCF, P̂miss and P̂ f alse on test set from Greek shows

[13, 12] MFCCs+∆ + ∆∆ MaxRel fusion
EER 5.19 4.79 5.06 4.45

ˆDCF 5.12 4.63 5.05 4.35
P̂miss 4.73 3.20 4.84 2.50
P̂ f alse 5.50 6.06 5.27 6.19

Figure 8 presents the DET curves and Table 1 the respective EER, and the optimal values of
ˆDCF, P̂miss and P̂ f alse for the systems tested using SVM and the same training data set from

greek broadcast news shows. MaxRel denotes the system based on the first 21 most relevant
features. The last column refers to the fusion of cepstral with MaxRel features; the concatenated
(78+21=99)-features vector further reduced ˆDCF down to 4.35%. For comparison, we also re-
port the best EER and ˆDCF when using the first (R1,R2) projections, which were 5.19% and
5.12% respectively for the [13 × 12] PCs. MaxRel system is better at the low miss probability
regions of the DET curve; cepstral features on the other hand yield better classification perfor-
mance at the low false alarm regions. Fusion of the two feature sets then follows the best of
performances across the whole DET curve.

4.3.1. Results on the NIST RT-03 Data
To train our system on US English, we used about 1 hour from U.S. broadcast news from

the NIST RT-03 evaluation data (LDC2007S10). Parameter tuning was performed using 5-fold
12



cross-validation along with SVM classifier. Figure 9 presents the SVM classifier equal error rate
(EER) as a function of the most relevant modulation spectral features alone, or using them in
combination with MFCC features. The EER was minimum when using the 52 most relevant
modulation spectral features. On the other hand, using a concatenated feature vector, best per-
formance was achieved through the combination of the 16 most relevant modulation spectral
features with MFCC features.Probably, there is some redundancy between modulation spectral
features and the augmented MFCC parameters (when ∆ and ∆∆ are included).

Figure 10 presents the respective DET curves and Table 2 the EER, and the optimal values
of ˆDCF, P̂miss and P̂ f alse for the test set. When using cepstral features alone, EER was 3.78%
and ˆDCF was 3.65%. MaxRel denotes the system based on the first 52 maximal relevance
modulation spectra (MRMS) features, which yielded an EER of 4.98% and a ˆDCF of 4.88%.
Fusion in the last column refers to the concatenation of the augmented MFCC and the 16 MRMS
feature vectors (78 + 16 = 94 features). Fusion reduced the EER to 3.14% and ˆDCF to 2.97%
which is an improvement of ∼ 17% and ∼ 19%, respectively, over the augmented MFCC.

Performance of speech detection systems on broadcast news audio in other NIST datasets,
typically corresponds to a Pmiss of ∼ 1.5% and a P f alse of 1% − 2% [4, 34, 35]. Here, we
report a Pmiss value of ∼ 2.91% and a P f alse value of ∼ 3.12%, which are both higher than the
corresponding published values. We believe that this difference is due to the fact that we used
just two classes (speech/nonspeech) while in general more classes are considered (speech plus
music, speech and noise etc., see references in [34]). The use of more classes will minimize the
false rejection of speech (i.e., Pmiss) when noise or music is also present with speech, because
these extra classes could be subsequently reclassified as speech [34]. In addition, several hours
of data are commonly used for training of a speech/nonspeech detector [1, 35] whereas we only
used about one hour of data.

Table 2: ˆDCF, P̂miss and P̂ f alse for testing on NIST RT-03

MFCCs+∆ + ∆∆ MaxRel fusion
EER 3.78 4.98 3.14

ˆDCF 3.65 4.88 2.97
P̂miss 3.38 4.62 2.91
P̂ f alse 4.40 5.60 3.12

Comparing Tables 1, 2, we conclude that system performance is better in terms of EER and
accuracy in the NIST database than in the Greek broadcast audio data. By inspection of the
DET curves in Figures 8, 10, we notice that the lower false alarm regions of the DET curve
correspond to higher Pmiss (false speech rejection) in the Greek dataset than in NIST; on the other
hand, P f alse is lower in the Greek dataset for the lower miss probability regions. This difference
in performance could be explained by the different content of the U.S. English and Greek TV
shows, i.e., the variability in speech and non-speech classes in every database. Besides, the
concatenation of features yields greater improvement over cepstral features in the NIST database
(accuracy ∼ 19%, EER ∼ 17%) than in Greek broadcast audio data (accuracy ∼ 6%, EER ∼ 7%).

5. Conclusions

Previous studies have shown the importance of joint acoustic and modulation frequency con-
cept in signal analysis and synthesis, as well as single-channel talker separation and coding
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Figure 9: SVM classifier equal error rate (EER) as a function of most relevant modulation spectral features alone, or
using them in combination with MFCC features for the U.S. English validation dataset.

applications ([2, 30, 33]). We presented a dimensionality reduction method for modulation spec-
tral features which could be tailored to various classification tasks. HOSVD efficiently addresses
the differing degrees of redundancy in acoustic and modulation frequency subspaces. By pro-
jecting features on a lower dimensional subspace, we significantly reduce computational load of
MI estimation. Using HOSVD alone would lead to feature selection based minimal redundancy
irrespective of their discriminative power [23].

The set of most relevant features exhibited rather comparable classification performance to
that of state-of-the-art mel cepstral features (see Figures 8& 10). Feeding the fused feature
set into the same SVM classifier that we used before, further decreased the classification error
across the DET curve which supports the hypothesis that modulation spectral features provide
non-redundant information to that encoded by MFCCs (Tables 1& 2).

The suggested features span a segment of 500 ms which is roughly equivalent to two syllables
14
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Figure 10: DET curves for segment-based SVM classification using the 52 most relevant features (MaxRel), the aug-
mented MFCC features, and Fusion (concatenation of 16 MaxRel with augmented MFCC feature vectors) for the U.S.
English test dataset.

duration; hence, they can capture sound patterns present in a language and that is how they
complement MFCC features. On the other hand, this is a non-desirable aspect when we want to
use the same system for different languages since further training may be necessary.

Modulation spectra have found important applications to classification tasks such as content
identification [33], speaker recognition [13, 24], etc. We expect that modulation based features
will be very important in detecting dysphonic voices [17, 20].
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